Merge branch 'master' of git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static struct cpufreq_governor *cpufreq_cpu_governor[NR_CPUS];
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu) \
69 int lock_policy_rwsem_##mode \
70 (int cpu) \
71 { \
72 int policy_cpu = per_cpu(policy_cpu, cpu); \
73 BUG_ON(policy_cpu == -1); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
75 if (unlikely(!cpu_online(cpu))) { \
76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 return -1; \
78 } \
79 \
80 return 0; \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91 int policy_cpu = per_cpu(policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99 int policy_cpu = per_cpu(policy_cpu, cpu);
100 BUG_ON(policy_cpu == -1);
101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
108 static unsigned int __cpufreq_get(unsigned int cpu);
109 static void handle_update(struct work_struct *work);
110
111 /**
112 * Two notifier lists: the "policy" list is involved in the
113 * validation process for a new CPU frequency policy; the
114 * "transition" list for kernel code that needs to handle
115 * changes to devices when the CPU clock speed changes.
116 * The mutex locks both lists.
117 */
118 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
119 static struct srcu_notifier_head cpufreq_transition_notifier_list;
120
121 static int __init init_cpufreq_transition_notifier_list(void)
122 {
123 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 return 0;
125 }
126 pure_initcall(init_cpufreq_transition_notifier_list);
127
128 static LIST_HEAD(cpufreq_governor_list);
129 static DEFINE_MUTEX (cpufreq_governor_mutex);
130
131 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
132 {
133 struct cpufreq_policy *data;
134 unsigned long flags;
135
136 if (cpu >= NR_CPUS)
137 goto err_out;
138
139 /* get the cpufreq driver */
140 spin_lock_irqsave(&cpufreq_driver_lock, flags);
141
142 if (!cpufreq_driver)
143 goto err_out_unlock;
144
145 if (!try_module_get(cpufreq_driver->owner))
146 goto err_out_unlock;
147
148
149 /* get the CPU */
150 data = cpufreq_cpu_data[cpu];
151
152 if (!data)
153 goto err_out_put_module;
154
155 if (!kobject_get(&data->kobj))
156 goto err_out_put_module;
157
158 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
159 return data;
160
161 err_out_put_module:
162 module_put(cpufreq_driver->owner);
163 err_out_unlock:
164 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
165 err_out:
166 return NULL;
167 }
168 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
169
170
171 void cpufreq_cpu_put(struct cpufreq_policy *data)
172 {
173 kobject_put(&data->kobj);
174 module_put(cpufreq_driver->owner);
175 }
176 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
177
178
179 /*********************************************************************
180 * UNIFIED DEBUG HELPERS *
181 *********************************************************************/
182 #ifdef CONFIG_CPU_FREQ_DEBUG
183
184 /* what part(s) of the CPUfreq subsystem are debugged? */
185 static unsigned int debug;
186
187 /* is the debug output ratelimit'ed using printk_ratelimit? User can
188 * set or modify this value.
189 */
190 static unsigned int debug_ratelimit = 1;
191
192 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
193 * loading of a cpufreq driver, temporarily disabled when a new policy
194 * is set, and disabled upon cpufreq driver removal
195 */
196 static unsigned int disable_ratelimit = 1;
197 static DEFINE_SPINLOCK(disable_ratelimit_lock);
198
199 static void cpufreq_debug_enable_ratelimit(void)
200 {
201 unsigned long flags;
202
203 spin_lock_irqsave(&disable_ratelimit_lock, flags);
204 if (disable_ratelimit)
205 disable_ratelimit--;
206 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
207 }
208
209 static void cpufreq_debug_disable_ratelimit(void)
210 {
211 unsigned long flags;
212
213 spin_lock_irqsave(&disable_ratelimit_lock, flags);
214 disable_ratelimit++;
215 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
216 }
217
218 void cpufreq_debug_printk(unsigned int type, const char *prefix,
219 const char *fmt, ...)
220 {
221 char s[256];
222 va_list args;
223 unsigned int len;
224 unsigned long flags;
225
226 WARN_ON(!prefix);
227 if (type & debug) {
228 spin_lock_irqsave(&disable_ratelimit_lock, flags);
229 if (!disable_ratelimit && debug_ratelimit
230 && !printk_ratelimit()) {
231 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
232 return;
233 }
234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235
236 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
237
238 va_start(args, fmt);
239 len += vsnprintf(&s[len], (256 - len), fmt, args);
240 va_end(args);
241
242 printk(s);
243
244 WARN_ON(len < 5);
245 }
246 }
247 EXPORT_SYMBOL(cpufreq_debug_printk);
248
249
250 module_param(debug, uint, 0644);
251 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
252 " 2 to debug drivers, and 4 to debug governors.");
253
254 module_param(debug_ratelimit, uint, 0644);
255 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
256 " set to 0 to disable ratelimiting.");
257
258 #else /* !CONFIG_CPU_FREQ_DEBUG */
259
260 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
261 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
262
263 #endif /* CONFIG_CPU_FREQ_DEBUG */
264
265
266 /*********************************************************************
267 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
268 *********************************************************************/
269
270 /**
271 * adjust_jiffies - adjust the system "loops_per_jiffy"
272 *
273 * This function alters the system "loops_per_jiffy" for the clock
274 * speed change. Note that loops_per_jiffy cannot be updated on SMP
275 * systems as each CPU might be scaled differently. So, use the arch
276 * per-CPU loops_per_jiffy value wherever possible.
277 */
278 #ifndef CONFIG_SMP
279 static unsigned long l_p_j_ref;
280 static unsigned int l_p_j_ref_freq;
281
282 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
283 {
284 if (ci->flags & CPUFREQ_CONST_LOOPS)
285 return;
286
287 if (!l_p_j_ref_freq) {
288 l_p_j_ref = loops_per_jiffy;
289 l_p_j_ref_freq = ci->old;
290 dprintk("saving %lu as reference value for loops_per_jiffy; "
291 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
292 }
293 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
294 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
295 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 dprintk("scaling loops_per_jiffy to %lu "
299 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
300 }
301 }
302 #else
303 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
304 {
305 return;
306 }
307 #endif
308
309
310 /**
311 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
312 * on frequency transition.
313 *
314 * This function calls the transition notifiers and the "adjust_jiffies"
315 * function. It is called twice on all CPU frequency changes that have
316 * external effects.
317 */
318 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
319 {
320 struct cpufreq_policy *policy;
321
322 BUG_ON(irqs_disabled());
323
324 freqs->flags = cpufreq_driver->flags;
325 dprintk("notification %u of frequency transition to %u kHz\n",
326 state, freqs->new);
327
328 policy = cpufreq_cpu_data[freqs->cpu];
329 switch (state) {
330
331 case CPUFREQ_PRECHANGE:
332 /* detect if the driver reported a value as "old frequency"
333 * which is not equal to what the cpufreq core thinks is
334 * "old frequency".
335 */
336 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
337 if ((policy) && (policy->cpu == freqs->cpu) &&
338 (policy->cur) && (policy->cur != freqs->old)) {
339 dprintk("Warning: CPU frequency is"
340 " %u, cpufreq assumed %u kHz.\n",
341 freqs->old, policy->cur);
342 freqs->old = policy->cur;
343 }
344 }
345 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
346 CPUFREQ_PRECHANGE, freqs);
347 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
348 break;
349
350 case CPUFREQ_POSTCHANGE:
351 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
352 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
353 CPUFREQ_POSTCHANGE, freqs);
354 if (likely(policy) && likely(policy->cpu == freqs->cpu))
355 policy->cur = freqs->new;
356 break;
357 }
358 }
359 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
360
361
362
363 /*********************************************************************
364 * SYSFS INTERFACE *
365 *********************************************************************/
366
367 static struct cpufreq_governor *__find_governor(const char *str_governor)
368 {
369 struct cpufreq_governor *t;
370
371 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
372 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
373 return t;
374
375 return NULL;
376 }
377
378 /**
379 * cpufreq_parse_governor - parse a governor string
380 */
381 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
382 struct cpufreq_governor **governor)
383 {
384 int err = -EINVAL;
385
386 if (!cpufreq_driver)
387 goto out;
388
389 if (cpufreq_driver->setpolicy) {
390 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
391 *policy = CPUFREQ_POLICY_PERFORMANCE;
392 err = 0;
393 } else if (!strnicmp(str_governor, "powersave",
394 CPUFREQ_NAME_LEN)) {
395 *policy = CPUFREQ_POLICY_POWERSAVE;
396 err = 0;
397 }
398 } else if (cpufreq_driver->target) {
399 struct cpufreq_governor *t;
400
401 mutex_lock(&cpufreq_governor_mutex);
402
403 t = __find_governor(str_governor);
404
405 if (t == NULL) {
406 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
407 str_governor);
408
409 if (name) {
410 int ret;
411
412 mutex_unlock(&cpufreq_governor_mutex);
413 ret = request_module(name);
414 mutex_lock(&cpufreq_governor_mutex);
415
416 if (ret == 0)
417 t = __find_governor(str_governor);
418 }
419
420 kfree(name);
421 }
422
423 if (t != NULL) {
424 *governor = t;
425 err = 0;
426 }
427
428 mutex_unlock(&cpufreq_governor_mutex);
429 }
430 out:
431 return err;
432 }
433
434
435 /* drivers/base/cpu.c */
436 extern struct sysdev_class cpu_sysdev_class;
437
438
439 /**
440 * cpufreq_per_cpu_attr_read() / show_##file_name() -
441 * print out cpufreq information
442 *
443 * Write out information from cpufreq_driver->policy[cpu]; object must be
444 * "unsigned int".
445 */
446
447 #define show_one(file_name, object) \
448 static ssize_t show_##file_name \
449 (struct cpufreq_policy * policy, char *buf) \
450 { \
451 return sprintf (buf, "%u\n", policy->object); \
452 }
453
454 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
455 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461 struct cpufreq_policy *policy);
462
463 /**
464 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465 */
466 #define store_one(file_name, object) \
467 static ssize_t store_##file_name \
468 (struct cpufreq_policy * policy, const char *buf, size_t count) \
469 { \
470 unsigned int ret = -EINVAL; \
471 struct cpufreq_policy new_policy; \
472 \
473 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
474 if (ret) \
475 return -EINVAL; \
476 \
477 ret = sscanf (buf, "%u", &new_policy.object); \
478 if (ret != 1) \
479 return -EINVAL; \
480 \
481 ret = __cpufreq_set_policy(policy, &new_policy); \
482 policy->user_policy.object = policy->object; \
483 \
484 return ret ? ret : count; \
485 }
486
487 store_one(scaling_min_freq,min);
488 store_one(scaling_max_freq,max);
489
490 /**
491 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492 */
493 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy,
494 char *buf)
495 {
496 unsigned int cur_freq = __cpufreq_get(policy->cpu);
497 if (!cur_freq)
498 return sprintf(buf, "<unknown>");
499 return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504 * show_scaling_governor - show the current policy for the specified CPU
505 */
506 static ssize_t show_scaling_governor (struct cpufreq_policy * policy,
507 char *buf)
508 {
509 if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
510 return sprintf(buf, "powersave\n");
511 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
512 return sprintf(buf, "performance\n");
513 else if (policy->governor)
514 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
515 return -EINVAL;
516 }
517
518
519 /**
520 * store_scaling_governor - store policy for the specified CPU
521 */
522 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
523 const char *buf, size_t count)
524 {
525 unsigned int ret = -EINVAL;
526 char str_governor[16];
527 struct cpufreq_policy new_policy;
528
529 ret = cpufreq_get_policy(&new_policy, policy->cpu);
530 if (ret)
531 return ret;
532
533 ret = sscanf (buf, "%15s", str_governor);
534 if (ret != 1)
535 return -EINVAL;
536
537 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538 &new_policy.governor))
539 return -EINVAL;
540
541 /* Do not use cpufreq_set_policy here or the user_policy.max
542 will be wrongly overridden */
543 ret = __cpufreq_set_policy(policy, &new_policy);
544
545 policy->user_policy.policy = policy->policy;
546 policy->user_policy.governor = policy->governor;
547
548 if (ret)
549 return ret;
550 else
551 return count;
552 }
553
554 /**
555 * show_scaling_driver - show the cpufreq driver currently loaded
556 */
557 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
558 {
559 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561
562 /**
563 * show_scaling_available_governors - show the available CPUfreq governors
564 */
565 static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy,
566 char *buf)
567 {
568 ssize_t i = 0;
569 struct cpufreq_governor *t;
570
571 if (!cpufreq_driver->target) {
572 i += sprintf(buf, "performance powersave");
573 goto out;
574 }
575
576 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
578 goto out;
579 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
580 }
581 out:
582 i += sprintf(&buf[i], "\n");
583 return i;
584 }
585 /**
586 * show_affected_cpus - show the CPUs affected by each transition
587 */
588 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
589 {
590 ssize_t i = 0;
591 unsigned int cpu;
592
593 for_each_cpu_mask(cpu, policy->cpus) {
594 if (i)
595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
597 if (i >= (PAGE_SIZE - 5))
598 break;
599 }
600 i += sprintf(&buf[i], "\n");
601 return i;
602 }
603
604 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
605 const char *buf, size_t count)
606 {
607 unsigned int freq = 0;
608 unsigned int ret;
609
610 if (!policy->governor->store_setspeed)
611 return -EINVAL;
612
613 ret = sscanf(buf, "%u", &freq);
614 if (ret != 1)
615 return -EINVAL;
616
617 policy->governor->store_setspeed(policy, freq);
618
619 return count;
620 }
621
622 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
623 {
624 if (!policy->governor->show_setspeed)
625 return sprintf(buf, "<unsupported>\n");
626
627 return policy->governor->show_setspeed(policy, buf);
628 }
629
630 #define define_one_ro(_name) \
631 static struct freq_attr _name = \
632 __ATTR(_name, 0444, show_##_name, NULL)
633
634 #define define_one_ro0400(_name) \
635 static struct freq_attr _name = \
636 __ATTR(_name, 0400, show_##_name, NULL)
637
638 #define define_one_rw(_name) \
639 static struct freq_attr _name = \
640 __ATTR(_name, 0644, show_##_name, store_##_name)
641
642 define_one_ro0400(cpuinfo_cur_freq);
643 define_one_ro(cpuinfo_min_freq);
644 define_one_ro(cpuinfo_max_freq);
645 define_one_ro(scaling_available_governors);
646 define_one_ro(scaling_driver);
647 define_one_ro(scaling_cur_freq);
648 define_one_ro(affected_cpus);
649 define_one_rw(scaling_min_freq);
650 define_one_rw(scaling_max_freq);
651 define_one_rw(scaling_governor);
652 define_one_rw(scaling_setspeed);
653
654 static struct attribute * default_attrs[] = {
655 &cpuinfo_min_freq.attr,
656 &cpuinfo_max_freq.attr,
657 &scaling_min_freq.attr,
658 &scaling_max_freq.attr,
659 &affected_cpus.attr,
660 &scaling_governor.attr,
661 &scaling_driver.attr,
662 &scaling_available_governors.attr,
663 &scaling_setspeed.attr,
664 NULL
665 };
666
667 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
668 #define to_attr(a) container_of(a,struct freq_attr,attr)
669
670 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
671 {
672 struct cpufreq_policy * policy = to_policy(kobj);
673 struct freq_attr * fattr = to_attr(attr);
674 ssize_t ret;
675 policy = cpufreq_cpu_get(policy->cpu);
676 if (!policy)
677 return -EINVAL;
678
679 if (lock_policy_rwsem_read(policy->cpu) < 0)
680 return -EINVAL;
681
682 if (fattr->show)
683 ret = fattr->show(policy, buf);
684 else
685 ret = -EIO;
686
687 unlock_policy_rwsem_read(policy->cpu);
688
689 cpufreq_cpu_put(policy);
690 return ret;
691 }
692
693 static ssize_t store(struct kobject * kobj, struct attribute * attr,
694 const char * buf, size_t count)
695 {
696 struct cpufreq_policy * policy = to_policy(kobj);
697 struct freq_attr * fattr = to_attr(attr);
698 ssize_t ret;
699 policy = cpufreq_cpu_get(policy->cpu);
700 if (!policy)
701 return -EINVAL;
702
703 if (lock_policy_rwsem_write(policy->cpu) < 0)
704 return -EINVAL;
705
706 if (fattr->store)
707 ret = fattr->store(policy, buf, count);
708 else
709 ret = -EIO;
710
711 unlock_policy_rwsem_write(policy->cpu);
712
713 cpufreq_cpu_put(policy);
714 return ret;
715 }
716
717 static void cpufreq_sysfs_release(struct kobject * kobj)
718 {
719 struct cpufreq_policy * policy = to_policy(kobj);
720 dprintk("last reference is dropped\n");
721 complete(&policy->kobj_unregister);
722 }
723
724 static struct sysfs_ops sysfs_ops = {
725 .show = show,
726 .store = store,
727 };
728
729 static struct kobj_type ktype_cpufreq = {
730 .sysfs_ops = &sysfs_ops,
731 .default_attrs = default_attrs,
732 .release = cpufreq_sysfs_release,
733 };
734
735
736 /**
737 * cpufreq_add_dev - add a CPU device
738 *
739 * Adds the cpufreq interface for a CPU device.
740 */
741 static int cpufreq_add_dev (struct sys_device * sys_dev)
742 {
743 unsigned int cpu = sys_dev->id;
744 int ret = 0;
745 struct cpufreq_policy new_policy;
746 struct cpufreq_policy *policy;
747 struct freq_attr **drv_attr;
748 struct sys_device *cpu_sys_dev;
749 unsigned long flags;
750 unsigned int j;
751 #ifdef CONFIG_SMP
752 struct cpufreq_policy *managed_policy;
753 #endif
754
755 if (cpu_is_offline(cpu))
756 return 0;
757
758 cpufreq_debug_disable_ratelimit();
759 dprintk("adding CPU %u\n", cpu);
760
761 #ifdef CONFIG_SMP
762 /* check whether a different CPU already registered this
763 * CPU because it is in the same boat. */
764 policy = cpufreq_cpu_get(cpu);
765 if (unlikely(policy)) {
766 cpufreq_cpu_put(policy);
767 cpufreq_debug_enable_ratelimit();
768 return 0;
769 }
770 #endif
771
772 if (!try_module_get(cpufreq_driver->owner)) {
773 ret = -EINVAL;
774 goto module_out;
775 }
776
777 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
778 if (!policy) {
779 ret = -ENOMEM;
780 goto nomem_out;
781 }
782
783 policy->cpu = cpu;
784 policy->cpus = cpumask_of_cpu(cpu);
785
786 /* Initially set CPU itself as the policy_cpu */
787 per_cpu(policy_cpu, cpu) = cpu;
788 lock_policy_rwsem_write(cpu);
789
790 init_completion(&policy->kobj_unregister);
791 INIT_WORK(&policy->update, handle_update);
792
793 /* Set governor before ->init, so that driver could check it */
794 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
795 /* call driver. From then on the cpufreq must be able
796 * to accept all calls to ->verify and ->setpolicy for this CPU
797 */
798 ret = cpufreq_driver->init(policy);
799 if (ret) {
800 dprintk("initialization failed\n");
801 unlock_policy_rwsem_write(cpu);
802 goto err_out;
803 }
804 policy->user_policy.min = policy->cpuinfo.min_freq;
805 policy->user_policy.max = policy->cpuinfo.max_freq;
806
807 #ifdef CONFIG_SMP
808
809 #ifdef CONFIG_HOTPLUG_CPU
810 if (cpufreq_cpu_governor[cpu]){
811 policy->governor = cpufreq_cpu_governor[cpu];
812 dprintk("Restoring governor %s for cpu %d\n",
813 policy->governor->name, cpu);
814 }
815 #endif
816
817 for_each_cpu_mask(j, policy->cpus) {
818 if (cpu == j)
819 continue;
820
821 /* check for existing affected CPUs. They may not be aware
822 * of it due to CPU Hotplug.
823 */
824 managed_policy = cpufreq_cpu_get(j);
825 if (unlikely(managed_policy)) {
826
827 /* Set proper policy_cpu */
828 unlock_policy_rwsem_write(cpu);
829 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
830
831 if (lock_policy_rwsem_write(cpu) < 0)
832 goto err_out_driver_exit;
833
834 spin_lock_irqsave(&cpufreq_driver_lock, flags);
835 managed_policy->cpus = policy->cpus;
836 cpufreq_cpu_data[cpu] = managed_policy;
837 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
838
839 dprintk("CPU already managed, adding link\n");
840 ret = sysfs_create_link(&sys_dev->kobj,
841 &managed_policy->kobj,
842 "cpufreq");
843 if (ret) {
844 unlock_policy_rwsem_write(cpu);
845 goto err_out_driver_exit;
846 }
847
848 cpufreq_debug_enable_ratelimit();
849 ret = 0;
850 unlock_policy_rwsem_write(cpu);
851 goto err_out_driver_exit; /* call driver->exit() */
852 }
853 }
854 #endif
855 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
856
857 /* prepare interface data */
858 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
859 "cpufreq");
860 if (ret) {
861 unlock_policy_rwsem_write(cpu);
862 goto err_out_driver_exit;
863 }
864 /* set up files for this cpu device */
865 drv_attr = cpufreq_driver->attr;
866 while ((drv_attr) && (*drv_attr)) {
867 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
868 if (ret) {
869 unlock_policy_rwsem_write(cpu);
870 goto err_out_driver_exit;
871 }
872 drv_attr++;
873 }
874 if (cpufreq_driver->get){
875 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
876 if (ret) {
877 unlock_policy_rwsem_write(cpu);
878 goto err_out_driver_exit;
879 }
880 }
881 if (cpufreq_driver->target){
882 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
883 if (ret) {
884 unlock_policy_rwsem_write(cpu);
885 goto err_out_driver_exit;
886 }
887 }
888
889 spin_lock_irqsave(&cpufreq_driver_lock, flags);
890 for_each_cpu_mask(j, policy->cpus) {
891 cpufreq_cpu_data[j] = policy;
892 per_cpu(policy_cpu, j) = policy->cpu;
893 }
894 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
895
896 /* symlink affected CPUs */
897 for_each_cpu_mask(j, policy->cpus) {
898 if (j == cpu)
899 continue;
900 if (!cpu_online(j))
901 continue;
902
903 dprintk("CPU %u already managed, adding link\n", j);
904 cpufreq_cpu_get(cpu);
905 cpu_sys_dev = get_cpu_sysdev(j);
906 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
907 "cpufreq");
908 if (ret) {
909 unlock_policy_rwsem_write(cpu);
910 goto err_out_unregister;
911 }
912 }
913
914 policy->governor = NULL; /* to assure that the starting sequence is
915 * run in cpufreq_set_policy */
916
917 /* set default policy */
918 ret = __cpufreq_set_policy(policy, &new_policy);
919 policy->user_policy.policy = policy->policy;
920 policy->user_policy.governor = policy->governor;
921
922 unlock_policy_rwsem_write(cpu);
923
924 if (ret) {
925 dprintk("setting policy failed\n");
926 goto err_out_unregister;
927 }
928
929 kobject_uevent(&policy->kobj, KOBJ_ADD);
930 module_put(cpufreq_driver->owner);
931 dprintk("initialization complete\n");
932 cpufreq_debug_enable_ratelimit();
933
934 return 0;
935
936
937 err_out_unregister:
938 spin_lock_irqsave(&cpufreq_driver_lock, flags);
939 for_each_cpu_mask(j, policy->cpus)
940 cpufreq_cpu_data[j] = NULL;
941 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
942
943 kobject_put(&policy->kobj);
944 wait_for_completion(&policy->kobj_unregister);
945
946 err_out_driver_exit:
947 if (cpufreq_driver->exit)
948 cpufreq_driver->exit(policy);
949
950 err_out:
951 kfree(policy);
952
953 nomem_out:
954 module_put(cpufreq_driver->owner);
955 module_out:
956 cpufreq_debug_enable_ratelimit();
957 return ret;
958 }
959
960
961 /**
962 * __cpufreq_remove_dev - remove a CPU device
963 *
964 * Removes the cpufreq interface for a CPU device.
965 * Caller should already have policy_rwsem in write mode for this CPU.
966 * This routine frees the rwsem before returning.
967 */
968 static int __cpufreq_remove_dev (struct sys_device * sys_dev)
969 {
970 unsigned int cpu = sys_dev->id;
971 unsigned long flags;
972 struct cpufreq_policy *data;
973 #ifdef CONFIG_SMP
974 struct sys_device *cpu_sys_dev;
975 unsigned int j;
976 #endif
977
978 cpufreq_debug_disable_ratelimit();
979 dprintk("unregistering CPU %u\n", cpu);
980
981 spin_lock_irqsave(&cpufreq_driver_lock, flags);
982 data = cpufreq_cpu_data[cpu];
983
984 if (!data) {
985 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
986 cpufreq_debug_enable_ratelimit();
987 unlock_policy_rwsem_write(cpu);
988 return -EINVAL;
989 }
990 cpufreq_cpu_data[cpu] = NULL;
991
992
993 #ifdef CONFIG_SMP
994 /* if this isn't the CPU which is the parent of the kobj, we
995 * only need to unlink, put and exit
996 */
997 if (unlikely(cpu != data->cpu)) {
998 dprintk("removing link\n");
999 cpu_clear(cpu, data->cpus);
1000 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1001 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1002 cpufreq_cpu_put(data);
1003 cpufreq_debug_enable_ratelimit();
1004 unlock_policy_rwsem_write(cpu);
1005 return 0;
1006 }
1007 #endif
1008
1009 #ifdef CONFIG_SMP
1010
1011 #ifdef CONFIG_HOTPLUG_CPU
1012 cpufreq_cpu_governor[cpu] = data->governor;
1013 #endif
1014
1015 /* if we have other CPUs still registered, we need to unlink them,
1016 * or else wait_for_completion below will lock up. Clean the
1017 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
1018 * links afterwards.
1019 */
1020 if (unlikely(cpus_weight(data->cpus) > 1)) {
1021 for_each_cpu_mask(j, data->cpus) {
1022 if (j == cpu)
1023 continue;
1024 cpufreq_cpu_data[j] = NULL;
1025 }
1026 }
1027
1028 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1029
1030 if (unlikely(cpus_weight(data->cpus) > 1)) {
1031 for_each_cpu_mask(j, data->cpus) {
1032 if (j == cpu)
1033 continue;
1034 dprintk("removing link for cpu %u\n", j);
1035 #ifdef CONFIG_HOTPLUG_CPU
1036 cpufreq_cpu_governor[j] = data->governor;
1037 #endif
1038 cpu_sys_dev = get_cpu_sysdev(j);
1039 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1040 cpufreq_cpu_put(data);
1041 }
1042 }
1043 #else
1044 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1045 #endif
1046
1047 if (cpufreq_driver->target)
1048 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1049
1050 unlock_policy_rwsem_write(cpu);
1051
1052 kobject_put(&data->kobj);
1053
1054 /* we need to make sure that the underlying kobj is actually
1055 * not referenced anymore by anybody before we proceed with
1056 * unloading.
1057 */
1058 dprintk("waiting for dropping of refcount\n");
1059 wait_for_completion(&data->kobj_unregister);
1060 dprintk("wait complete\n");
1061
1062 if (cpufreq_driver->exit)
1063 cpufreq_driver->exit(data);
1064
1065 kfree(data);
1066
1067 cpufreq_debug_enable_ratelimit();
1068 return 0;
1069 }
1070
1071
1072 static int cpufreq_remove_dev (struct sys_device * sys_dev)
1073 {
1074 unsigned int cpu = sys_dev->id;
1075 int retval;
1076
1077 if (cpu_is_offline(cpu))
1078 return 0;
1079
1080 if (unlikely(lock_policy_rwsem_write(cpu)))
1081 BUG();
1082
1083 retval = __cpufreq_remove_dev(sys_dev);
1084 return retval;
1085 }
1086
1087
1088 static void handle_update(struct work_struct *work)
1089 {
1090 struct cpufreq_policy *policy =
1091 container_of(work, struct cpufreq_policy, update);
1092 unsigned int cpu = policy->cpu;
1093 dprintk("handle_update for cpu %u called\n", cpu);
1094 cpufreq_update_policy(cpu);
1095 }
1096
1097 /**
1098 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1099 * @cpu: cpu number
1100 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1101 * @new_freq: CPU frequency the CPU actually runs at
1102 *
1103 * We adjust to current frequency first, and need to clean up later. So either call
1104 * to cpufreq_update_policy() or schedule handle_update()).
1105 */
1106 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1107 unsigned int new_freq)
1108 {
1109 struct cpufreq_freqs freqs;
1110
1111 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1112 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1113
1114 freqs.cpu = cpu;
1115 freqs.old = old_freq;
1116 freqs.new = new_freq;
1117 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1118 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1119 }
1120
1121
1122 /**
1123 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1124 * @cpu: CPU number
1125 *
1126 * This is the last known freq, without actually getting it from the driver.
1127 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1128 */
1129 unsigned int cpufreq_quick_get(unsigned int cpu)
1130 {
1131 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1132 unsigned int ret_freq = 0;
1133
1134 if (policy) {
1135 ret_freq = policy->cur;
1136 cpufreq_cpu_put(policy);
1137 }
1138
1139 return (ret_freq);
1140 }
1141 EXPORT_SYMBOL(cpufreq_quick_get);
1142
1143
1144 static unsigned int __cpufreq_get(unsigned int cpu)
1145 {
1146 struct cpufreq_policy *policy = cpufreq_cpu_data[cpu];
1147 unsigned int ret_freq = 0;
1148
1149 if (!cpufreq_driver->get)
1150 return (ret_freq);
1151
1152 ret_freq = cpufreq_driver->get(cpu);
1153
1154 if (ret_freq && policy->cur &&
1155 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1156 /* verify no discrepancy between actual and
1157 saved value exists */
1158 if (unlikely(ret_freq != policy->cur)) {
1159 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1160 schedule_work(&policy->update);
1161 }
1162 }
1163
1164 return (ret_freq);
1165 }
1166
1167 /**
1168 * cpufreq_get - get the current CPU frequency (in kHz)
1169 * @cpu: CPU number
1170 *
1171 * Get the CPU current (static) CPU frequency
1172 */
1173 unsigned int cpufreq_get(unsigned int cpu)
1174 {
1175 unsigned int ret_freq = 0;
1176 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1177
1178 if (!policy)
1179 goto out;
1180
1181 if (unlikely(lock_policy_rwsem_read(cpu)))
1182 goto out_policy;
1183
1184 ret_freq = __cpufreq_get(cpu);
1185
1186 unlock_policy_rwsem_read(cpu);
1187
1188 out_policy:
1189 cpufreq_cpu_put(policy);
1190 out:
1191 return (ret_freq);
1192 }
1193 EXPORT_SYMBOL(cpufreq_get);
1194
1195
1196 /**
1197 * cpufreq_suspend - let the low level driver prepare for suspend
1198 */
1199
1200 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
1201 {
1202 int cpu = sysdev->id;
1203 int ret = 0;
1204 unsigned int cur_freq = 0;
1205 struct cpufreq_policy *cpu_policy;
1206
1207 dprintk("suspending cpu %u\n", cpu);
1208
1209 if (!cpu_online(cpu))
1210 return 0;
1211
1212 /* we may be lax here as interrupts are off. Nonetheless
1213 * we need to grab the correct cpu policy, as to check
1214 * whether we really run on this CPU.
1215 */
1216
1217 cpu_policy = cpufreq_cpu_get(cpu);
1218 if (!cpu_policy)
1219 return -EINVAL;
1220
1221 /* only handle each CPU group once */
1222 if (unlikely(cpu_policy->cpu != cpu)) {
1223 cpufreq_cpu_put(cpu_policy);
1224 return 0;
1225 }
1226
1227 if (cpufreq_driver->suspend) {
1228 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1229 if (ret) {
1230 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1231 "step on CPU %u\n", cpu_policy->cpu);
1232 cpufreq_cpu_put(cpu_policy);
1233 return ret;
1234 }
1235 }
1236
1237
1238 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1239 goto out;
1240
1241 if (cpufreq_driver->get)
1242 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1243
1244 if (!cur_freq || !cpu_policy->cur) {
1245 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1246 "frequency is what timing core thinks it is.\n");
1247 goto out;
1248 }
1249
1250 if (unlikely(cur_freq != cpu_policy->cur)) {
1251 struct cpufreq_freqs freqs;
1252
1253 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1254 dprintk("Warning: CPU frequency is %u, "
1255 "cpufreq assumed %u kHz.\n",
1256 cur_freq, cpu_policy->cur);
1257
1258 freqs.cpu = cpu;
1259 freqs.old = cpu_policy->cur;
1260 freqs.new = cur_freq;
1261
1262 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1263 CPUFREQ_SUSPENDCHANGE, &freqs);
1264 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1265
1266 cpu_policy->cur = cur_freq;
1267 }
1268
1269 out:
1270 cpufreq_cpu_put(cpu_policy);
1271 return 0;
1272 }
1273
1274 /**
1275 * cpufreq_resume - restore proper CPU frequency handling after resume
1276 *
1277 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1278 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1279 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1280 * restored.
1281 */
1282 static int cpufreq_resume(struct sys_device * sysdev)
1283 {
1284 int cpu = sysdev->id;
1285 int ret = 0;
1286 struct cpufreq_policy *cpu_policy;
1287
1288 dprintk("resuming cpu %u\n", cpu);
1289
1290 if (!cpu_online(cpu))
1291 return 0;
1292
1293 /* we may be lax here as interrupts are off. Nonetheless
1294 * we need to grab the correct cpu policy, as to check
1295 * whether we really run on this CPU.
1296 */
1297
1298 cpu_policy = cpufreq_cpu_get(cpu);
1299 if (!cpu_policy)
1300 return -EINVAL;
1301
1302 /* only handle each CPU group once */
1303 if (unlikely(cpu_policy->cpu != cpu)) {
1304 cpufreq_cpu_put(cpu_policy);
1305 return 0;
1306 }
1307
1308 if (cpufreq_driver->resume) {
1309 ret = cpufreq_driver->resume(cpu_policy);
1310 if (ret) {
1311 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1312 "step on CPU %u\n", cpu_policy->cpu);
1313 cpufreq_cpu_put(cpu_policy);
1314 return ret;
1315 }
1316 }
1317
1318 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1319 unsigned int cur_freq = 0;
1320
1321 if (cpufreq_driver->get)
1322 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1323
1324 if (!cur_freq || !cpu_policy->cur) {
1325 printk(KERN_ERR "cpufreq: resume failed to assert "
1326 "current frequency is what timing core "
1327 "thinks it is.\n");
1328 goto out;
1329 }
1330
1331 if (unlikely(cur_freq != cpu_policy->cur)) {
1332 struct cpufreq_freqs freqs;
1333
1334 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1335 dprintk("Warning: CPU frequency "
1336 "is %u, cpufreq assumed %u kHz.\n",
1337 cur_freq, cpu_policy->cur);
1338
1339 freqs.cpu = cpu;
1340 freqs.old = cpu_policy->cur;
1341 freqs.new = cur_freq;
1342
1343 srcu_notifier_call_chain(
1344 &cpufreq_transition_notifier_list,
1345 CPUFREQ_RESUMECHANGE, &freqs);
1346 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1347
1348 cpu_policy->cur = cur_freq;
1349 }
1350 }
1351
1352 out:
1353 schedule_work(&cpu_policy->update);
1354 cpufreq_cpu_put(cpu_policy);
1355 return ret;
1356 }
1357
1358 static struct sysdev_driver cpufreq_sysdev_driver = {
1359 .add = cpufreq_add_dev,
1360 .remove = cpufreq_remove_dev,
1361 .suspend = cpufreq_suspend,
1362 .resume = cpufreq_resume,
1363 };
1364
1365
1366 /*********************************************************************
1367 * NOTIFIER LISTS INTERFACE *
1368 *********************************************************************/
1369
1370 /**
1371 * cpufreq_register_notifier - register a driver with cpufreq
1372 * @nb: notifier function to register
1373 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1374 *
1375 * Add a driver to one of two lists: either a list of drivers that
1376 * are notified about clock rate changes (once before and once after
1377 * the transition), or a list of drivers that are notified about
1378 * changes in cpufreq policy.
1379 *
1380 * This function may sleep, and has the same return conditions as
1381 * blocking_notifier_chain_register.
1382 */
1383 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1384 {
1385 int ret;
1386
1387 switch (list) {
1388 case CPUFREQ_TRANSITION_NOTIFIER:
1389 ret = srcu_notifier_chain_register(
1390 &cpufreq_transition_notifier_list, nb);
1391 break;
1392 case CPUFREQ_POLICY_NOTIFIER:
1393 ret = blocking_notifier_chain_register(
1394 &cpufreq_policy_notifier_list, nb);
1395 break;
1396 default:
1397 ret = -EINVAL;
1398 }
1399
1400 return ret;
1401 }
1402 EXPORT_SYMBOL(cpufreq_register_notifier);
1403
1404
1405 /**
1406 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1407 * @nb: notifier block to be unregistered
1408 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1409 *
1410 * Remove a driver from the CPU frequency notifier list.
1411 *
1412 * This function may sleep, and has the same return conditions as
1413 * blocking_notifier_chain_unregister.
1414 */
1415 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1416 {
1417 int ret;
1418
1419 switch (list) {
1420 case CPUFREQ_TRANSITION_NOTIFIER:
1421 ret = srcu_notifier_chain_unregister(
1422 &cpufreq_transition_notifier_list, nb);
1423 break;
1424 case CPUFREQ_POLICY_NOTIFIER:
1425 ret = blocking_notifier_chain_unregister(
1426 &cpufreq_policy_notifier_list, nb);
1427 break;
1428 default:
1429 ret = -EINVAL;
1430 }
1431
1432 return ret;
1433 }
1434 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1435
1436
1437 /*********************************************************************
1438 * GOVERNORS *
1439 *********************************************************************/
1440
1441
1442 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1443 unsigned int target_freq,
1444 unsigned int relation)
1445 {
1446 int retval = -EINVAL;
1447
1448 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1449 target_freq, relation);
1450 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1451 retval = cpufreq_driver->target(policy, target_freq, relation);
1452
1453 return retval;
1454 }
1455 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1456
1457 int cpufreq_driver_target(struct cpufreq_policy *policy,
1458 unsigned int target_freq,
1459 unsigned int relation)
1460 {
1461 int ret;
1462
1463 policy = cpufreq_cpu_get(policy->cpu);
1464 if (!policy)
1465 return -EINVAL;
1466
1467 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1468 return -EINVAL;
1469
1470 ret = __cpufreq_driver_target(policy, target_freq, relation);
1471
1472 unlock_policy_rwsem_write(policy->cpu);
1473
1474 cpufreq_cpu_put(policy);
1475 return ret;
1476 }
1477 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1478
1479 int __cpufreq_driver_getavg(struct cpufreq_policy *policy)
1480 {
1481 int ret = 0;
1482
1483 policy = cpufreq_cpu_get(policy->cpu);
1484 if (!policy)
1485 return -EINVAL;
1486
1487 if (cpu_online(policy->cpu) && cpufreq_driver->getavg)
1488 ret = cpufreq_driver->getavg(policy->cpu);
1489
1490 cpufreq_cpu_put(policy);
1491 return ret;
1492 }
1493 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1494
1495 /*
1496 * when "event" is CPUFREQ_GOV_LIMITS
1497 */
1498
1499 static int __cpufreq_governor(struct cpufreq_policy *policy,
1500 unsigned int event)
1501 {
1502 int ret;
1503
1504 /* Only must be defined when default governor is known to have latency
1505 restrictions, like e.g. conservative or ondemand.
1506 That this is the case is already ensured in Kconfig
1507 */
1508 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1509 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1510 #else
1511 struct cpufreq_governor *gov = NULL;
1512 #endif
1513
1514 if (policy->governor->max_transition_latency &&
1515 policy->cpuinfo.transition_latency >
1516 policy->governor->max_transition_latency) {
1517 if (!gov)
1518 return -EINVAL;
1519 else {
1520 printk(KERN_WARNING "%s governor failed, too long"
1521 " transition latency of HW, fallback"
1522 " to %s governor\n",
1523 policy->governor->name,
1524 gov->name);
1525 policy->governor = gov;
1526 }
1527 }
1528
1529 if (!try_module_get(policy->governor->owner))
1530 return -EINVAL;
1531
1532 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1533 policy->cpu, event);
1534 ret = policy->governor->governor(policy, event);
1535
1536 /* we keep one module reference alive for
1537 each CPU governed by this CPU */
1538 if ((event != CPUFREQ_GOV_START) || ret)
1539 module_put(policy->governor->owner);
1540 if ((event == CPUFREQ_GOV_STOP) && !ret)
1541 module_put(policy->governor->owner);
1542
1543 return ret;
1544 }
1545
1546
1547 int cpufreq_register_governor(struct cpufreq_governor *governor)
1548 {
1549 int err;
1550
1551 if (!governor)
1552 return -EINVAL;
1553
1554 mutex_lock(&cpufreq_governor_mutex);
1555
1556 err = -EBUSY;
1557 if (__find_governor(governor->name) == NULL) {
1558 err = 0;
1559 list_add(&governor->governor_list, &cpufreq_governor_list);
1560 }
1561
1562 mutex_unlock(&cpufreq_governor_mutex);
1563 return err;
1564 }
1565 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1566
1567
1568 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1569 {
1570 if (!governor)
1571 return;
1572
1573 mutex_lock(&cpufreq_governor_mutex);
1574 list_del(&governor->governor_list);
1575 mutex_unlock(&cpufreq_governor_mutex);
1576 return;
1577 }
1578 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1579
1580
1581
1582 /*********************************************************************
1583 * POLICY INTERFACE *
1584 *********************************************************************/
1585
1586 /**
1587 * cpufreq_get_policy - get the current cpufreq_policy
1588 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1589 *
1590 * Reads the current cpufreq policy.
1591 */
1592 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1593 {
1594 struct cpufreq_policy *cpu_policy;
1595 if (!policy)
1596 return -EINVAL;
1597
1598 cpu_policy = cpufreq_cpu_get(cpu);
1599 if (!cpu_policy)
1600 return -EINVAL;
1601
1602 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1603
1604 cpufreq_cpu_put(cpu_policy);
1605 return 0;
1606 }
1607 EXPORT_SYMBOL(cpufreq_get_policy);
1608
1609
1610 /*
1611 * data : current policy.
1612 * policy : policy to be set.
1613 */
1614 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1615 struct cpufreq_policy *policy)
1616 {
1617 int ret = 0;
1618
1619 cpufreq_debug_disable_ratelimit();
1620 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1621 policy->min, policy->max);
1622
1623 memcpy(&policy->cpuinfo, &data->cpuinfo,
1624 sizeof(struct cpufreq_cpuinfo));
1625
1626 if (policy->min > data->max || policy->max < data->min) {
1627 ret = -EINVAL;
1628 goto error_out;
1629 }
1630
1631 /* verify the cpu speed can be set within this limit */
1632 ret = cpufreq_driver->verify(policy);
1633 if (ret)
1634 goto error_out;
1635
1636 /* adjust if necessary - all reasons */
1637 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1638 CPUFREQ_ADJUST, policy);
1639
1640 /* adjust if necessary - hardware incompatibility*/
1641 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1642 CPUFREQ_INCOMPATIBLE, policy);
1643
1644 /* verify the cpu speed can be set within this limit,
1645 which might be different to the first one */
1646 ret = cpufreq_driver->verify(policy);
1647 if (ret)
1648 goto error_out;
1649
1650 /* notification of the new policy */
1651 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1652 CPUFREQ_NOTIFY, policy);
1653
1654 data->min = policy->min;
1655 data->max = policy->max;
1656
1657 dprintk("new min and max freqs are %u - %u kHz\n",
1658 data->min, data->max);
1659
1660 if (cpufreq_driver->setpolicy) {
1661 data->policy = policy->policy;
1662 dprintk("setting range\n");
1663 ret = cpufreq_driver->setpolicy(policy);
1664 } else {
1665 if (policy->governor != data->governor) {
1666 /* save old, working values */
1667 struct cpufreq_governor *old_gov = data->governor;
1668
1669 dprintk("governor switch\n");
1670
1671 /* end old governor */
1672 if (data->governor)
1673 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1674
1675 /* start new governor */
1676 data->governor = policy->governor;
1677 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1678 /* new governor failed, so re-start old one */
1679 dprintk("starting governor %s failed\n",
1680 data->governor->name);
1681 if (old_gov) {
1682 data->governor = old_gov;
1683 __cpufreq_governor(data,
1684 CPUFREQ_GOV_START);
1685 }
1686 ret = -EINVAL;
1687 goto error_out;
1688 }
1689 /* might be a policy change, too, so fall through */
1690 }
1691 dprintk("governor: change or update limits\n");
1692 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1693 }
1694
1695 error_out:
1696 cpufreq_debug_enable_ratelimit();
1697 return ret;
1698 }
1699
1700 /**
1701 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1702 * @cpu: CPU which shall be re-evaluated
1703 *
1704 * Usefull for policy notifiers which have different necessities
1705 * at different times.
1706 */
1707 int cpufreq_update_policy(unsigned int cpu)
1708 {
1709 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1710 struct cpufreq_policy policy;
1711 int ret = 0;
1712
1713 if (!data)
1714 return -ENODEV;
1715
1716 if (unlikely(lock_policy_rwsem_write(cpu)))
1717 return -EINVAL;
1718
1719 dprintk("updating policy for CPU %u\n", cpu);
1720 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1721 policy.min = data->user_policy.min;
1722 policy.max = data->user_policy.max;
1723 policy.policy = data->user_policy.policy;
1724 policy.governor = data->user_policy.governor;
1725
1726 /* BIOS might change freq behind our back
1727 -> ask driver for current freq and notify governors about a change */
1728 if (cpufreq_driver->get) {
1729 policy.cur = cpufreq_driver->get(cpu);
1730 if (!data->cur) {
1731 dprintk("Driver did not initialize current freq");
1732 data->cur = policy.cur;
1733 } else {
1734 if (data->cur != policy.cur)
1735 cpufreq_out_of_sync(cpu, data->cur,
1736 policy.cur);
1737 }
1738 }
1739
1740 ret = __cpufreq_set_policy(data, &policy);
1741
1742 unlock_policy_rwsem_write(cpu);
1743
1744 cpufreq_cpu_put(data);
1745 return ret;
1746 }
1747 EXPORT_SYMBOL(cpufreq_update_policy);
1748
1749 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1750 unsigned long action, void *hcpu)
1751 {
1752 unsigned int cpu = (unsigned long)hcpu;
1753 struct sys_device *sys_dev;
1754
1755 sys_dev = get_cpu_sysdev(cpu);
1756 if (sys_dev) {
1757 switch (action) {
1758 case CPU_ONLINE:
1759 case CPU_ONLINE_FROZEN:
1760 cpufreq_add_dev(sys_dev);
1761 break;
1762 case CPU_DOWN_PREPARE:
1763 case CPU_DOWN_PREPARE_FROZEN:
1764 if (unlikely(lock_policy_rwsem_write(cpu)))
1765 BUG();
1766
1767 __cpufreq_remove_dev(sys_dev);
1768 break;
1769 case CPU_DOWN_FAILED:
1770 case CPU_DOWN_FAILED_FROZEN:
1771 cpufreq_add_dev(sys_dev);
1772 break;
1773 }
1774 }
1775 return NOTIFY_OK;
1776 }
1777
1778 static struct notifier_block __cpuinitdata cpufreq_cpu_notifier =
1779 {
1780 .notifier_call = cpufreq_cpu_callback,
1781 };
1782
1783 /*********************************************************************
1784 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1785 *********************************************************************/
1786
1787 /**
1788 * cpufreq_register_driver - register a CPU Frequency driver
1789 * @driver_data: A struct cpufreq_driver containing the values#
1790 * submitted by the CPU Frequency driver.
1791 *
1792 * Registers a CPU Frequency driver to this core code. This code
1793 * returns zero on success, -EBUSY when another driver got here first
1794 * (and isn't unregistered in the meantime).
1795 *
1796 */
1797 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1798 {
1799 unsigned long flags;
1800 int ret;
1801
1802 if (!driver_data || !driver_data->verify || !driver_data->init ||
1803 ((!driver_data->setpolicy) && (!driver_data->target)))
1804 return -EINVAL;
1805
1806 dprintk("trying to register driver %s\n", driver_data->name);
1807
1808 if (driver_data->setpolicy)
1809 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1810
1811 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1812 if (cpufreq_driver) {
1813 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1814 return -EBUSY;
1815 }
1816 cpufreq_driver = driver_data;
1817 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1818
1819 ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1820
1821 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1822 int i;
1823 ret = -ENODEV;
1824
1825 /* check for at least one working CPU */
1826 for (i=0; i<NR_CPUS; i++)
1827 if (cpufreq_cpu_data[i])
1828 ret = 0;
1829
1830 /* if all ->init() calls failed, unregister */
1831 if (ret) {
1832 dprintk("no CPU initialized for driver %s\n",
1833 driver_data->name);
1834 sysdev_driver_unregister(&cpu_sysdev_class,
1835 &cpufreq_sysdev_driver);
1836
1837 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1838 cpufreq_driver = NULL;
1839 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1840 }
1841 }
1842
1843 if (!ret) {
1844 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1845 dprintk("driver %s up and running\n", driver_data->name);
1846 cpufreq_debug_enable_ratelimit();
1847 }
1848
1849 return (ret);
1850 }
1851 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1852
1853
1854 /**
1855 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1856 *
1857 * Unregister the current CPUFreq driver. Only call this if you have
1858 * the right to do so, i.e. if you have succeeded in initialising before!
1859 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1860 * currently not initialised.
1861 */
1862 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1863 {
1864 unsigned long flags;
1865
1866 cpufreq_debug_disable_ratelimit();
1867
1868 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1869 cpufreq_debug_enable_ratelimit();
1870 return -EINVAL;
1871 }
1872
1873 dprintk("unregistering driver %s\n", driver->name);
1874
1875 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1876 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1877
1878 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1879 cpufreq_driver = NULL;
1880 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1881
1882 return 0;
1883 }
1884 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1885
1886 static int __init cpufreq_core_init(void)
1887 {
1888 int cpu;
1889
1890 for_each_possible_cpu(cpu) {
1891 per_cpu(policy_cpu, cpu) = -1;
1892 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1893 }
1894 return 0;
1895 }
1896
1897 core_initcall(cpufreq_core_init);
This page took 0.069878 seconds and 5 git commands to generate.