cpufreq: Call __cpufreq_governor() with policy->rwsem held
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38 return cpumask_empty(policy->cpus);
39 }
40
41 static bool suitable_policy(struct cpufreq_policy *policy, bool active)
42 {
43 return active == !policy_is_inactive(policy);
44 }
45
46 /* Finds Next Acive/Inactive policy */
47 static struct cpufreq_policy *next_policy(struct cpufreq_policy *policy,
48 bool active)
49 {
50 do {
51 /* No more policies in the list */
52 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
53 return NULL;
54
55 policy = list_next_entry(policy, policy_list);
56 } while (!suitable_policy(policy, active));
57
58 return policy;
59 }
60
61 static struct cpufreq_policy *first_policy(bool active)
62 {
63 struct cpufreq_policy *policy;
64
65 /* No policies in the list */
66 if (list_empty(&cpufreq_policy_list))
67 return NULL;
68
69 policy = list_first_entry(&cpufreq_policy_list, typeof(*policy),
70 policy_list);
71
72 if (!suitable_policy(policy, active))
73 policy = next_policy(policy, active);
74
75 return policy;
76 }
77
78 /* Macros to iterate over CPU policies */
79 #define for_each_suitable_policy(__policy, __active) \
80 for (__policy = first_policy(__active); \
81 __policy; \
82 __policy = next_policy(__policy, __active))
83
84 #define for_each_active_policy(__policy) \
85 for_each_suitable_policy(__policy, true)
86 #define for_each_inactive_policy(__policy) \
87 for_each_suitable_policy(__policy, false)
88
89 #define for_each_policy(__policy) \
90 list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
91
92 /* Iterate over governors */
93 static LIST_HEAD(cpufreq_governor_list);
94 #define for_each_governor(__governor) \
95 list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
96
97 /**
98 * The "cpufreq driver" - the arch- or hardware-dependent low
99 * level driver of CPUFreq support, and its spinlock. This lock
100 * also protects the cpufreq_cpu_data array.
101 */
102 static struct cpufreq_driver *cpufreq_driver;
103 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
104 static DEFINE_RWLOCK(cpufreq_driver_lock);
105
106 static DEFINE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
107
108 /**
109 * cpufreq_set_update_util_data - Populate the CPU's update_util_data pointer.
110 * @cpu: The CPU to set the pointer for.
111 * @data: New pointer value.
112 *
113 * Set and publish the update_util_data pointer for the given CPU. That pointer
114 * points to a struct update_util_data object containing a callback function
115 * to call from cpufreq_update_util(). That function will be called from an RCU
116 * read-side critical section, so it must not sleep.
117 *
118 * Callers must use RCU callbacks to free any memory that might be accessed
119 * via the old update_util_data pointer or invoke synchronize_rcu() right after
120 * this function to avoid use-after-free.
121 */
122 void cpufreq_set_update_util_data(int cpu, struct update_util_data *data)
123 {
124 rcu_assign_pointer(per_cpu(cpufreq_update_util_data, cpu), data);
125 }
126 EXPORT_SYMBOL_GPL(cpufreq_set_update_util_data);
127
128 /**
129 * cpufreq_update_util - Take a note about CPU utilization changes.
130 * @time: Current time.
131 * @util: Current utilization.
132 * @max: Utilization ceiling.
133 *
134 * This function is called by the scheduler on every invocation of
135 * update_load_avg() on the CPU whose utilization is being updated.
136 */
137 void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
138 {
139 struct update_util_data *data;
140
141 rcu_read_lock();
142
143 data = rcu_dereference(*this_cpu_ptr(&cpufreq_update_util_data));
144 if (data && data->func)
145 data->func(data, time, util, max);
146
147 rcu_read_unlock();
148 }
149
150 DEFINE_MUTEX(cpufreq_governor_lock);
151
152 /* Flag to suspend/resume CPUFreq governors */
153 static bool cpufreq_suspended;
154
155 static inline bool has_target(void)
156 {
157 return cpufreq_driver->target_index || cpufreq_driver->target;
158 }
159
160 /* internal prototypes */
161 static int __cpufreq_governor(struct cpufreq_policy *policy,
162 unsigned int event);
163 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
164 static void handle_update(struct work_struct *work);
165
166 /**
167 * Two notifier lists: the "policy" list is involved in the
168 * validation process for a new CPU frequency policy; the
169 * "transition" list for kernel code that needs to handle
170 * changes to devices when the CPU clock speed changes.
171 * The mutex locks both lists.
172 */
173 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
174 static struct srcu_notifier_head cpufreq_transition_notifier_list;
175
176 static bool init_cpufreq_transition_notifier_list_called;
177 static int __init init_cpufreq_transition_notifier_list(void)
178 {
179 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
180 init_cpufreq_transition_notifier_list_called = true;
181 return 0;
182 }
183 pure_initcall(init_cpufreq_transition_notifier_list);
184
185 static int off __read_mostly;
186 static int cpufreq_disabled(void)
187 {
188 return off;
189 }
190 void disable_cpufreq(void)
191 {
192 off = 1;
193 }
194 static DEFINE_MUTEX(cpufreq_governor_mutex);
195
196 bool have_governor_per_policy(void)
197 {
198 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
199 }
200 EXPORT_SYMBOL_GPL(have_governor_per_policy);
201
202 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
203 {
204 if (have_governor_per_policy())
205 return &policy->kobj;
206 else
207 return cpufreq_global_kobject;
208 }
209 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
210
211 struct cpufreq_frequency_table *cpufreq_frequency_get_table(unsigned int cpu)
212 {
213 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
214
215 return policy && !policy_is_inactive(policy) ?
216 policy->freq_table : NULL;
217 }
218 EXPORT_SYMBOL_GPL(cpufreq_frequency_get_table);
219
220 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
221 {
222 u64 idle_time;
223 u64 cur_wall_time;
224 u64 busy_time;
225
226 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
227
228 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
229 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
230 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
231 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
232 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
233 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
234
235 idle_time = cur_wall_time - busy_time;
236 if (wall)
237 *wall = cputime_to_usecs(cur_wall_time);
238
239 return cputime_to_usecs(idle_time);
240 }
241
242 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
243 {
244 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
245
246 if (idle_time == -1ULL)
247 return get_cpu_idle_time_jiffy(cpu, wall);
248 else if (!io_busy)
249 idle_time += get_cpu_iowait_time_us(cpu, wall);
250
251 return idle_time;
252 }
253 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
254
255 /*
256 * This is a generic cpufreq init() routine which can be used by cpufreq
257 * drivers of SMP systems. It will do following:
258 * - validate & show freq table passed
259 * - set policies transition latency
260 * - policy->cpus with all possible CPUs
261 */
262 int cpufreq_generic_init(struct cpufreq_policy *policy,
263 struct cpufreq_frequency_table *table,
264 unsigned int transition_latency)
265 {
266 int ret;
267
268 ret = cpufreq_table_validate_and_show(policy, table);
269 if (ret) {
270 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
271 return ret;
272 }
273
274 policy->cpuinfo.transition_latency = transition_latency;
275
276 /*
277 * The driver only supports the SMP configuration where all processors
278 * share the clock and voltage and clock.
279 */
280 cpumask_setall(policy->cpus);
281
282 return 0;
283 }
284 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
285
286 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
287 {
288 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
289
290 return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
291 }
292 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
293
294 unsigned int cpufreq_generic_get(unsigned int cpu)
295 {
296 struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
297
298 if (!policy || IS_ERR(policy->clk)) {
299 pr_err("%s: No %s associated to cpu: %d\n",
300 __func__, policy ? "clk" : "policy", cpu);
301 return 0;
302 }
303
304 return clk_get_rate(policy->clk) / 1000;
305 }
306 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
307
308 /**
309 * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
310 *
311 * @cpu: cpu to find policy for.
312 *
313 * This returns policy for 'cpu', returns NULL if it doesn't exist.
314 * It also increments the kobject reference count to mark it busy and so would
315 * require a corresponding call to cpufreq_cpu_put() to decrement it back.
316 * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
317 * freed as that depends on the kobj count.
318 *
319 * Return: A valid policy on success, otherwise NULL on failure.
320 */
321 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
322 {
323 struct cpufreq_policy *policy = NULL;
324 unsigned long flags;
325
326 if (WARN_ON(cpu >= nr_cpu_ids))
327 return NULL;
328
329 /* get the cpufreq driver */
330 read_lock_irqsave(&cpufreq_driver_lock, flags);
331
332 if (cpufreq_driver) {
333 /* get the CPU */
334 policy = cpufreq_cpu_get_raw(cpu);
335 if (policy)
336 kobject_get(&policy->kobj);
337 }
338
339 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
340
341 return policy;
342 }
343 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
344
345 /**
346 * cpufreq_cpu_put: Decrements the usage count of a policy
347 *
348 * @policy: policy earlier returned by cpufreq_cpu_get().
349 *
350 * This decrements the kobject reference count incremented earlier by calling
351 * cpufreq_cpu_get().
352 */
353 void cpufreq_cpu_put(struct cpufreq_policy *policy)
354 {
355 kobject_put(&policy->kobj);
356 }
357 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
358
359 /*********************************************************************
360 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
361 *********************************************************************/
362
363 /**
364 * adjust_jiffies - adjust the system "loops_per_jiffy"
365 *
366 * This function alters the system "loops_per_jiffy" for the clock
367 * speed change. Note that loops_per_jiffy cannot be updated on SMP
368 * systems as each CPU might be scaled differently. So, use the arch
369 * per-CPU loops_per_jiffy value wherever possible.
370 */
371 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
372 {
373 #ifndef CONFIG_SMP
374 static unsigned long l_p_j_ref;
375 static unsigned int l_p_j_ref_freq;
376
377 if (ci->flags & CPUFREQ_CONST_LOOPS)
378 return;
379
380 if (!l_p_j_ref_freq) {
381 l_p_j_ref = loops_per_jiffy;
382 l_p_j_ref_freq = ci->old;
383 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
384 l_p_j_ref, l_p_j_ref_freq);
385 }
386 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
387 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
388 ci->new);
389 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
390 loops_per_jiffy, ci->new);
391 }
392 #endif
393 }
394
395 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
396 struct cpufreq_freqs *freqs, unsigned int state)
397 {
398 BUG_ON(irqs_disabled());
399
400 if (cpufreq_disabled())
401 return;
402
403 freqs->flags = cpufreq_driver->flags;
404 pr_debug("notification %u of frequency transition to %u kHz\n",
405 state, freqs->new);
406
407 switch (state) {
408
409 case CPUFREQ_PRECHANGE:
410 /* detect if the driver reported a value as "old frequency"
411 * which is not equal to what the cpufreq core thinks is
412 * "old frequency".
413 */
414 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
415 if ((policy) && (policy->cpu == freqs->cpu) &&
416 (policy->cur) && (policy->cur != freqs->old)) {
417 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
418 freqs->old, policy->cur);
419 freqs->old = policy->cur;
420 }
421 }
422 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
423 CPUFREQ_PRECHANGE, freqs);
424 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
425 break;
426
427 case CPUFREQ_POSTCHANGE:
428 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
429 pr_debug("FREQ: %lu - CPU: %lu\n",
430 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
431 trace_cpu_frequency(freqs->new, freqs->cpu);
432 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
433 CPUFREQ_POSTCHANGE, freqs);
434 if (likely(policy) && likely(policy->cpu == freqs->cpu))
435 policy->cur = freqs->new;
436 break;
437 }
438 }
439
440 /**
441 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
442 * on frequency transition.
443 *
444 * This function calls the transition notifiers and the "adjust_jiffies"
445 * function. It is called twice on all CPU frequency changes that have
446 * external effects.
447 */
448 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
449 struct cpufreq_freqs *freqs, unsigned int state)
450 {
451 for_each_cpu(freqs->cpu, policy->cpus)
452 __cpufreq_notify_transition(policy, freqs, state);
453 }
454
455 /* Do post notifications when there are chances that transition has failed */
456 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
457 struct cpufreq_freqs *freqs, int transition_failed)
458 {
459 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
460 if (!transition_failed)
461 return;
462
463 swap(freqs->old, freqs->new);
464 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
465 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
466 }
467
468 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
469 struct cpufreq_freqs *freqs)
470 {
471
472 /*
473 * Catch double invocations of _begin() which lead to self-deadlock.
474 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
475 * doesn't invoke _begin() on their behalf, and hence the chances of
476 * double invocations are very low. Moreover, there are scenarios
477 * where these checks can emit false-positive warnings in these
478 * drivers; so we avoid that by skipping them altogether.
479 */
480 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
481 && current == policy->transition_task);
482
483 wait:
484 wait_event(policy->transition_wait, !policy->transition_ongoing);
485
486 spin_lock(&policy->transition_lock);
487
488 if (unlikely(policy->transition_ongoing)) {
489 spin_unlock(&policy->transition_lock);
490 goto wait;
491 }
492
493 policy->transition_ongoing = true;
494 policy->transition_task = current;
495
496 spin_unlock(&policy->transition_lock);
497
498 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
499 }
500 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
501
502 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
503 struct cpufreq_freqs *freqs, int transition_failed)
504 {
505 if (unlikely(WARN_ON(!policy->transition_ongoing)))
506 return;
507
508 cpufreq_notify_post_transition(policy, freqs, transition_failed);
509
510 policy->transition_ongoing = false;
511 policy->transition_task = NULL;
512
513 wake_up(&policy->transition_wait);
514 }
515 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
516
517
518 /*********************************************************************
519 * SYSFS INTERFACE *
520 *********************************************************************/
521 static ssize_t show_boost(struct kobject *kobj,
522 struct attribute *attr, char *buf)
523 {
524 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
525 }
526
527 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
528 const char *buf, size_t count)
529 {
530 int ret, enable;
531
532 ret = sscanf(buf, "%d", &enable);
533 if (ret != 1 || enable < 0 || enable > 1)
534 return -EINVAL;
535
536 if (cpufreq_boost_trigger_state(enable)) {
537 pr_err("%s: Cannot %s BOOST!\n",
538 __func__, enable ? "enable" : "disable");
539 return -EINVAL;
540 }
541
542 pr_debug("%s: cpufreq BOOST %s\n",
543 __func__, enable ? "enabled" : "disabled");
544
545 return count;
546 }
547 define_one_global_rw(boost);
548
549 static struct cpufreq_governor *find_governor(const char *str_governor)
550 {
551 struct cpufreq_governor *t;
552
553 for_each_governor(t)
554 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
555 return t;
556
557 return NULL;
558 }
559
560 /**
561 * cpufreq_parse_governor - parse a governor string
562 */
563 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
564 struct cpufreq_governor **governor)
565 {
566 int err = -EINVAL;
567
568 if (cpufreq_driver->setpolicy) {
569 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
570 *policy = CPUFREQ_POLICY_PERFORMANCE;
571 err = 0;
572 } else if (!strncasecmp(str_governor, "powersave",
573 CPUFREQ_NAME_LEN)) {
574 *policy = CPUFREQ_POLICY_POWERSAVE;
575 err = 0;
576 }
577 } else {
578 struct cpufreq_governor *t;
579
580 mutex_lock(&cpufreq_governor_mutex);
581
582 t = find_governor(str_governor);
583
584 if (t == NULL) {
585 int ret;
586
587 mutex_unlock(&cpufreq_governor_mutex);
588 ret = request_module("cpufreq_%s", str_governor);
589 mutex_lock(&cpufreq_governor_mutex);
590
591 if (ret == 0)
592 t = find_governor(str_governor);
593 }
594
595 if (t != NULL) {
596 *governor = t;
597 err = 0;
598 }
599
600 mutex_unlock(&cpufreq_governor_mutex);
601 }
602 return err;
603 }
604
605 /**
606 * cpufreq_per_cpu_attr_read() / show_##file_name() -
607 * print out cpufreq information
608 *
609 * Write out information from cpufreq_driver->policy[cpu]; object must be
610 * "unsigned int".
611 */
612
613 #define show_one(file_name, object) \
614 static ssize_t show_##file_name \
615 (struct cpufreq_policy *policy, char *buf) \
616 { \
617 return sprintf(buf, "%u\n", policy->object); \
618 }
619
620 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
621 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
622 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
623 show_one(scaling_min_freq, min);
624 show_one(scaling_max_freq, max);
625
626 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
627 {
628 ssize_t ret;
629
630 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
631 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
632 else
633 ret = sprintf(buf, "%u\n", policy->cur);
634 return ret;
635 }
636
637 static int cpufreq_set_policy(struct cpufreq_policy *policy,
638 struct cpufreq_policy *new_policy);
639
640 /**
641 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
642 */
643 #define store_one(file_name, object) \
644 static ssize_t store_##file_name \
645 (struct cpufreq_policy *policy, const char *buf, size_t count) \
646 { \
647 int ret, temp; \
648 struct cpufreq_policy new_policy; \
649 \
650 memcpy(&new_policy, policy, sizeof(*policy)); \
651 \
652 ret = sscanf(buf, "%u", &new_policy.object); \
653 if (ret != 1) \
654 return -EINVAL; \
655 \
656 temp = new_policy.object; \
657 ret = cpufreq_set_policy(policy, &new_policy); \
658 if (!ret) \
659 policy->user_policy.object = temp; \
660 \
661 return ret ? ret : count; \
662 }
663
664 store_one(scaling_min_freq, min);
665 store_one(scaling_max_freq, max);
666
667 /**
668 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
669 */
670 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
671 char *buf)
672 {
673 unsigned int cur_freq = __cpufreq_get(policy);
674 if (!cur_freq)
675 return sprintf(buf, "<unknown>");
676 return sprintf(buf, "%u\n", cur_freq);
677 }
678
679 /**
680 * show_scaling_governor - show the current policy for the specified CPU
681 */
682 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
683 {
684 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
685 return sprintf(buf, "powersave\n");
686 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
687 return sprintf(buf, "performance\n");
688 else if (policy->governor)
689 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
690 policy->governor->name);
691 return -EINVAL;
692 }
693
694 /**
695 * store_scaling_governor - store policy for the specified CPU
696 */
697 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
698 const char *buf, size_t count)
699 {
700 int ret;
701 char str_governor[16];
702 struct cpufreq_policy new_policy;
703
704 memcpy(&new_policy, policy, sizeof(*policy));
705
706 ret = sscanf(buf, "%15s", str_governor);
707 if (ret != 1)
708 return -EINVAL;
709
710 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
711 &new_policy.governor))
712 return -EINVAL;
713
714 ret = cpufreq_set_policy(policy, &new_policy);
715 return ret ? ret : count;
716 }
717
718 /**
719 * show_scaling_driver - show the cpufreq driver currently loaded
720 */
721 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
722 {
723 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
724 }
725
726 /**
727 * show_scaling_available_governors - show the available CPUfreq governors
728 */
729 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
730 char *buf)
731 {
732 ssize_t i = 0;
733 struct cpufreq_governor *t;
734
735 if (!has_target()) {
736 i += sprintf(buf, "performance powersave");
737 goto out;
738 }
739
740 for_each_governor(t) {
741 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
742 - (CPUFREQ_NAME_LEN + 2)))
743 goto out;
744 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
745 }
746 out:
747 i += sprintf(&buf[i], "\n");
748 return i;
749 }
750
751 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
752 {
753 ssize_t i = 0;
754 unsigned int cpu;
755
756 for_each_cpu(cpu, mask) {
757 if (i)
758 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
759 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
760 if (i >= (PAGE_SIZE - 5))
761 break;
762 }
763 i += sprintf(&buf[i], "\n");
764 return i;
765 }
766 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
767
768 /**
769 * show_related_cpus - show the CPUs affected by each transition even if
770 * hw coordination is in use
771 */
772 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
773 {
774 return cpufreq_show_cpus(policy->related_cpus, buf);
775 }
776
777 /**
778 * show_affected_cpus - show the CPUs affected by each transition
779 */
780 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
781 {
782 return cpufreq_show_cpus(policy->cpus, buf);
783 }
784
785 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
786 const char *buf, size_t count)
787 {
788 unsigned int freq = 0;
789 unsigned int ret;
790
791 if (!policy->governor || !policy->governor->store_setspeed)
792 return -EINVAL;
793
794 ret = sscanf(buf, "%u", &freq);
795 if (ret != 1)
796 return -EINVAL;
797
798 policy->governor->store_setspeed(policy, freq);
799
800 return count;
801 }
802
803 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
804 {
805 if (!policy->governor || !policy->governor->show_setspeed)
806 return sprintf(buf, "<unsupported>\n");
807
808 return policy->governor->show_setspeed(policy, buf);
809 }
810
811 /**
812 * show_bios_limit - show the current cpufreq HW/BIOS limitation
813 */
814 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
815 {
816 unsigned int limit;
817 int ret;
818 if (cpufreq_driver->bios_limit) {
819 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
820 if (!ret)
821 return sprintf(buf, "%u\n", limit);
822 }
823 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
824 }
825
826 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
827 cpufreq_freq_attr_ro(cpuinfo_min_freq);
828 cpufreq_freq_attr_ro(cpuinfo_max_freq);
829 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
830 cpufreq_freq_attr_ro(scaling_available_governors);
831 cpufreq_freq_attr_ro(scaling_driver);
832 cpufreq_freq_attr_ro(scaling_cur_freq);
833 cpufreq_freq_attr_ro(bios_limit);
834 cpufreq_freq_attr_ro(related_cpus);
835 cpufreq_freq_attr_ro(affected_cpus);
836 cpufreq_freq_attr_rw(scaling_min_freq);
837 cpufreq_freq_attr_rw(scaling_max_freq);
838 cpufreq_freq_attr_rw(scaling_governor);
839 cpufreq_freq_attr_rw(scaling_setspeed);
840
841 static struct attribute *default_attrs[] = {
842 &cpuinfo_min_freq.attr,
843 &cpuinfo_max_freq.attr,
844 &cpuinfo_transition_latency.attr,
845 &scaling_min_freq.attr,
846 &scaling_max_freq.attr,
847 &affected_cpus.attr,
848 &related_cpus.attr,
849 &scaling_governor.attr,
850 &scaling_driver.attr,
851 &scaling_available_governors.attr,
852 &scaling_setspeed.attr,
853 NULL
854 };
855
856 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
857 #define to_attr(a) container_of(a, struct freq_attr, attr)
858
859 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
860 {
861 struct cpufreq_policy *policy = to_policy(kobj);
862 struct freq_attr *fattr = to_attr(attr);
863 ssize_t ret;
864
865 down_read(&policy->rwsem);
866
867 if (fattr->show)
868 ret = fattr->show(policy, buf);
869 else
870 ret = -EIO;
871
872 up_read(&policy->rwsem);
873
874 return ret;
875 }
876
877 static ssize_t store(struct kobject *kobj, struct attribute *attr,
878 const char *buf, size_t count)
879 {
880 struct cpufreq_policy *policy = to_policy(kobj);
881 struct freq_attr *fattr = to_attr(attr);
882 ssize_t ret = -EINVAL;
883
884 get_online_cpus();
885
886 if (!cpu_online(policy->cpu))
887 goto unlock;
888
889 down_write(&policy->rwsem);
890
891 if (fattr->store)
892 ret = fattr->store(policy, buf, count);
893 else
894 ret = -EIO;
895
896 up_write(&policy->rwsem);
897 unlock:
898 put_online_cpus();
899
900 return ret;
901 }
902
903 static void cpufreq_sysfs_release(struct kobject *kobj)
904 {
905 struct cpufreq_policy *policy = to_policy(kobj);
906 pr_debug("last reference is dropped\n");
907 complete(&policy->kobj_unregister);
908 }
909
910 static const struct sysfs_ops sysfs_ops = {
911 .show = show,
912 .store = store,
913 };
914
915 static struct kobj_type ktype_cpufreq = {
916 .sysfs_ops = &sysfs_ops,
917 .default_attrs = default_attrs,
918 .release = cpufreq_sysfs_release,
919 };
920
921 static int add_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
922 {
923 struct device *cpu_dev;
924
925 pr_debug("%s: Adding symlink for CPU: %u\n", __func__, cpu);
926
927 if (!policy)
928 return 0;
929
930 cpu_dev = get_cpu_device(cpu);
931 if (WARN_ON(!cpu_dev))
932 return 0;
933
934 return sysfs_create_link(&cpu_dev->kobj, &policy->kobj, "cpufreq");
935 }
936
937 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy, int cpu)
938 {
939 struct device *cpu_dev;
940
941 pr_debug("%s: Removing symlink for CPU: %u\n", __func__, cpu);
942
943 cpu_dev = get_cpu_device(cpu);
944 if (WARN_ON(!cpu_dev))
945 return;
946
947 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
948 }
949
950 /* Add/remove symlinks for all related CPUs */
951 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
952 {
953 unsigned int j;
954 int ret = 0;
955
956 /* Some related CPUs might not be present (physically hotplugged) */
957 for_each_cpu(j, policy->real_cpus) {
958 ret = add_cpu_dev_symlink(policy, j);
959 if (ret)
960 break;
961 }
962
963 return ret;
964 }
965
966 static void cpufreq_remove_dev_symlink(struct cpufreq_policy *policy)
967 {
968 unsigned int j;
969
970 /* Some related CPUs might not be present (physically hotplugged) */
971 for_each_cpu(j, policy->real_cpus)
972 remove_cpu_dev_symlink(policy, j);
973 }
974
975 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
976 {
977 struct freq_attr **drv_attr;
978 int ret = 0;
979
980 /* set up files for this cpu device */
981 drv_attr = cpufreq_driver->attr;
982 while (drv_attr && *drv_attr) {
983 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
984 if (ret)
985 return ret;
986 drv_attr++;
987 }
988 if (cpufreq_driver->get) {
989 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
990 if (ret)
991 return ret;
992 }
993
994 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
995 if (ret)
996 return ret;
997
998 if (cpufreq_driver->bios_limit) {
999 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1000 if (ret)
1001 return ret;
1002 }
1003
1004 return cpufreq_add_dev_symlink(policy);
1005 }
1006
1007 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1008 {
1009 return NULL;
1010 }
1011
1012 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1013 {
1014 struct cpufreq_governor *gov = NULL;
1015 struct cpufreq_policy new_policy;
1016
1017 memcpy(&new_policy, policy, sizeof(*policy));
1018
1019 /* Update governor of new_policy to the governor used before hotplug */
1020 gov = find_governor(policy->last_governor);
1021 if (gov) {
1022 pr_debug("Restoring governor %s for cpu %d\n",
1023 policy->governor->name, policy->cpu);
1024 } else {
1025 gov = cpufreq_default_governor();
1026 if (!gov)
1027 return -ENODATA;
1028 }
1029
1030 new_policy.governor = gov;
1031
1032 /* Use the default policy if there is no last_policy. */
1033 if (cpufreq_driver->setpolicy) {
1034 if (policy->last_policy)
1035 new_policy.policy = policy->last_policy;
1036 else
1037 cpufreq_parse_governor(gov->name, &new_policy.policy,
1038 NULL);
1039 }
1040 /* set default policy */
1041 return cpufreq_set_policy(policy, &new_policy);
1042 }
1043
1044 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1045 {
1046 int ret = 0;
1047
1048 /* Has this CPU been taken care of already? */
1049 if (cpumask_test_cpu(cpu, policy->cpus))
1050 return 0;
1051
1052 down_write(&policy->rwsem);
1053 if (has_target()) {
1054 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1055 if (ret) {
1056 pr_err("%s: Failed to stop governor\n", __func__);
1057 goto unlock;
1058 }
1059 }
1060
1061 cpumask_set_cpu(cpu, policy->cpus);
1062
1063 if (has_target()) {
1064 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1065 if (!ret)
1066 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1067
1068 if (ret)
1069 pr_err("%s: Failed to start governor\n", __func__);
1070 }
1071
1072 unlock:
1073 up_write(&policy->rwsem);
1074 return ret;
1075 }
1076
1077 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1078 {
1079 struct device *dev = get_cpu_device(cpu);
1080 struct cpufreq_policy *policy;
1081
1082 if (WARN_ON(!dev))
1083 return NULL;
1084
1085 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1086 if (!policy)
1087 return NULL;
1088
1089 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1090 goto err_free_policy;
1091
1092 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1093 goto err_free_cpumask;
1094
1095 if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1096 goto err_free_rcpumask;
1097
1098 kobject_init(&policy->kobj, &ktype_cpufreq);
1099 INIT_LIST_HEAD(&policy->policy_list);
1100 init_rwsem(&policy->rwsem);
1101 spin_lock_init(&policy->transition_lock);
1102 init_waitqueue_head(&policy->transition_wait);
1103 init_completion(&policy->kobj_unregister);
1104 INIT_WORK(&policy->update, handle_update);
1105
1106 policy->cpu = cpu;
1107 return policy;
1108
1109 err_free_rcpumask:
1110 free_cpumask_var(policy->related_cpus);
1111 err_free_cpumask:
1112 free_cpumask_var(policy->cpus);
1113 err_free_policy:
1114 kfree(policy);
1115
1116 return NULL;
1117 }
1118
1119 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy, bool notify)
1120 {
1121 struct kobject *kobj;
1122 struct completion *cmp;
1123
1124 if (notify)
1125 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1126 CPUFREQ_REMOVE_POLICY, policy);
1127
1128 down_write(&policy->rwsem);
1129 cpufreq_remove_dev_symlink(policy);
1130 kobj = &policy->kobj;
1131 cmp = &policy->kobj_unregister;
1132 up_write(&policy->rwsem);
1133 kobject_put(kobj);
1134
1135 /*
1136 * We need to make sure that the underlying kobj is
1137 * actually not referenced anymore by anybody before we
1138 * proceed with unloading.
1139 */
1140 pr_debug("waiting for dropping of refcount\n");
1141 wait_for_completion(cmp);
1142 pr_debug("wait complete\n");
1143 }
1144
1145 static void cpufreq_policy_free(struct cpufreq_policy *policy, bool notify)
1146 {
1147 unsigned long flags;
1148 int cpu;
1149
1150 /* Remove policy from list */
1151 write_lock_irqsave(&cpufreq_driver_lock, flags);
1152 list_del(&policy->policy_list);
1153
1154 for_each_cpu(cpu, policy->related_cpus)
1155 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1156 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1157
1158 cpufreq_policy_put_kobj(policy, notify);
1159 free_cpumask_var(policy->real_cpus);
1160 free_cpumask_var(policy->related_cpus);
1161 free_cpumask_var(policy->cpus);
1162 kfree(policy);
1163 }
1164
1165 static int cpufreq_online(unsigned int cpu)
1166 {
1167 struct cpufreq_policy *policy;
1168 bool new_policy;
1169 unsigned long flags;
1170 unsigned int j;
1171 int ret;
1172
1173 pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1174
1175 /* Check if this CPU already has a policy to manage it */
1176 policy = per_cpu(cpufreq_cpu_data, cpu);
1177 if (policy) {
1178 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1179 if (!policy_is_inactive(policy))
1180 return cpufreq_add_policy_cpu(policy, cpu);
1181
1182 /* This is the only online CPU for the policy. Start over. */
1183 new_policy = false;
1184 down_write(&policy->rwsem);
1185 policy->cpu = cpu;
1186 policy->governor = NULL;
1187 up_write(&policy->rwsem);
1188 } else {
1189 new_policy = true;
1190 policy = cpufreq_policy_alloc(cpu);
1191 if (!policy)
1192 return -ENOMEM;
1193 }
1194
1195 cpumask_copy(policy->cpus, cpumask_of(cpu));
1196
1197 /* call driver. From then on the cpufreq must be able
1198 * to accept all calls to ->verify and ->setpolicy for this CPU
1199 */
1200 ret = cpufreq_driver->init(policy);
1201 if (ret) {
1202 pr_debug("initialization failed\n");
1203 goto out_free_policy;
1204 }
1205
1206 down_write(&policy->rwsem);
1207
1208 if (new_policy) {
1209 /* related_cpus should at least include policy->cpus. */
1210 cpumask_copy(policy->related_cpus, policy->cpus);
1211 /* Remember CPUs present at the policy creation time. */
1212 cpumask_and(policy->real_cpus, policy->cpus, cpu_present_mask);
1213
1214 /* Name and add the kobject */
1215 ret = kobject_add(&policy->kobj, cpufreq_global_kobject,
1216 "policy%u",
1217 cpumask_first(policy->related_cpus));
1218 if (ret) {
1219 pr_err("%s: failed to add policy->kobj: %d\n", __func__,
1220 ret);
1221 goto out_exit_policy;
1222 }
1223 }
1224
1225 /*
1226 * affected cpus must always be the one, which are online. We aren't
1227 * managing offline cpus here.
1228 */
1229 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1230
1231 if (new_policy) {
1232 policy->user_policy.min = policy->min;
1233 policy->user_policy.max = policy->max;
1234
1235 write_lock_irqsave(&cpufreq_driver_lock, flags);
1236 for_each_cpu(j, policy->related_cpus)
1237 per_cpu(cpufreq_cpu_data, j) = policy;
1238 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1239 }
1240
1241 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1242 policy->cur = cpufreq_driver->get(policy->cpu);
1243 if (!policy->cur) {
1244 pr_err("%s: ->get() failed\n", __func__);
1245 goto out_exit_policy;
1246 }
1247 }
1248
1249 /*
1250 * Sometimes boot loaders set CPU frequency to a value outside of
1251 * frequency table present with cpufreq core. In such cases CPU might be
1252 * unstable if it has to run on that frequency for long duration of time
1253 * and so its better to set it to a frequency which is specified in
1254 * freq-table. This also makes cpufreq stats inconsistent as
1255 * cpufreq-stats would fail to register because current frequency of CPU
1256 * isn't found in freq-table.
1257 *
1258 * Because we don't want this change to effect boot process badly, we go
1259 * for the next freq which is >= policy->cur ('cur' must be set by now,
1260 * otherwise we will end up setting freq to lowest of the table as 'cur'
1261 * is initialized to zero).
1262 *
1263 * We are passing target-freq as "policy->cur - 1" otherwise
1264 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1265 * equal to target-freq.
1266 */
1267 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1268 && has_target()) {
1269 /* Are we running at unknown frequency ? */
1270 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1271 if (ret == -EINVAL) {
1272 /* Warn user and fix it */
1273 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1274 __func__, policy->cpu, policy->cur);
1275 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1276 CPUFREQ_RELATION_L);
1277
1278 /*
1279 * Reaching here after boot in a few seconds may not
1280 * mean that system will remain stable at "unknown"
1281 * frequency for longer duration. Hence, a BUG_ON().
1282 */
1283 BUG_ON(ret);
1284 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1285 __func__, policy->cpu, policy->cur);
1286 }
1287 }
1288
1289 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1290 CPUFREQ_START, policy);
1291
1292 if (new_policy) {
1293 ret = cpufreq_add_dev_interface(policy);
1294 if (ret)
1295 goto out_exit_policy;
1296 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1297 CPUFREQ_CREATE_POLICY, policy);
1298
1299 write_lock_irqsave(&cpufreq_driver_lock, flags);
1300 list_add(&policy->policy_list, &cpufreq_policy_list);
1301 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1302 }
1303
1304 ret = cpufreq_init_policy(policy);
1305 if (ret) {
1306 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1307 __func__, cpu, ret);
1308 /* cpufreq_policy_free() will notify based on this */
1309 new_policy = false;
1310 goto out_exit_policy;
1311 }
1312
1313 up_write(&policy->rwsem);
1314
1315 kobject_uevent(&policy->kobj, KOBJ_ADD);
1316
1317 /* Callback for handling stuff after policy is ready */
1318 if (cpufreq_driver->ready)
1319 cpufreq_driver->ready(policy);
1320
1321 pr_debug("initialization complete\n");
1322
1323 return 0;
1324
1325 out_exit_policy:
1326 up_write(&policy->rwsem);
1327
1328 if (cpufreq_driver->exit)
1329 cpufreq_driver->exit(policy);
1330 out_free_policy:
1331 cpufreq_policy_free(policy, !new_policy);
1332 return ret;
1333 }
1334
1335 /**
1336 * cpufreq_add_dev - the cpufreq interface for a CPU device.
1337 * @dev: CPU device.
1338 * @sif: Subsystem interface structure pointer (not used)
1339 */
1340 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1341 {
1342 unsigned cpu = dev->id;
1343 int ret;
1344
1345 dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1346
1347 if (cpu_online(cpu)) {
1348 ret = cpufreq_online(cpu);
1349 } else {
1350 /*
1351 * A hotplug notifier will follow and we will handle it as CPU
1352 * online then. For now, just create the sysfs link, unless
1353 * there is no policy or the link is already present.
1354 */
1355 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1356
1357 ret = policy && !cpumask_test_and_set_cpu(cpu, policy->real_cpus)
1358 ? add_cpu_dev_symlink(policy, cpu) : 0;
1359 }
1360
1361 return ret;
1362 }
1363
1364 static void cpufreq_offline(unsigned int cpu)
1365 {
1366 struct cpufreq_policy *policy;
1367 int ret;
1368
1369 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1370
1371 policy = cpufreq_cpu_get_raw(cpu);
1372 if (!policy) {
1373 pr_debug("%s: No cpu_data found\n", __func__);
1374 return;
1375 }
1376
1377 down_write(&policy->rwsem);
1378 if (has_target()) {
1379 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1380 if (ret)
1381 pr_err("%s: Failed to stop governor\n", __func__);
1382 }
1383
1384 cpumask_clear_cpu(cpu, policy->cpus);
1385
1386 if (policy_is_inactive(policy)) {
1387 if (has_target())
1388 strncpy(policy->last_governor, policy->governor->name,
1389 CPUFREQ_NAME_LEN);
1390 else
1391 policy->last_policy = policy->policy;
1392 } else if (cpu == policy->cpu) {
1393 /* Nominate new CPU */
1394 policy->cpu = cpumask_any(policy->cpus);
1395 }
1396
1397 /* Start governor again for active policy */
1398 if (!policy_is_inactive(policy)) {
1399 if (has_target()) {
1400 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1401 if (!ret)
1402 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1403
1404 if (ret)
1405 pr_err("%s: Failed to start governor\n", __func__);
1406 }
1407
1408 goto unlock;
1409 }
1410
1411 if (cpufreq_driver->stop_cpu)
1412 cpufreq_driver->stop_cpu(policy);
1413
1414 /* If cpu is last user of policy, free policy */
1415 if (has_target()) {
1416 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
1417 if (ret)
1418 pr_err("%s: Failed to exit governor\n", __func__);
1419 }
1420
1421 /*
1422 * Perform the ->exit() even during light-weight tear-down,
1423 * since this is a core component, and is essential for the
1424 * subsequent light-weight ->init() to succeed.
1425 */
1426 if (cpufreq_driver->exit) {
1427 cpufreq_driver->exit(policy);
1428 policy->freq_table = NULL;
1429 }
1430
1431 unlock:
1432 up_write(&policy->rwsem);
1433 }
1434
1435 /**
1436 * cpufreq_remove_dev - remove a CPU device
1437 *
1438 * Removes the cpufreq interface for a CPU device.
1439 */
1440 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1441 {
1442 unsigned int cpu = dev->id;
1443 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1444
1445 if (!policy)
1446 return;
1447
1448 if (cpu_online(cpu))
1449 cpufreq_offline(cpu);
1450
1451 cpumask_clear_cpu(cpu, policy->real_cpus);
1452 remove_cpu_dev_symlink(policy, cpu);
1453
1454 if (cpumask_empty(policy->real_cpus))
1455 cpufreq_policy_free(policy, true);
1456 }
1457
1458 static void handle_update(struct work_struct *work)
1459 {
1460 struct cpufreq_policy *policy =
1461 container_of(work, struct cpufreq_policy, update);
1462 unsigned int cpu = policy->cpu;
1463 pr_debug("handle_update for cpu %u called\n", cpu);
1464 cpufreq_update_policy(cpu);
1465 }
1466
1467 /**
1468 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1469 * in deep trouble.
1470 * @policy: policy managing CPUs
1471 * @new_freq: CPU frequency the CPU actually runs at
1472 *
1473 * We adjust to current frequency first, and need to clean up later.
1474 * So either call to cpufreq_update_policy() or schedule handle_update()).
1475 */
1476 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1477 unsigned int new_freq)
1478 {
1479 struct cpufreq_freqs freqs;
1480
1481 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1482 policy->cur, new_freq);
1483
1484 freqs.old = policy->cur;
1485 freqs.new = new_freq;
1486
1487 cpufreq_freq_transition_begin(policy, &freqs);
1488 cpufreq_freq_transition_end(policy, &freqs, 0);
1489 }
1490
1491 /**
1492 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1493 * @cpu: CPU number
1494 *
1495 * This is the last known freq, without actually getting it from the driver.
1496 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1497 */
1498 unsigned int cpufreq_quick_get(unsigned int cpu)
1499 {
1500 struct cpufreq_policy *policy;
1501 unsigned int ret_freq = 0;
1502
1503 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1504 return cpufreq_driver->get(cpu);
1505
1506 policy = cpufreq_cpu_get(cpu);
1507 if (policy) {
1508 ret_freq = policy->cur;
1509 cpufreq_cpu_put(policy);
1510 }
1511
1512 return ret_freq;
1513 }
1514 EXPORT_SYMBOL(cpufreq_quick_get);
1515
1516 /**
1517 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1518 * @cpu: CPU number
1519 *
1520 * Just return the max possible frequency for a given CPU.
1521 */
1522 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1523 {
1524 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1525 unsigned int ret_freq = 0;
1526
1527 if (policy) {
1528 ret_freq = policy->max;
1529 cpufreq_cpu_put(policy);
1530 }
1531
1532 return ret_freq;
1533 }
1534 EXPORT_SYMBOL(cpufreq_quick_get_max);
1535
1536 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1537 {
1538 unsigned int ret_freq = 0;
1539
1540 if (!cpufreq_driver->get)
1541 return ret_freq;
1542
1543 ret_freq = cpufreq_driver->get(policy->cpu);
1544
1545 /* Updating inactive policies is invalid, so avoid doing that. */
1546 if (unlikely(policy_is_inactive(policy)))
1547 return ret_freq;
1548
1549 if (ret_freq && policy->cur &&
1550 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1551 /* verify no discrepancy between actual and
1552 saved value exists */
1553 if (unlikely(ret_freq != policy->cur)) {
1554 cpufreq_out_of_sync(policy, ret_freq);
1555 schedule_work(&policy->update);
1556 }
1557 }
1558
1559 return ret_freq;
1560 }
1561
1562 /**
1563 * cpufreq_get - get the current CPU frequency (in kHz)
1564 * @cpu: CPU number
1565 *
1566 * Get the CPU current (static) CPU frequency
1567 */
1568 unsigned int cpufreq_get(unsigned int cpu)
1569 {
1570 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1571 unsigned int ret_freq = 0;
1572
1573 if (policy) {
1574 down_read(&policy->rwsem);
1575 ret_freq = __cpufreq_get(policy);
1576 up_read(&policy->rwsem);
1577
1578 cpufreq_cpu_put(policy);
1579 }
1580
1581 return ret_freq;
1582 }
1583 EXPORT_SYMBOL(cpufreq_get);
1584
1585 static struct subsys_interface cpufreq_interface = {
1586 .name = "cpufreq",
1587 .subsys = &cpu_subsys,
1588 .add_dev = cpufreq_add_dev,
1589 .remove_dev = cpufreq_remove_dev,
1590 };
1591
1592 /*
1593 * In case platform wants some specific frequency to be configured
1594 * during suspend..
1595 */
1596 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1597 {
1598 int ret;
1599
1600 if (!policy->suspend_freq) {
1601 pr_debug("%s: suspend_freq not defined\n", __func__);
1602 return 0;
1603 }
1604
1605 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1606 policy->suspend_freq);
1607
1608 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1609 CPUFREQ_RELATION_H);
1610 if (ret)
1611 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1612 __func__, policy->suspend_freq, ret);
1613
1614 return ret;
1615 }
1616 EXPORT_SYMBOL(cpufreq_generic_suspend);
1617
1618 /**
1619 * cpufreq_suspend() - Suspend CPUFreq governors
1620 *
1621 * Called during system wide Suspend/Hibernate cycles for suspending governors
1622 * as some platforms can't change frequency after this point in suspend cycle.
1623 * Because some of the devices (like: i2c, regulators, etc) they use for
1624 * changing frequency are suspended quickly after this point.
1625 */
1626 void cpufreq_suspend(void)
1627 {
1628 struct cpufreq_policy *policy;
1629 int ret;
1630
1631 if (!cpufreq_driver)
1632 return;
1633
1634 if (!has_target())
1635 goto suspend;
1636
1637 pr_debug("%s: Suspending Governors\n", __func__);
1638
1639 for_each_active_policy(policy) {
1640 down_write(&policy->rwsem);
1641 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1642 up_write(&policy->rwsem);
1643
1644 if (ret)
1645 pr_err("%s: Failed to stop governor for policy: %p\n",
1646 __func__, policy);
1647 else if (cpufreq_driver->suspend
1648 && cpufreq_driver->suspend(policy))
1649 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1650 policy);
1651 }
1652
1653 suspend:
1654 cpufreq_suspended = true;
1655 }
1656
1657 /**
1658 * cpufreq_resume() - Resume CPUFreq governors
1659 *
1660 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1661 * are suspended with cpufreq_suspend().
1662 */
1663 void cpufreq_resume(void)
1664 {
1665 struct cpufreq_policy *policy;
1666 int ret;
1667
1668 if (!cpufreq_driver)
1669 return;
1670
1671 cpufreq_suspended = false;
1672
1673 if (!has_target())
1674 return;
1675
1676 pr_debug("%s: Resuming Governors\n", __func__);
1677
1678 for_each_active_policy(policy) {
1679 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1680 pr_err("%s: Failed to resume driver: %p\n", __func__,
1681 policy);
1682 } else {
1683 down_write(&policy->rwsem);
1684 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1685 if (!ret)
1686 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1687 up_write(&policy->rwsem);
1688
1689 if (ret)
1690 pr_err("%s: Failed to start governor for policy: %p\n",
1691 __func__, policy);
1692 }
1693 }
1694
1695 /*
1696 * schedule call cpufreq_update_policy() for first-online CPU, as that
1697 * wouldn't be hotplugged-out on suspend. It will verify that the
1698 * current freq is in sync with what we believe it to be.
1699 */
1700 policy = cpufreq_cpu_get_raw(cpumask_first(cpu_online_mask));
1701 if (WARN_ON(!policy))
1702 return;
1703
1704 schedule_work(&policy->update);
1705 }
1706
1707 /**
1708 * cpufreq_get_current_driver - return current driver's name
1709 *
1710 * Return the name string of the currently loaded cpufreq driver
1711 * or NULL, if none.
1712 */
1713 const char *cpufreq_get_current_driver(void)
1714 {
1715 if (cpufreq_driver)
1716 return cpufreq_driver->name;
1717
1718 return NULL;
1719 }
1720 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1721
1722 /**
1723 * cpufreq_get_driver_data - return current driver data
1724 *
1725 * Return the private data of the currently loaded cpufreq
1726 * driver, or NULL if no cpufreq driver is loaded.
1727 */
1728 void *cpufreq_get_driver_data(void)
1729 {
1730 if (cpufreq_driver)
1731 return cpufreq_driver->driver_data;
1732
1733 return NULL;
1734 }
1735 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1736
1737 /*********************************************************************
1738 * NOTIFIER LISTS INTERFACE *
1739 *********************************************************************/
1740
1741 /**
1742 * cpufreq_register_notifier - register a driver with cpufreq
1743 * @nb: notifier function to register
1744 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1745 *
1746 * Add a driver to one of two lists: either a list of drivers that
1747 * are notified about clock rate changes (once before and once after
1748 * the transition), or a list of drivers that are notified about
1749 * changes in cpufreq policy.
1750 *
1751 * This function may sleep, and has the same return conditions as
1752 * blocking_notifier_chain_register.
1753 */
1754 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1755 {
1756 int ret;
1757
1758 if (cpufreq_disabled())
1759 return -EINVAL;
1760
1761 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1762
1763 switch (list) {
1764 case CPUFREQ_TRANSITION_NOTIFIER:
1765 ret = srcu_notifier_chain_register(
1766 &cpufreq_transition_notifier_list, nb);
1767 break;
1768 case CPUFREQ_POLICY_NOTIFIER:
1769 ret = blocking_notifier_chain_register(
1770 &cpufreq_policy_notifier_list, nb);
1771 break;
1772 default:
1773 ret = -EINVAL;
1774 }
1775
1776 return ret;
1777 }
1778 EXPORT_SYMBOL(cpufreq_register_notifier);
1779
1780 /**
1781 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1782 * @nb: notifier block to be unregistered
1783 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1784 *
1785 * Remove a driver from the CPU frequency notifier list.
1786 *
1787 * This function may sleep, and has the same return conditions as
1788 * blocking_notifier_chain_unregister.
1789 */
1790 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1791 {
1792 int ret;
1793
1794 if (cpufreq_disabled())
1795 return -EINVAL;
1796
1797 switch (list) {
1798 case CPUFREQ_TRANSITION_NOTIFIER:
1799 ret = srcu_notifier_chain_unregister(
1800 &cpufreq_transition_notifier_list, nb);
1801 break;
1802 case CPUFREQ_POLICY_NOTIFIER:
1803 ret = blocking_notifier_chain_unregister(
1804 &cpufreq_policy_notifier_list, nb);
1805 break;
1806 default:
1807 ret = -EINVAL;
1808 }
1809
1810 return ret;
1811 }
1812 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1813
1814
1815 /*********************************************************************
1816 * GOVERNORS *
1817 *********************************************************************/
1818
1819 /* Must set freqs->new to intermediate frequency */
1820 static int __target_intermediate(struct cpufreq_policy *policy,
1821 struct cpufreq_freqs *freqs, int index)
1822 {
1823 int ret;
1824
1825 freqs->new = cpufreq_driver->get_intermediate(policy, index);
1826
1827 /* We don't need to switch to intermediate freq */
1828 if (!freqs->new)
1829 return 0;
1830
1831 pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1832 __func__, policy->cpu, freqs->old, freqs->new);
1833
1834 cpufreq_freq_transition_begin(policy, freqs);
1835 ret = cpufreq_driver->target_intermediate(policy, index);
1836 cpufreq_freq_transition_end(policy, freqs, ret);
1837
1838 if (ret)
1839 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1840 __func__, ret);
1841
1842 return ret;
1843 }
1844
1845 static int __target_index(struct cpufreq_policy *policy,
1846 struct cpufreq_frequency_table *freq_table, int index)
1847 {
1848 struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1849 unsigned int intermediate_freq = 0;
1850 int retval = -EINVAL;
1851 bool notify;
1852
1853 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1854 if (notify) {
1855 /* Handle switching to intermediate frequency */
1856 if (cpufreq_driver->get_intermediate) {
1857 retval = __target_intermediate(policy, &freqs, index);
1858 if (retval)
1859 return retval;
1860
1861 intermediate_freq = freqs.new;
1862 /* Set old freq to intermediate */
1863 if (intermediate_freq)
1864 freqs.old = freqs.new;
1865 }
1866
1867 freqs.new = freq_table[index].frequency;
1868 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1869 __func__, policy->cpu, freqs.old, freqs.new);
1870
1871 cpufreq_freq_transition_begin(policy, &freqs);
1872 }
1873
1874 retval = cpufreq_driver->target_index(policy, index);
1875 if (retval)
1876 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1877 retval);
1878
1879 if (notify) {
1880 cpufreq_freq_transition_end(policy, &freqs, retval);
1881
1882 /*
1883 * Failed after setting to intermediate freq? Driver should have
1884 * reverted back to initial frequency and so should we. Check
1885 * here for intermediate_freq instead of get_intermediate, in
1886 * case we haven't switched to intermediate freq at all.
1887 */
1888 if (unlikely(retval && intermediate_freq)) {
1889 freqs.old = intermediate_freq;
1890 freqs.new = policy->restore_freq;
1891 cpufreq_freq_transition_begin(policy, &freqs);
1892 cpufreq_freq_transition_end(policy, &freqs, 0);
1893 }
1894 }
1895
1896 return retval;
1897 }
1898
1899 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1900 unsigned int target_freq,
1901 unsigned int relation)
1902 {
1903 unsigned int old_target_freq = target_freq;
1904 int retval = -EINVAL;
1905
1906 if (cpufreq_disabled())
1907 return -ENODEV;
1908
1909 /* Make sure that target_freq is within supported range */
1910 if (target_freq > policy->max)
1911 target_freq = policy->max;
1912 if (target_freq < policy->min)
1913 target_freq = policy->min;
1914
1915 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1916 policy->cpu, target_freq, relation, old_target_freq);
1917
1918 /*
1919 * This might look like a redundant call as we are checking it again
1920 * after finding index. But it is left intentionally for cases where
1921 * exactly same freq is called again and so we can save on few function
1922 * calls.
1923 */
1924 if (target_freq == policy->cur)
1925 return 0;
1926
1927 /* Save last value to restore later on errors */
1928 policy->restore_freq = policy->cur;
1929
1930 if (cpufreq_driver->target)
1931 retval = cpufreq_driver->target(policy, target_freq, relation);
1932 else if (cpufreq_driver->target_index) {
1933 struct cpufreq_frequency_table *freq_table;
1934 int index;
1935
1936 freq_table = cpufreq_frequency_get_table(policy->cpu);
1937 if (unlikely(!freq_table)) {
1938 pr_err("%s: Unable to find freq_table\n", __func__);
1939 goto out;
1940 }
1941
1942 retval = cpufreq_frequency_table_target(policy, freq_table,
1943 target_freq, relation, &index);
1944 if (unlikely(retval)) {
1945 pr_err("%s: Unable to find matching freq\n", __func__);
1946 goto out;
1947 }
1948
1949 if (freq_table[index].frequency == policy->cur) {
1950 retval = 0;
1951 goto out;
1952 }
1953
1954 retval = __target_index(policy, freq_table, index);
1955 }
1956
1957 out:
1958 return retval;
1959 }
1960 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1961
1962 int cpufreq_driver_target(struct cpufreq_policy *policy,
1963 unsigned int target_freq,
1964 unsigned int relation)
1965 {
1966 int ret = -EINVAL;
1967
1968 down_write(&policy->rwsem);
1969
1970 ret = __cpufreq_driver_target(policy, target_freq, relation);
1971
1972 up_write(&policy->rwsem);
1973
1974 return ret;
1975 }
1976 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1977
1978 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
1979 {
1980 return NULL;
1981 }
1982
1983 static int __cpufreq_governor(struct cpufreq_policy *policy,
1984 unsigned int event)
1985 {
1986 int ret;
1987
1988 /* Don't start any governor operations if we are entering suspend */
1989 if (cpufreq_suspended)
1990 return 0;
1991 /*
1992 * Governor might not be initiated here if ACPI _PPC changed
1993 * notification happened, so check it.
1994 */
1995 if (!policy->governor)
1996 return -EINVAL;
1997
1998 if (policy->governor->max_transition_latency &&
1999 policy->cpuinfo.transition_latency >
2000 policy->governor->max_transition_latency) {
2001 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2002
2003 if (gov) {
2004 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
2005 policy->governor->name, gov->name);
2006 policy->governor = gov;
2007 } else {
2008 return -EINVAL;
2009 }
2010 }
2011
2012 if (event == CPUFREQ_GOV_POLICY_INIT)
2013 if (!try_module_get(policy->governor->owner))
2014 return -EINVAL;
2015
2016 pr_debug("%s: for CPU %u, event %u\n", __func__, policy->cpu, event);
2017
2018 mutex_lock(&cpufreq_governor_lock);
2019 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
2020 || (!policy->governor_enabled
2021 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
2022 mutex_unlock(&cpufreq_governor_lock);
2023 return -EBUSY;
2024 }
2025
2026 if (event == CPUFREQ_GOV_STOP)
2027 policy->governor_enabled = false;
2028 else if (event == CPUFREQ_GOV_START)
2029 policy->governor_enabled = true;
2030
2031 mutex_unlock(&cpufreq_governor_lock);
2032
2033 ret = policy->governor->governor(policy, event);
2034
2035 if (!ret) {
2036 if (event == CPUFREQ_GOV_POLICY_INIT)
2037 policy->governor->initialized++;
2038 else if (event == CPUFREQ_GOV_POLICY_EXIT)
2039 policy->governor->initialized--;
2040 } else {
2041 /* Restore original values */
2042 mutex_lock(&cpufreq_governor_lock);
2043 if (event == CPUFREQ_GOV_STOP)
2044 policy->governor_enabled = true;
2045 else if (event == CPUFREQ_GOV_START)
2046 policy->governor_enabled = false;
2047 mutex_unlock(&cpufreq_governor_lock);
2048 }
2049
2050 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2051 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2052 module_put(policy->governor->owner);
2053
2054 return ret;
2055 }
2056
2057 int cpufreq_register_governor(struct cpufreq_governor *governor)
2058 {
2059 int err;
2060
2061 if (!governor)
2062 return -EINVAL;
2063
2064 if (cpufreq_disabled())
2065 return -ENODEV;
2066
2067 mutex_lock(&cpufreq_governor_mutex);
2068
2069 governor->initialized = 0;
2070 err = -EBUSY;
2071 if (!find_governor(governor->name)) {
2072 err = 0;
2073 list_add(&governor->governor_list, &cpufreq_governor_list);
2074 }
2075
2076 mutex_unlock(&cpufreq_governor_mutex);
2077 return err;
2078 }
2079 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2080
2081 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2082 {
2083 struct cpufreq_policy *policy;
2084 unsigned long flags;
2085
2086 if (!governor)
2087 return;
2088
2089 if (cpufreq_disabled())
2090 return;
2091
2092 /* clear last_governor for all inactive policies */
2093 read_lock_irqsave(&cpufreq_driver_lock, flags);
2094 for_each_inactive_policy(policy) {
2095 if (!strcmp(policy->last_governor, governor->name)) {
2096 policy->governor = NULL;
2097 strcpy(policy->last_governor, "\0");
2098 }
2099 }
2100 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2101
2102 mutex_lock(&cpufreq_governor_mutex);
2103 list_del(&governor->governor_list);
2104 mutex_unlock(&cpufreq_governor_mutex);
2105 return;
2106 }
2107 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2108
2109
2110 /*********************************************************************
2111 * POLICY INTERFACE *
2112 *********************************************************************/
2113
2114 /**
2115 * cpufreq_get_policy - get the current cpufreq_policy
2116 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2117 * is written
2118 *
2119 * Reads the current cpufreq policy.
2120 */
2121 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2122 {
2123 struct cpufreq_policy *cpu_policy;
2124 if (!policy)
2125 return -EINVAL;
2126
2127 cpu_policy = cpufreq_cpu_get(cpu);
2128 if (!cpu_policy)
2129 return -EINVAL;
2130
2131 memcpy(policy, cpu_policy, sizeof(*policy));
2132
2133 cpufreq_cpu_put(cpu_policy);
2134 return 0;
2135 }
2136 EXPORT_SYMBOL(cpufreq_get_policy);
2137
2138 /*
2139 * policy : current policy.
2140 * new_policy: policy to be set.
2141 */
2142 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2143 struct cpufreq_policy *new_policy)
2144 {
2145 struct cpufreq_governor *old_gov;
2146 int ret;
2147
2148 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2149 new_policy->cpu, new_policy->min, new_policy->max);
2150
2151 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2152
2153 /*
2154 * This check works well when we store new min/max freq attributes,
2155 * because new_policy is a copy of policy with one field updated.
2156 */
2157 if (new_policy->min > new_policy->max)
2158 return -EINVAL;
2159
2160 /* verify the cpu speed can be set within this limit */
2161 ret = cpufreq_driver->verify(new_policy);
2162 if (ret)
2163 return ret;
2164
2165 /* adjust if necessary - all reasons */
2166 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2167 CPUFREQ_ADJUST, new_policy);
2168
2169 /*
2170 * verify the cpu speed can be set within this limit, which might be
2171 * different to the first one
2172 */
2173 ret = cpufreq_driver->verify(new_policy);
2174 if (ret)
2175 return ret;
2176
2177 /* notification of the new policy */
2178 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2179 CPUFREQ_NOTIFY, new_policy);
2180
2181 policy->min = new_policy->min;
2182 policy->max = new_policy->max;
2183
2184 pr_debug("new min and max freqs are %u - %u kHz\n",
2185 policy->min, policy->max);
2186
2187 if (cpufreq_driver->setpolicy) {
2188 policy->policy = new_policy->policy;
2189 pr_debug("setting range\n");
2190 return cpufreq_driver->setpolicy(new_policy);
2191 }
2192
2193 if (new_policy->governor == policy->governor)
2194 goto out;
2195
2196 pr_debug("governor switch\n");
2197
2198 /* save old, working values */
2199 old_gov = policy->governor;
2200 /* end old governor */
2201 if (old_gov) {
2202 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2203 if (ret) {
2204 /* This can happen due to race with other operations */
2205 pr_debug("%s: Failed to Stop Governor: %s (%d)\n",
2206 __func__, old_gov->name, ret);
2207 return ret;
2208 }
2209
2210 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2211 if (ret) {
2212 pr_err("%s: Failed to Exit Governor: %s (%d)\n",
2213 __func__, old_gov->name, ret);
2214 return ret;
2215 }
2216 }
2217
2218 /* start new governor */
2219 policy->governor = new_policy->governor;
2220 ret = __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2221 if (!ret) {
2222 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
2223 if (!ret)
2224 goto out;
2225
2226 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2227 }
2228
2229 /* new governor failed, so re-start old one */
2230 pr_debug("starting governor %s failed\n", policy->governor->name);
2231 if (old_gov) {
2232 policy->governor = old_gov;
2233 if (__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT))
2234 policy->governor = NULL;
2235 else
2236 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2237 }
2238
2239 return ret;
2240
2241 out:
2242 pr_debug("governor: change or update limits\n");
2243 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2244 }
2245
2246 /**
2247 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2248 * @cpu: CPU which shall be re-evaluated
2249 *
2250 * Useful for policy notifiers which have different necessities
2251 * at different times.
2252 */
2253 int cpufreq_update_policy(unsigned int cpu)
2254 {
2255 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2256 struct cpufreq_policy new_policy;
2257 int ret;
2258
2259 if (!policy)
2260 return -ENODEV;
2261
2262 down_write(&policy->rwsem);
2263
2264 pr_debug("updating policy for CPU %u\n", cpu);
2265 memcpy(&new_policy, policy, sizeof(*policy));
2266 new_policy.min = policy->user_policy.min;
2267 new_policy.max = policy->user_policy.max;
2268
2269 /*
2270 * BIOS might change freq behind our back
2271 * -> ask driver for current freq and notify governors about a change
2272 */
2273 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2274 new_policy.cur = cpufreq_driver->get(cpu);
2275 if (WARN_ON(!new_policy.cur)) {
2276 ret = -EIO;
2277 goto unlock;
2278 }
2279
2280 if (!policy->cur) {
2281 pr_debug("Driver did not initialize current freq\n");
2282 policy->cur = new_policy.cur;
2283 } else {
2284 if (policy->cur != new_policy.cur && has_target())
2285 cpufreq_out_of_sync(policy, new_policy.cur);
2286 }
2287 }
2288
2289 ret = cpufreq_set_policy(policy, &new_policy);
2290
2291 unlock:
2292 up_write(&policy->rwsem);
2293
2294 cpufreq_cpu_put(policy);
2295 return ret;
2296 }
2297 EXPORT_SYMBOL(cpufreq_update_policy);
2298
2299 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2300 unsigned long action, void *hcpu)
2301 {
2302 unsigned int cpu = (unsigned long)hcpu;
2303
2304 switch (action & ~CPU_TASKS_FROZEN) {
2305 case CPU_ONLINE:
2306 cpufreq_online(cpu);
2307 break;
2308
2309 case CPU_DOWN_PREPARE:
2310 cpufreq_offline(cpu);
2311 break;
2312
2313 case CPU_DOWN_FAILED:
2314 cpufreq_online(cpu);
2315 break;
2316 }
2317 return NOTIFY_OK;
2318 }
2319
2320 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2321 .notifier_call = cpufreq_cpu_callback,
2322 };
2323
2324 /*********************************************************************
2325 * BOOST *
2326 *********************************************************************/
2327 static int cpufreq_boost_set_sw(int state)
2328 {
2329 struct cpufreq_frequency_table *freq_table;
2330 struct cpufreq_policy *policy;
2331 int ret = -EINVAL;
2332
2333 for_each_active_policy(policy) {
2334 freq_table = cpufreq_frequency_get_table(policy->cpu);
2335 if (freq_table) {
2336 ret = cpufreq_frequency_table_cpuinfo(policy,
2337 freq_table);
2338 if (ret) {
2339 pr_err("%s: Policy frequency update failed\n",
2340 __func__);
2341 break;
2342 }
2343
2344 down_write(&policy->rwsem);
2345 policy->user_policy.max = policy->max;
2346 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2347 up_write(&policy->rwsem);
2348 }
2349 }
2350
2351 return ret;
2352 }
2353
2354 int cpufreq_boost_trigger_state(int state)
2355 {
2356 unsigned long flags;
2357 int ret = 0;
2358
2359 if (cpufreq_driver->boost_enabled == state)
2360 return 0;
2361
2362 write_lock_irqsave(&cpufreq_driver_lock, flags);
2363 cpufreq_driver->boost_enabled = state;
2364 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2365
2366 ret = cpufreq_driver->set_boost(state);
2367 if (ret) {
2368 write_lock_irqsave(&cpufreq_driver_lock, flags);
2369 cpufreq_driver->boost_enabled = !state;
2370 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2371
2372 pr_err("%s: Cannot %s BOOST\n",
2373 __func__, state ? "enable" : "disable");
2374 }
2375
2376 return ret;
2377 }
2378
2379 static bool cpufreq_boost_supported(void)
2380 {
2381 return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2382 }
2383
2384 static int create_boost_sysfs_file(void)
2385 {
2386 int ret;
2387
2388 ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2389 if (ret)
2390 pr_err("%s: cannot register global BOOST sysfs file\n",
2391 __func__);
2392
2393 return ret;
2394 }
2395
2396 static void remove_boost_sysfs_file(void)
2397 {
2398 if (cpufreq_boost_supported())
2399 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2400 }
2401
2402 int cpufreq_enable_boost_support(void)
2403 {
2404 if (!cpufreq_driver)
2405 return -EINVAL;
2406
2407 if (cpufreq_boost_supported())
2408 return 0;
2409
2410 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2411
2412 /* This will get removed on driver unregister */
2413 return create_boost_sysfs_file();
2414 }
2415 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2416
2417 int cpufreq_boost_enabled(void)
2418 {
2419 return cpufreq_driver->boost_enabled;
2420 }
2421 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2422
2423 /*********************************************************************
2424 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2425 *********************************************************************/
2426
2427 /**
2428 * cpufreq_register_driver - register a CPU Frequency driver
2429 * @driver_data: A struct cpufreq_driver containing the values#
2430 * submitted by the CPU Frequency driver.
2431 *
2432 * Registers a CPU Frequency driver to this core code. This code
2433 * returns zero on success, -EBUSY when another driver got here first
2434 * (and isn't unregistered in the meantime).
2435 *
2436 */
2437 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2438 {
2439 unsigned long flags;
2440 int ret;
2441
2442 if (cpufreq_disabled())
2443 return -ENODEV;
2444
2445 if (!driver_data || !driver_data->verify || !driver_data->init ||
2446 !(driver_data->setpolicy || driver_data->target_index ||
2447 driver_data->target) ||
2448 (driver_data->setpolicy && (driver_data->target_index ||
2449 driver_data->target)) ||
2450 (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2451 return -EINVAL;
2452
2453 pr_debug("trying to register driver %s\n", driver_data->name);
2454
2455 /* Protect against concurrent CPU online/offline. */
2456 get_online_cpus();
2457
2458 write_lock_irqsave(&cpufreq_driver_lock, flags);
2459 if (cpufreq_driver) {
2460 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2461 ret = -EEXIST;
2462 goto out;
2463 }
2464 cpufreq_driver = driver_data;
2465 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2466
2467 if (driver_data->setpolicy)
2468 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2469
2470 if (cpufreq_boost_supported()) {
2471 ret = create_boost_sysfs_file();
2472 if (ret)
2473 goto err_null_driver;
2474 }
2475
2476 ret = subsys_interface_register(&cpufreq_interface);
2477 if (ret)
2478 goto err_boost_unreg;
2479
2480 if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2481 list_empty(&cpufreq_policy_list)) {
2482 /* if all ->init() calls failed, unregister */
2483 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2484 driver_data->name);
2485 goto err_if_unreg;
2486 }
2487
2488 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2489 pr_debug("driver %s up and running\n", driver_data->name);
2490
2491 out:
2492 put_online_cpus();
2493 return ret;
2494
2495 err_if_unreg:
2496 subsys_interface_unregister(&cpufreq_interface);
2497 err_boost_unreg:
2498 remove_boost_sysfs_file();
2499 err_null_driver:
2500 write_lock_irqsave(&cpufreq_driver_lock, flags);
2501 cpufreq_driver = NULL;
2502 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2503 goto out;
2504 }
2505 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2506
2507 /**
2508 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2509 *
2510 * Unregister the current CPUFreq driver. Only call this if you have
2511 * the right to do so, i.e. if you have succeeded in initialising before!
2512 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2513 * currently not initialised.
2514 */
2515 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2516 {
2517 unsigned long flags;
2518
2519 if (!cpufreq_driver || (driver != cpufreq_driver))
2520 return -EINVAL;
2521
2522 pr_debug("unregistering driver %s\n", driver->name);
2523
2524 /* Protect against concurrent cpu hotplug */
2525 get_online_cpus();
2526 subsys_interface_unregister(&cpufreq_interface);
2527 remove_boost_sysfs_file();
2528 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2529
2530 write_lock_irqsave(&cpufreq_driver_lock, flags);
2531
2532 cpufreq_driver = NULL;
2533
2534 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2535 put_online_cpus();
2536
2537 return 0;
2538 }
2539 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2540
2541 /*
2542 * Stop cpufreq at shutdown to make sure it isn't holding any locks
2543 * or mutexes when secondary CPUs are halted.
2544 */
2545 static struct syscore_ops cpufreq_syscore_ops = {
2546 .shutdown = cpufreq_suspend,
2547 };
2548
2549 struct kobject *cpufreq_global_kobject;
2550 EXPORT_SYMBOL(cpufreq_global_kobject);
2551
2552 static int __init cpufreq_core_init(void)
2553 {
2554 if (cpufreq_disabled())
2555 return -ENODEV;
2556
2557 cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2558 BUG_ON(!cpufreq_global_kobject);
2559
2560 register_syscore_ops(&cpufreq_syscore_ops);
2561
2562 return 0;
2563 }
2564 core_initcall(cpufreq_core_init);
This page took 0.199051 seconds and 5 git commands to generate.