Merge tag 'drm/tegra/for-3.16-rc1' of git://anongit.freedesktop.org/tegra/linux into...
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 /**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47
48 /* Flag to suspend/resume CPUFreq governors */
49 static bool cpufreq_suspended;
50
51 static inline bool has_target(void)
52 {
53 return cpufreq_driver->target_index || cpufreq_driver->target;
54 }
55
56 /*
57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58 * sections
59 */
60 static DECLARE_RWSEM(cpufreq_rwsem);
61
62 /* internal prototypes */
63 static int __cpufreq_governor(struct cpufreq_policy *policy,
64 unsigned int event);
65 static unsigned int __cpufreq_get(unsigned int cpu);
66 static void handle_update(struct work_struct *work);
67
68 /**
69 * Two notifier lists: the "policy" list is involved in the
70 * validation process for a new CPU frequency policy; the
71 * "transition" list for kernel code that needs to handle
72 * changes to devices when the CPU clock speed changes.
73 * The mutex locks both lists.
74 */
75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76 static struct srcu_notifier_head cpufreq_transition_notifier_list;
77
78 static bool init_cpufreq_transition_notifier_list_called;
79 static int __init init_cpufreq_transition_notifier_list(void)
80 {
81 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 init_cpufreq_transition_notifier_list_called = true;
83 return 0;
84 }
85 pure_initcall(init_cpufreq_transition_notifier_list);
86
87 static int off __read_mostly;
88 static int cpufreq_disabled(void)
89 {
90 return off;
91 }
92 void disable_cpufreq(void)
93 {
94 off = 1;
95 }
96 static LIST_HEAD(cpufreq_governor_list);
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = cputime_to_usecs(cur_wall_time);
132
133 return cputime_to_usecs(idle_time);
134 }
135
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149 /*
150 * This is a generic cpufreq init() routine which can be used by cpufreq
151 * drivers of SMP systems. It will do following:
152 * - validate & show freq table passed
153 * - set policies transition latency
154 * - policy->cpus with all possible CPUs
155 */
156 int cpufreq_generic_init(struct cpufreq_policy *policy,
157 struct cpufreq_frequency_table *table,
158 unsigned int transition_latency)
159 {
160 int ret;
161
162 ret = cpufreq_table_validate_and_show(policy, table);
163 if (ret) {
164 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 return ret;
166 }
167
168 policy->cpuinfo.transition_latency = transition_latency;
169
170 /*
171 * The driver only supports the SMP configuartion where all processors
172 * share the clock and voltage and clock.
173 */
174 cpumask_setall(policy->cpus);
175
176 return 0;
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180 unsigned int cpufreq_generic_get(unsigned int cpu)
181 {
182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184 if (!policy || IS_ERR(policy->clk)) {
185 pr_err("%s: No %s associated to cpu: %d\n",
186 __func__, policy ? "clk" : "policy", cpu);
187 return 0;
188 }
189
190 return clk_get_rate(policy->clk) / 1000;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193
194 /* Only for cpufreq core internal use */
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 return per_cpu(cpufreq_cpu_data, cpu);
198 }
199
200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201 {
202 struct cpufreq_policy *policy = NULL;
203 unsigned long flags;
204
205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 return NULL;
207
208 if (!down_read_trylock(&cpufreq_rwsem))
209 return NULL;
210
211 /* get the cpufreq driver */
212 read_lock_irqsave(&cpufreq_driver_lock, flags);
213
214 if (cpufreq_driver) {
215 /* get the CPU */
216 policy = per_cpu(cpufreq_cpu_data, cpu);
217 if (policy)
218 kobject_get(&policy->kobj);
219 }
220
221 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222
223 if (!policy)
224 up_read(&cpufreq_rwsem);
225
226 return policy;
227 }
228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229
230 void cpufreq_cpu_put(struct cpufreq_policy *policy)
231 {
232 if (cpufreq_disabled())
233 return;
234
235 kobject_put(&policy->kobj);
236 up_read(&cpufreq_rwsem);
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239
240 /*********************************************************************
241 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
242 *********************************************************************/
243
244 /**
245 * adjust_jiffies - adjust the system "loops_per_jiffy"
246 *
247 * This function alters the system "loops_per_jiffy" for the clock
248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
249 * systems as each CPU might be scaled differently. So, use the arch
250 * per-CPU loops_per_jiffy value wherever possible.
251 */
252 #ifndef CONFIG_SMP
253 static unsigned long l_p_j_ref;
254 static unsigned int l_p_j_ref_freq;
255
256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257 {
258 if (ci->flags & CPUFREQ_CONST_LOOPS)
259 return;
260
261 if (!l_p_j_ref_freq) {
262 l_p_j_ref = loops_per_jiffy;
263 l_p_j_ref_freq = ci->old;
264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 l_p_j_ref, l_p_j_ref_freq);
266 }
267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 ci->new);
270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 loops_per_jiffy, ci->new);
272 }
273 }
274 #else
275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276 {
277 return;
278 }
279 #endif
280
281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 struct cpufreq_freqs *freqs, unsigned int state)
283 {
284 BUG_ON(irqs_disabled());
285
286 if (cpufreq_disabled())
287 return;
288
289 freqs->flags = cpufreq_driver->flags;
290 pr_debug("notification %u of frequency transition to %u kHz\n",
291 state, freqs->new);
292
293 switch (state) {
294
295 case CPUFREQ_PRECHANGE:
296 /* detect if the driver reported a value as "old frequency"
297 * which is not equal to what the cpufreq core thinks is
298 * "old frequency".
299 */
300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 if ((policy) && (policy->cpu == freqs->cpu) &&
302 (policy->cur) && (policy->cur != freqs->old)) {
303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 freqs->old, policy->cur);
305 freqs->old = policy->cur;
306 }
307 }
308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 CPUFREQ_PRECHANGE, freqs);
310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 break;
312
313 case CPUFREQ_POSTCHANGE:
314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 pr_debug("FREQ: %lu - CPU: %lu\n",
316 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 trace_cpu_frequency(freqs->new, freqs->cpu);
318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 CPUFREQ_POSTCHANGE, freqs);
320 if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 policy->cur = freqs->new;
322 break;
323 }
324 }
325
326 /**
327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328 * on frequency transition.
329 *
330 * This function calls the transition notifiers and the "adjust_jiffies"
331 * function. It is called twice on all CPU frequency changes that have
332 * external effects.
333 */
334 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 struct cpufreq_freqs *freqs, unsigned int state)
336 {
337 for_each_cpu(freqs->cpu, policy->cpus)
338 __cpufreq_notify_transition(policy, freqs, state);
339 }
340
341 /* Do post notifications when there are chances that transition has failed */
342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs, int transition_failed)
344 {
345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 if (!transition_failed)
347 return;
348
349 swap(freqs->old, freqs->new);
350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352 }
353
354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 struct cpufreq_freqs *freqs)
356 {
357 wait:
358 wait_event(policy->transition_wait, !policy->transition_ongoing);
359
360 spin_lock(&policy->transition_lock);
361
362 if (unlikely(policy->transition_ongoing)) {
363 spin_unlock(&policy->transition_lock);
364 goto wait;
365 }
366
367 policy->transition_ongoing = true;
368
369 spin_unlock(&policy->transition_lock);
370
371 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
372 }
373 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
374
375 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
376 struct cpufreq_freqs *freqs, int transition_failed)
377 {
378 if (unlikely(WARN_ON(!policy->transition_ongoing)))
379 return;
380
381 cpufreq_notify_post_transition(policy, freqs, transition_failed);
382
383 policy->transition_ongoing = false;
384
385 wake_up(&policy->transition_wait);
386 }
387 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
388
389
390 /*********************************************************************
391 * SYSFS INTERFACE *
392 *********************************************************************/
393 static ssize_t show_boost(struct kobject *kobj,
394 struct attribute *attr, char *buf)
395 {
396 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
397 }
398
399 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
400 const char *buf, size_t count)
401 {
402 int ret, enable;
403
404 ret = sscanf(buf, "%d", &enable);
405 if (ret != 1 || enable < 0 || enable > 1)
406 return -EINVAL;
407
408 if (cpufreq_boost_trigger_state(enable)) {
409 pr_err("%s: Cannot %s BOOST!\n",
410 __func__, enable ? "enable" : "disable");
411 return -EINVAL;
412 }
413
414 pr_debug("%s: cpufreq BOOST %s\n",
415 __func__, enable ? "enabled" : "disabled");
416
417 return count;
418 }
419 define_one_global_rw(boost);
420
421 static struct cpufreq_governor *__find_governor(const char *str_governor)
422 {
423 struct cpufreq_governor *t;
424
425 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
426 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
427 return t;
428
429 return NULL;
430 }
431
432 /**
433 * cpufreq_parse_governor - parse a governor string
434 */
435 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
436 struct cpufreq_governor **governor)
437 {
438 int err = -EINVAL;
439
440 if (!cpufreq_driver)
441 goto out;
442
443 if (cpufreq_driver->setpolicy) {
444 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
445 *policy = CPUFREQ_POLICY_PERFORMANCE;
446 err = 0;
447 } else if (!strnicmp(str_governor, "powersave",
448 CPUFREQ_NAME_LEN)) {
449 *policy = CPUFREQ_POLICY_POWERSAVE;
450 err = 0;
451 }
452 } else if (has_target()) {
453 struct cpufreq_governor *t;
454
455 mutex_lock(&cpufreq_governor_mutex);
456
457 t = __find_governor(str_governor);
458
459 if (t == NULL) {
460 int ret;
461
462 mutex_unlock(&cpufreq_governor_mutex);
463 ret = request_module("cpufreq_%s", str_governor);
464 mutex_lock(&cpufreq_governor_mutex);
465
466 if (ret == 0)
467 t = __find_governor(str_governor);
468 }
469
470 if (t != NULL) {
471 *governor = t;
472 err = 0;
473 }
474
475 mutex_unlock(&cpufreq_governor_mutex);
476 }
477 out:
478 return err;
479 }
480
481 /**
482 * cpufreq_per_cpu_attr_read() / show_##file_name() -
483 * print out cpufreq information
484 *
485 * Write out information from cpufreq_driver->policy[cpu]; object must be
486 * "unsigned int".
487 */
488
489 #define show_one(file_name, object) \
490 static ssize_t show_##file_name \
491 (struct cpufreq_policy *policy, char *buf) \
492 { \
493 return sprintf(buf, "%u\n", policy->object); \
494 }
495
496 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
497 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
498 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
499 show_one(scaling_min_freq, min);
500 show_one(scaling_max_freq, max);
501 show_one(scaling_cur_freq, cur);
502
503 static int cpufreq_set_policy(struct cpufreq_policy *policy,
504 struct cpufreq_policy *new_policy);
505
506 /**
507 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
508 */
509 #define store_one(file_name, object) \
510 static ssize_t store_##file_name \
511 (struct cpufreq_policy *policy, const char *buf, size_t count) \
512 { \
513 int ret; \
514 struct cpufreq_policy new_policy; \
515 \
516 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
517 if (ret) \
518 return -EINVAL; \
519 \
520 ret = sscanf(buf, "%u", &new_policy.object); \
521 if (ret != 1) \
522 return -EINVAL; \
523 \
524 ret = cpufreq_set_policy(policy, &new_policy); \
525 policy->user_policy.object = policy->object; \
526 \
527 return ret ? ret : count; \
528 }
529
530 store_one(scaling_min_freq, min);
531 store_one(scaling_max_freq, max);
532
533 /**
534 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
535 */
536 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
537 char *buf)
538 {
539 unsigned int cur_freq = __cpufreq_get(policy->cpu);
540 if (!cur_freq)
541 return sprintf(buf, "<unknown>");
542 return sprintf(buf, "%u\n", cur_freq);
543 }
544
545 /**
546 * show_scaling_governor - show the current policy for the specified CPU
547 */
548 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
549 {
550 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
551 return sprintf(buf, "powersave\n");
552 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
553 return sprintf(buf, "performance\n");
554 else if (policy->governor)
555 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
556 policy->governor->name);
557 return -EINVAL;
558 }
559
560 /**
561 * store_scaling_governor - store policy for the specified CPU
562 */
563 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
564 const char *buf, size_t count)
565 {
566 int ret;
567 char str_governor[16];
568 struct cpufreq_policy new_policy;
569
570 ret = cpufreq_get_policy(&new_policy, policy->cpu);
571 if (ret)
572 return ret;
573
574 ret = sscanf(buf, "%15s", str_governor);
575 if (ret != 1)
576 return -EINVAL;
577
578 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
579 &new_policy.governor))
580 return -EINVAL;
581
582 ret = cpufreq_set_policy(policy, &new_policy);
583
584 policy->user_policy.policy = policy->policy;
585 policy->user_policy.governor = policy->governor;
586
587 if (ret)
588 return ret;
589 else
590 return count;
591 }
592
593 /**
594 * show_scaling_driver - show the cpufreq driver currently loaded
595 */
596 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
597 {
598 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
599 }
600
601 /**
602 * show_scaling_available_governors - show the available CPUfreq governors
603 */
604 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
605 char *buf)
606 {
607 ssize_t i = 0;
608 struct cpufreq_governor *t;
609
610 if (!has_target()) {
611 i += sprintf(buf, "performance powersave");
612 goto out;
613 }
614
615 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
616 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
617 - (CPUFREQ_NAME_LEN + 2)))
618 goto out;
619 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
620 }
621 out:
622 i += sprintf(&buf[i], "\n");
623 return i;
624 }
625
626 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
627 {
628 ssize_t i = 0;
629 unsigned int cpu;
630
631 for_each_cpu(cpu, mask) {
632 if (i)
633 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
634 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
635 if (i >= (PAGE_SIZE - 5))
636 break;
637 }
638 i += sprintf(&buf[i], "\n");
639 return i;
640 }
641 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
642
643 /**
644 * show_related_cpus - show the CPUs affected by each transition even if
645 * hw coordination is in use
646 */
647 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
648 {
649 return cpufreq_show_cpus(policy->related_cpus, buf);
650 }
651
652 /**
653 * show_affected_cpus - show the CPUs affected by each transition
654 */
655 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
656 {
657 return cpufreq_show_cpus(policy->cpus, buf);
658 }
659
660 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
661 const char *buf, size_t count)
662 {
663 unsigned int freq = 0;
664 unsigned int ret;
665
666 if (!policy->governor || !policy->governor->store_setspeed)
667 return -EINVAL;
668
669 ret = sscanf(buf, "%u", &freq);
670 if (ret != 1)
671 return -EINVAL;
672
673 policy->governor->store_setspeed(policy, freq);
674
675 return count;
676 }
677
678 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
679 {
680 if (!policy->governor || !policy->governor->show_setspeed)
681 return sprintf(buf, "<unsupported>\n");
682
683 return policy->governor->show_setspeed(policy, buf);
684 }
685
686 /**
687 * show_bios_limit - show the current cpufreq HW/BIOS limitation
688 */
689 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
690 {
691 unsigned int limit;
692 int ret;
693 if (cpufreq_driver->bios_limit) {
694 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
695 if (!ret)
696 return sprintf(buf, "%u\n", limit);
697 }
698 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
699 }
700
701 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
702 cpufreq_freq_attr_ro(cpuinfo_min_freq);
703 cpufreq_freq_attr_ro(cpuinfo_max_freq);
704 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
705 cpufreq_freq_attr_ro(scaling_available_governors);
706 cpufreq_freq_attr_ro(scaling_driver);
707 cpufreq_freq_attr_ro(scaling_cur_freq);
708 cpufreq_freq_attr_ro(bios_limit);
709 cpufreq_freq_attr_ro(related_cpus);
710 cpufreq_freq_attr_ro(affected_cpus);
711 cpufreq_freq_attr_rw(scaling_min_freq);
712 cpufreq_freq_attr_rw(scaling_max_freq);
713 cpufreq_freq_attr_rw(scaling_governor);
714 cpufreq_freq_attr_rw(scaling_setspeed);
715
716 static struct attribute *default_attrs[] = {
717 &cpuinfo_min_freq.attr,
718 &cpuinfo_max_freq.attr,
719 &cpuinfo_transition_latency.attr,
720 &scaling_min_freq.attr,
721 &scaling_max_freq.attr,
722 &affected_cpus.attr,
723 &related_cpus.attr,
724 &scaling_governor.attr,
725 &scaling_driver.attr,
726 &scaling_available_governors.attr,
727 &scaling_setspeed.attr,
728 NULL
729 };
730
731 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
732 #define to_attr(a) container_of(a, struct freq_attr, attr)
733
734 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
735 {
736 struct cpufreq_policy *policy = to_policy(kobj);
737 struct freq_attr *fattr = to_attr(attr);
738 ssize_t ret;
739
740 if (!down_read_trylock(&cpufreq_rwsem))
741 return -EINVAL;
742
743 down_read(&policy->rwsem);
744
745 if (fattr->show)
746 ret = fattr->show(policy, buf);
747 else
748 ret = -EIO;
749
750 up_read(&policy->rwsem);
751 up_read(&cpufreq_rwsem);
752
753 return ret;
754 }
755
756 static ssize_t store(struct kobject *kobj, struct attribute *attr,
757 const char *buf, size_t count)
758 {
759 struct cpufreq_policy *policy = to_policy(kobj);
760 struct freq_attr *fattr = to_attr(attr);
761 ssize_t ret = -EINVAL;
762
763 get_online_cpus();
764
765 if (!cpu_online(policy->cpu))
766 goto unlock;
767
768 if (!down_read_trylock(&cpufreq_rwsem))
769 goto unlock;
770
771 down_write(&policy->rwsem);
772
773 if (fattr->store)
774 ret = fattr->store(policy, buf, count);
775 else
776 ret = -EIO;
777
778 up_write(&policy->rwsem);
779
780 up_read(&cpufreq_rwsem);
781 unlock:
782 put_online_cpus();
783
784 return ret;
785 }
786
787 static void cpufreq_sysfs_release(struct kobject *kobj)
788 {
789 struct cpufreq_policy *policy = to_policy(kobj);
790 pr_debug("last reference is dropped\n");
791 complete(&policy->kobj_unregister);
792 }
793
794 static const struct sysfs_ops sysfs_ops = {
795 .show = show,
796 .store = store,
797 };
798
799 static struct kobj_type ktype_cpufreq = {
800 .sysfs_ops = &sysfs_ops,
801 .default_attrs = default_attrs,
802 .release = cpufreq_sysfs_release,
803 };
804
805 struct kobject *cpufreq_global_kobject;
806 EXPORT_SYMBOL(cpufreq_global_kobject);
807
808 static int cpufreq_global_kobject_usage;
809
810 int cpufreq_get_global_kobject(void)
811 {
812 if (!cpufreq_global_kobject_usage++)
813 return kobject_add(cpufreq_global_kobject,
814 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
815
816 return 0;
817 }
818 EXPORT_SYMBOL(cpufreq_get_global_kobject);
819
820 void cpufreq_put_global_kobject(void)
821 {
822 if (!--cpufreq_global_kobject_usage)
823 kobject_del(cpufreq_global_kobject);
824 }
825 EXPORT_SYMBOL(cpufreq_put_global_kobject);
826
827 int cpufreq_sysfs_create_file(const struct attribute *attr)
828 {
829 int ret = cpufreq_get_global_kobject();
830
831 if (!ret) {
832 ret = sysfs_create_file(cpufreq_global_kobject, attr);
833 if (ret)
834 cpufreq_put_global_kobject();
835 }
836
837 return ret;
838 }
839 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
840
841 void cpufreq_sysfs_remove_file(const struct attribute *attr)
842 {
843 sysfs_remove_file(cpufreq_global_kobject, attr);
844 cpufreq_put_global_kobject();
845 }
846 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
847
848 /* symlink affected CPUs */
849 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
850 {
851 unsigned int j;
852 int ret = 0;
853
854 for_each_cpu(j, policy->cpus) {
855 struct device *cpu_dev;
856
857 if (j == policy->cpu)
858 continue;
859
860 pr_debug("Adding link for CPU: %u\n", j);
861 cpu_dev = get_cpu_device(j);
862 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
863 "cpufreq");
864 if (ret)
865 break;
866 }
867 return ret;
868 }
869
870 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
871 struct device *dev)
872 {
873 struct freq_attr **drv_attr;
874 int ret = 0;
875
876 /* prepare interface data */
877 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
878 &dev->kobj, "cpufreq");
879 if (ret)
880 return ret;
881
882 /* set up files for this cpu device */
883 drv_attr = cpufreq_driver->attr;
884 while ((drv_attr) && (*drv_attr)) {
885 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
886 if (ret)
887 goto err_out_kobj_put;
888 drv_attr++;
889 }
890 if (cpufreq_driver->get) {
891 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
892 if (ret)
893 goto err_out_kobj_put;
894 }
895 if (has_target()) {
896 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
897 if (ret)
898 goto err_out_kobj_put;
899 }
900 if (cpufreq_driver->bios_limit) {
901 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
902 if (ret)
903 goto err_out_kobj_put;
904 }
905
906 ret = cpufreq_add_dev_symlink(policy);
907 if (ret)
908 goto err_out_kobj_put;
909
910 return ret;
911
912 err_out_kobj_put:
913 kobject_put(&policy->kobj);
914 wait_for_completion(&policy->kobj_unregister);
915 return ret;
916 }
917
918 static void cpufreq_init_policy(struct cpufreq_policy *policy)
919 {
920 struct cpufreq_governor *gov = NULL;
921 struct cpufreq_policy new_policy;
922 int ret = 0;
923
924 memcpy(&new_policy, policy, sizeof(*policy));
925
926 /* Update governor of new_policy to the governor used before hotplug */
927 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
928 if (gov)
929 pr_debug("Restoring governor %s for cpu %d\n",
930 policy->governor->name, policy->cpu);
931 else
932 gov = CPUFREQ_DEFAULT_GOVERNOR;
933
934 new_policy.governor = gov;
935
936 /* Use the default policy if its valid. */
937 if (cpufreq_driver->setpolicy)
938 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
939
940 /* set default policy */
941 ret = cpufreq_set_policy(policy, &new_policy);
942 if (ret) {
943 pr_debug("setting policy failed\n");
944 if (cpufreq_driver->exit)
945 cpufreq_driver->exit(policy);
946 }
947 }
948
949 #ifdef CONFIG_HOTPLUG_CPU
950 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
951 unsigned int cpu, struct device *dev)
952 {
953 int ret = 0;
954 unsigned long flags;
955
956 if (has_target()) {
957 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
958 if (ret) {
959 pr_err("%s: Failed to stop governor\n", __func__);
960 return ret;
961 }
962 }
963
964 down_write(&policy->rwsem);
965
966 write_lock_irqsave(&cpufreq_driver_lock, flags);
967
968 cpumask_set_cpu(cpu, policy->cpus);
969 per_cpu(cpufreq_cpu_data, cpu) = policy;
970 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
971
972 up_write(&policy->rwsem);
973
974 if (has_target()) {
975 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
976 if (!ret)
977 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
978
979 if (ret) {
980 pr_err("%s: Failed to start governor\n", __func__);
981 return ret;
982 }
983 }
984
985 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
986 }
987 #endif
988
989 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
990 {
991 struct cpufreq_policy *policy;
992 unsigned long flags;
993
994 read_lock_irqsave(&cpufreq_driver_lock, flags);
995
996 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
997
998 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
999
1000 policy->governor = NULL;
1001
1002 return policy;
1003 }
1004
1005 static struct cpufreq_policy *cpufreq_policy_alloc(void)
1006 {
1007 struct cpufreq_policy *policy;
1008
1009 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1010 if (!policy)
1011 return NULL;
1012
1013 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1014 goto err_free_policy;
1015
1016 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1017 goto err_free_cpumask;
1018
1019 INIT_LIST_HEAD(&policy->policy_list);
1020 init_rwsem(&policy->rwsem);
1021 spin_lock_init(&policy->transition_lock);
1022 init_waitqueue_head(&policy->transition_wait);
1023
1024 return policy;
1025
1026 err_free_cpumask:
1027 free_cpumask_var(policy->cpus);
1028 err_free_policy:
1029 kfree(policy);
1030
1031 return NULL;
1032 }
1033
1034 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1035 {
1036 struct kobject *kobj;
1037 struct completion *cmp;
1038
1039 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1040 CPUFREQ_REMOVE_POLICY, policy);
1041
1042 down_read(&policy->rwsem);
1043 kobj = &policy->kobj;
1044 cmp = &policy->kobj_unregister;
1045 up_read(&policy->rwsem);
1046 kobject_put(kobj);
1047
1048 /*
1049 * We need to make sure that the underlying kobj is
1050 * actually not referenced anymore by anybody before we
1051 * proceed with unloading.
1052 */
1053 pr_debug("waiting for dropping of refcount\n");
1054 wait_for_completion(cmp);
1055 pr_debug("wait complete\n");
1056 }
1057
1058 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1059 {
1060 free_cpumask_var(policy->related_cpus);
1061 free_cpumask_var(policy->cpus);
1062 kfree(policy);
1063 }
1064
1065 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1066 {
1067 if (WARN_ON(cpu == policy->cpu))
1068 return;
1069
1070 down_write(&policy->rwsem);
1071
1072 policy->last_cpu = policy->cpu;
1073 policy->cpu = cpu;
1074
1075 up_write(&policy->rwsem);
1076
1077 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1078 CPUFREQ_UPDATE_POLICY_CPU, policy);
1079 }
1080
1081 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1082 {
1083 unsigned int j, cpu = dev->id;
1084 int ret = -ENOMEM;
1085 struct cpufreq_policy *policy;
1086 unsigned long flags;
1087 bool recover_policy = cpufreq_suspended;
1088 #ifdef CONFIG_HOTPLUG_CPU
1089 struct cpufreq_policy *tpolicy;
1090 #endif
1091
1092 if (cpu_is_offline(cpu))
1093 return 0;
1094
1095 pr_debug("adding CPU %u\n", cpu);
1096
1097 #ifdef CONFIG_SMP
1098 /* check whether a different CPU already registered this
1099 * CPU because it is in the same boat. */
1100 policy = cpufreq_cpu_get(cpu);
1101 if (unlikely(policy)) {
1102 cpufreq_cpu_put(policy);
1103 return 0;
1104 }
1105 #endif
1106
1107 if (!down_read_trylock(&cpufreq_rwsem))
1108 return 0;
1109
1110 #ifdef CONFIG_HOTPLUG_CPU
1111 /* Check if this cpu was hot-unplugged earlier and has siblings */
1112 read_lock_irqsave(&cpufreq_driver_lock, flags);
1113 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1114 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1115 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1116 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1117 up_read(&cpufreq_rwsem);
1118 return ret;
1119 }
1120 }
1121 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1122 #endif
1123
1124 /*
1125 * Restore the saved policy when doing light-weight init and fall back
1126 * to the full init if that fails.
1127 */
1128 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1129 if (!policy) {
1130 recover_policy = false;
1131 policy = cpufreq_policy_alloc();
1132 if (!policy)
1133 goto nomem_out;
1134 }
1135
1136 /*
1137 * In the resume path, since we restore a saved policy, the assignment
1138 * to policy->cpu is like an update of the existing policy, rather than
1139 * the creation of a brand new one. So we need to perform this update
1140 * by invoking update_policy_cpu().
1141 */
1142 if (recover_policy && cpu != policy->cpu)
1143 update_policy_cpu(policy, cpu);
1144 else
1145 policy->cpu = cpu;
1146
1147 cpumask_copy(policy->cpus, cpumask_of(cpu));
1148
1149 init_completion(&policy->kobj_unregister);
1150 INIT_WORK(&policy->update, handle_update);
1151
1152 /* call driver. From then on the cpufreq must be able
1153 * to accept all calls to ->verify and ->setpolicy for this CPU
1154 */
1155 ret = cpufreq_driver->init(policy);
1156 if (ret) {
1157 pr_debug("initialization failed\n");
1158 goto err_set_policy_cpu;
1159 }
1160
1161 /* related cpus should atleast have policy->cpus */
1162 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1163
1164 /*
1165 * affected cpus must always be the one, which are online. We aren't
1166 * managing offline cpus here.
1167 */
1168 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1169
1170 if (!recover_policy) {
1171 policy->user_policy.min = policy->min;
1172 policy->user_policy.max = policy->max;
1173 }
1174
1175 down_write(&policy->rwsem);
1176 write_lock_irqsave(&cpufreq_driver_lock, flags);
1177 for_each_cpu(j, policy->cpus)
1178 per_cpu(cpufreq_cpu_data, j) = policy;
1179 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1180
1181 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1182 policy->cur = cpufreq_driver->get(policy->cpu);
1183 if (!policy->cur) {
1184 pr_err("%s: ->get() failed\n", __func__);
1185 goto err_get_freq;
1186 }
1187 }
1188
1189 /*
1190 * Sometimes boot loaders set CPU frequency to a value outside of
1191 * frequency table present with cpufreq core. In such cases CPU might be
1192 * unstable if it has to run on that frequency for long duration of time
1193 * and so its better to set it to a frequency which is specified in
1194 * freq-table. This also makes cpufreq stats inconsistent as
1195 * cpufreq-stats would fail to register because current frequency of CPU
1196 * isn't found in freq-table.
1197 *
1198 * Because we don't want this change to effect boot process badly, we go
1199 * for the next freq which is >= policy->cur ('cur' must be set by now,
1200 * otherwise we will end up setting freq to lowest of the table as 'cur'
1201 * is initialized to zero).
1202 *
1203 * We are passing target-freq as "policy->cur - 1" otherwise
1204 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1205 * equal to target-freq.
1206 */
1207 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1208 && has_target()) {
1209 /* Are we running at unknown frequency ? */
1210 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1211 if (ret == -EINVAL) {
1212 /* Warn user and fix it */
1213 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1214 __func__, policy->cpu, policy->cur);
1215 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1216 CPUFREQ_RELATION_L);
1217
1218 /*
1219 * Reaching here after boot in a few seconds may not
1220 * mean that system will remain stable at "unknown"
1221 * frequency for longer duration. Hence, a BUG_ON().
1222 */
1223 BUG_ON(ret);
1224 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1225 __func__, policy->cpu, policy->cur);
1226 }
1227 }
1228
1229 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1230 CPUFREQ_START, policy);
1231
1232 if (!recover_policy) {
1233 ret = cpufreq_add_dev_interface(policy, dev);
1234 if (ret)
1235 goto err_out_unregister;
1236 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1237 CPUFREQ_CREATE_POLICY, policy);
1238 }
1239
1240 write_lock_irqsave(&cpufreq_driver_lock, flags);
1241 list_add(&policy->policy_list, &cpufreq_policy_list);
1242 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1243
1244 cpufreq_init_policy(policy);
1245
1246 if (!recover_policy) {
1247 policy->user_policy.policy = policy->policy;
1248 policy->user_policy.governor = policy->governor;
1249 }
1250 up_write(&policy->rwsem);
1251
1252 kobject_uevent(&policy->kobj, KOBJ_ADD);
1253 up_read(&cpufreq_rwsem);
1254
1255 pr_debug("initialization complete\n");
1256
1257 return 0;
1258
1259 err_out_unregister:
1260 err_get_freq:
1261 write_lock_irqsave(&cpufreq_driver_lock, flags);
1262 for_each_cpu(j, policy->cpus)
1263 per_cpu(cpufreq_cpu_data, j) = NULL;
1264 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1265
1266 if (cpufreq_driver->exit)
1267 cpufreq_driver->exit(policy);
1268 err_set_policy_cpu:
1269 if (recover_policy) {
1270 /* Do not leave stale fallback data behind. */
1271 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1272 cpufreq_policy_put_kobj(policy);
1273 }
1274 cpufreq_policy_free(policy);
1275
1276 nomem_out:
1277 up_read(&cpufreq_rwsem);
1278
1279 return ret;
1280 }
1281
1282 /**
1283 * cpufreq_add_dev - add a CPU device
1284 *
1285 * Adds the cpufreq interface for a CPU device.
1286 *
1287 * The Oracle says: try running cpufreq registration/unregistration concurrently
1288 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1289 * mess up, but more thorough testing is needed. - Mathieu
1290 */
1291 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1292 {
1293 return __cpufreq_add_dev(dev, sif);
1294 }
1295
1296 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1297 unsigned int old_cpu)
1298 {
1299 struct device *cpu_dev;
1300 int ret;
1301
1302 /* first sibling now owns the new sysfs dir */
1303 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1304
1305 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1306 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1307 if (ret) {
1308 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1309
1310 down_write(&policy->rwsem);
1311 cpumask_set_cpu(old_cpu, policy->cpus);
1312 up_write(&policy->rwsem);
1313
1314 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1315 "cpufreq");
1316
1317 return -EINVAL;
1318 }
1319
1320 return cpu_dev->id;
1321 }
1322
1323 static int __cpufreq_remove_dev_prepare(struct device *dev,
1324 struct subsys_interface *sif)
1325 {
1326 unsigned int cpu = dev->id, cpus;
1327 int new_cpu, ret;
1328 unsigned long flags;
1329 struct cpufreq_policy *policy;
1330
1331 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1332
1333 write_lock_irqsave(&cpufreq_driver_lock, flags);
1334
1335 policy = per_cpu(cpufreq_cpu_data, cpu);
1336
1337 /* Save the policy somewhere when doing a light-weight tear-down */
1338 if (cpufreq_suspended)
1339 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1340
1341 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1342
1343 if (!policy) {
1344 pr_debug("%s: No cpu_data found\n", __func__);
1345 return -EINVAL;
1346 }
1347
1348 if (has_target()) {
1349 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1350 if (ret) {
1351 pr_err("%s: Failed to stop governor\n", __func__);
1352 return ret;
1353 }
1354 }
1355
1356 if (!cpufreq_driver->setpolicy)
1357 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1358 policy->governor->name, CPUFREQ_NAME_LEN);
1359
1360 down_read(&policy->rwsem);
1361 cpus = cpumask_weight(policy->cpus);
1362 up_read(&policy->rwsem);
1363
1364 if (cpu != policy->cpu) {
1365 sysfs_remove_link(&dev->kobj, "cpufreq");
1366 } else if (cpus > 1) {
1367 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1368 if (new_cpu >= 0) {
1369 update_policy_cpu(policy, new_cpu);
1370
1371 if (!cpufreq_suspended)
1372 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1373 __func__, new_cpu, cpu);
1374 }
1375 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1376 cpufreq_driver->stop_cpu(policy);
1377 }
1378
1379 return 0;
1380 }
1381
1382 static int __cpufreq_remove_dev_finish(struct device *dev,
1383 struct subsys_interface *sif)
1384 {
1385 unsigned int cpu = dev->id, cpus;
1386 int ret;
1387 unsigned long flags;
1388 struct cpufreq_policy *policy;
1389
1390 read_lock_irqsave(&cpufreq_driver_lock, flags);
1391 policy = per_cpu(cpufreq_cpu_data, cpu);
1392 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1393
1394 if (!policy) {
1395 pr_debug("%s: No cpu_data found\n", __func__);
1396 return -EINVAL;
1397 }
1398
1399 down_write(&policy->rwsem);
1400 cpus = cpumask_weight(policy->cpus);
1401
1402 if (cpus > 1)
1403 cpumask_clear_cpu(cpu, policy->cpus);
1404 up_write(&policy->rwsem);
1405
1406 /* If cpu is last user of policy, free policy */
1407 if (cpus == 1) {
1408 if (has_target()) {
1409 ret = __cpufreq_governor(policy,
1410 CPUFREQ_GOV_POLICY_EXIT);
1411 if (ret) {
1412 pr_err("%s: Failed to exit governor\n",
1413 __func__);
1414 return ret;
1415 }
1416 }
1417
1418 if (!cpufreq_suspended)
1419 cpufreq_policy_put_kobj(policy);
1420
1421 /*
1422 * Perform the ->exit() even during light-weight tear-down,
1423 * since this is a core component, and is essential for the
1424 * subsequent light-weight ->init() to succeed.
1425 */
1426 if (cpufreq_driver->exit)
1427 cpufreq_driver->exit(policy);
1428
1429 /* Remove policy from list of active policies */
1430 write_lock_irqsave(&cpufreq_driver_lock, flags);
1431 list_del(&policy->policy_list);
1432 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1433
1434 if (!cpufreq_suspended)
1435 cpufreq_policy_free(policy);
1436 } else if (has_target()) {
1437 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1438 if (!ret)
1439 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1440
1441 if (ret) {
1442 pr_err("%s: Failed to start governor\n", __func__);
1443 return ret;
1444 }
1445 }
1446
1447 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1448 return 0;
1449 }
1450
1451 /**
1452 * cpufreq_remove_dev - remove a CPU device
1453 *
1454 * Removes the cpufreq interface for a CPU device.
1455 */
1456 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1457 {
1458 unsigned int cpu = dev->id;
1459 int ret;
1460
1461 if (cpu_is_offline(cpu))
1462 return 0;
1463
1464 ret = __cpufreq_remove_dev_prepare(dev, sif);
1465
1466 if (!ret)
1467 ret = __cpufreq_remove_dev_finish(dev, sif);
1468
1469 return ret;
1470 }
1471
1472 static void handle_update(struct work_struct *work)
1473 {
1474 struct cpufreq_policy *policy =
1475 container_of(work, struct cpufreq_policy, update);
1476 unsigned int cpu = policy->cpu;
1477 pr_debug("handle_update for cpu %u called\n", cpu);
1478 cpufreq_update_policy(cpu);
1479 }
1480
1481 /**
1482 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1483 * in deep trouble.
1484 * @cpu: cpu number
1485 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1486 * @new_freq: CPU frequency the CPU actually runs at
1487 *
1488 * We adjust to current frequency first, and need to clean up later.
1489 * So either call to cpufreq_update_policy() or schedule handle_update()).
1490 */
1491 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1492 unsigned int new_freq)
1493 {
1494 struct cpufreq_policy *policy;
1495 struct cpufreq_freqs freqs;
1496 unsigned long flags;
1497
1498 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1499 old_freq, new_freq);
1500
1501 freqs.old = old_freq;
1502 freqs.new = new_freq;
1503
1504 read_lock_irqsave(&cpufreq_driver_lock, flags);
1505 policy = per_cpu(cpufreq_cpu_data, cpu);
1506 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1507
1508 cpufreq_freq_transition_begin(policy, &freqs);
1509 cpufreq_freq_transition_end(policy, &freqs, 0);
1510 }
1511
1512 /**
1513 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1514 * @cpu: CPU number
1515 *
1516 * This is the last known freq, without actually getting it from the driver.
1517 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1518 */
1519 unsigned int cpufreq_quick_get(unsigned int cpu)
1520 {
1521 struct cpufreq_policy *policy;
1522 unsigned int ret_freq = 0;
1523
1524 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1525 return cpufreq_driver->get(cpu);
1526
1527 policy = cpufreq_cpu_get(cpu);
1528 if (policy) {
1529 ret_freq = policy->cur;
1530 cpufreq_cpu_put(policy);
1531 }
1532
1533 return ret_freq;
1534 }
1535 EXPORT_SYMBOL(cpufreq_quick_get);
1536
1537 /**
1538 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1539 * @cpu: CPU number
1540 *
1541 * Just return the max possible frequency for a given CPU.
1542 */
1543 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1544 {
1545 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1546 unsigned int ret_freq = 0;
1547
1548 if (policy) {
1549 ret_freq = policy->max;
1550 cpufreq_cpu_put(policy);
1551 }
1552
1553 return ret_freq;
1554 }
1555 EXPORT_SYMBOL(cpufreq_quick_get_max);
1556
1557 static unsigned int __cpufreq_get(unsigned int cpu)
1558 {
1559 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1560 unsigned int ret_freq = 0;
1561
1562 if (!cpufreq_driver->get)
1563 return ret_freq;
1564
1565 ret_freq = cpufreq_driver->get(cpu);
1566
1567 if (ret_freq && policy->cur &&
1568 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1569 /* verify no discrepancy between actual and
1570 saved value exists */
1571 if (unlikely(ret_freq != policy->cur)) {
1572 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1573 schedule_work(&policy->update);
1574 }
1575 }
1576
1577 return ret_freq;
1578 }
1579
1580 /**
1581 * cpufreq_get - get the current CPU frequency (in kHz)
1582 * @cpu: CPU number
1583 *
1584 * Get the CPU current (static) CPU frequency
1585 */
1586 unsigned int cpufreq_get(unsigned int cpu)
1587 {
1588 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1589 unsigned int ret_freq = 0;
1590
1591 if (policy) {
1592 down_read(&policy->rwsem);
1593 ret_freq = __cpufreq_get(cpu);
1594 up_read(&policy->rwsem);
1595
1596 cpufreq_cpu_put(policy);
1597 }
1598
1599 return ret_freq;
1600 }
1601 EXPORT_SYMBOL(cpufreq_get);
1602
1603 static struct subsys_interface cpufreq_interface = {
1604 .name = "cpufreq",
1605 .subsys = &cpu_subsys,
1606 .add_dev = cpufreq_add_dev,
1607 .remove_dev = cpufreq_remove_dev,
1608 };
1609
1610 /*
1611 * In case platform wants some specific frequency to be configured
1612 * during suspend..
1613 */
1614 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1615 {
1616 int ret;
1617
1618 if (!policy->suspend_freq) {
1619 pr_err("%s: suspend_freq can't be zero\n", __func__);
1620 return -EINVAL;
1621 }
1622
1623 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1624 policy->suspend_freq);
1625
1626 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1627 CPUFREQ_RELATION_H);
1628 if (ret)
1629 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1630 __func__, policy->suspend_freq, ret);
1631
1632 return ret;
1633 }
1634 EXPORT_SYMBOL(cpufreq_generic_suspend);
1635
1636 /**
1637 * cpufreq_suspend() - Suspend CPUFreq governors
1638 *
1639 * Called during system wide Suspend/Hibernate cycles for suspending governors
1640 * as some platforms can't change frequency after this point in suspend cycle.
1641 * Because some of the devices (like: i2c, regulators, etc) they use for
1642 * changing frequency are suspended quickly after this point.
1643 */
1644 void cpufreq_suspend(void)
1645 {
1646 struct cpufreq_policy *policy;
1647
1648 if (!cpufreq_driver)
1649 return;
1650
1651 if (!has_target())
1652 return;
1653
1654 pr_debug("%s: Suspending Governors\n", __func__);
1655
1656 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1657 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1658 pr_err("%s: Failed to stop governor for policy: %p\n",
1659 __func__, policy);
1660 else if (cpufreq_driver->suspend
1661 && cpufreq_driver->suspend(policy))
1662 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1663 policy);
1664 }
1665
1666 cpufreq_suspended = true;
1667 }
1668
1669 /**
1670 * cpufreq_resume() - Resume CPUFreq governors
1671 *
1672 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1673 * are suspended with cpufreq_suspend().
1674 */
1675 void cpufreq_resume(void)
1676 {
1677 struct cpufreq_policy *policy;
1678
1679 if (!cpufreq_driver)
1680 return;
1681
1682 if (!has_target())
1683 return;
1684
1685 pr_debug("%s: Resuming Governors\n", __func__);
1686
1687 cpufreq_suspended = false;
1688
1689 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1690 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1691 pr_err("%s: Failed to resume driver: %p\n", __func__,
1692 policy);
1693 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1694 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1695 pr_err("%s: Failed to start governor for policy: %p\n",
1696 __func__, policy);
1697
1698 /*
1699 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1700 * policy in list. It will verify that the current freq is in
1701 * sync with what we believe it to be.
1702 */
1703 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1704 schedule_work(&policy->update);
1705 }
1706 }
1707
1708 /**
1709 * cpufreq_get_current_driver - return current driver's name
1710 *
1711 * Return the name string of the currently loaded cpufreq driver
1712 * or NULL, if none.
1713 */
1714 const char *cpufreq_get_current_driver(void)
1715 {
1716 if (cpufreq_driver)
1717 return cpufreq_driver->name;
1718
1719 return NULL;
1720 }
1721 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1722
1723 /*********************************************************************
1724 * NOTIFIER LISTS INTERFACE *
1725 *********************************************************************/
1726
1727 /**
1728 * cpufreq_register_notifier - register a driver with cpufreq
1729 * @nb: notifier function to register
1730 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1731 *
1732 * Add a driver to one of two lists: either a list of drivers that
1733 * are notified about clock rate changes (once before and once after
1734 * the transition), or a list of drivers that are notified about
1735 * changes in cpufreq policy.
1736 *
1737 * This function may sleep, and has the same return conditions as
1738 * blocking_notifier_chain_register.
1739 */
1740 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1741 {
1742 int ret;
1743
1744 if (cpufreq_disabled())
1745 return -EINVAL;
1746
1747 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1748
1749 switch (list) {
1750 case CPUFREQ_TRANSITION_NOTIFIER:
1751 ret = srcu_notifier_chain_register(
1752 &cpufreq_transition_notifier_list, nb);
1753 break;
1754 case CPUFREQ_POLICY_NOTIFIER:
1755 ret = blocking_notifier_chain_register(
1756 &cpufreq_policy_notifier_list, nb);
1757 break;
1758 default:
1759 ret = -EINVAL;
1760 }
1761
1762 return ret;
1763 }
1764 EXPORT_SYMBOL(cpufreq_register_notifier);
1765
1766 /**
1767 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1768 * @nb: notifier block to be unregistered
1769 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1770 *
1771 * Remove a driver from the CPU frequency notifier list.
1772 *
1773 * This function may sleep, and has the same return conditions as
1774 * blocking_notifier_chain_unregister.
1775 */
1776 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1777 {
1778 int ret;
1779
1780 if (cpufreq_disabled())
1781 return -EINVAL;
1782
1783 switch (list) {
1784 case CPUFREQ_TRANSITION_NOTIFIER:
1785 ret = srcu_notifier_chain_unregister(
1786 &cpufreq_transition_notifier_list, nb);
1787 break;
1788 case CPUFREQ_POLICY_NOTIFIER:
1789 ret = blocking_notifier_chain_unregister(
1790 &cpufreq_policy_notifier_list, nb);
1791 break;
1792 default:
1793 ret = -EINVAL;
1794 }
1795
1796 return ret;
1797 }
1798 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1799
1800
1801 /*********************************************************************
1802 * GOVERNORS *
1803 *********************************************************************/
1804
1805 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1806 unsigned int target_freq,
1807 unsigned int relation)
1808 {
1809 int retval = -EINVAL;
1810 unsigned int old_target_freq = target_freq;
1811
1812 if (cpufreq_disabled())
1813 return -ENODEV;
1814
1815 /* Make sure that target_freq is within supported range */
1816 if (target_freq > policy->max)
1817 target_freq = policy->max;
1818 if (target_freq < policy->min)
1819 target_freq = policy->min;
1820
1821 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1822 policy->cpu, target_freq, relation, old_target_freq);
1823
1824 /*
1825 * This might look like a redundant call as we are checking it again
1826 * after finding index. But it is left intentionally for cases where
1827 * exactly same freq is called again and so we can save on few function
1828 * calls.
1829 */
1830 if (target_freq == policy->cur)
1831 return 0;
1832
1833 if (cpufreq_driver->target)
1834 retval = cpufreq_driver->target(policy, target_freq, relation);
1835 else if (cpufreq_driver->target_index) {
1836 struct cpufreq_frequency_table *freq_table;
1837 struct cpufreq_freqs freqs;
1838 bool notify;
1839 int index;
1840
1841 freq_table = cpufreq_frequency_get_table(policy->cpu);
1842 if (unlikely(!freq_table)) {
1843 pr_err("%s: Unable to find freq_table\n", __func__);
1844 goto out;
1845 }
1846
1847 retval = cpufreq_frequency_table_target(policy, freq_table,
1848 target_freq, relation, &index);
1849 if (unlikely(retval)) {
1850 pr_err("%s: Unable to find matching freq\n", __func__);
1851 goto out;
1852 }
1853
1854 if (freq_table[index].frequency == policy->cur) {
1855 retval = 0;
1856 goto out;
1857 }
1858
1859 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1860
1861 if (notify) {
1862 freqs.old = policy->cur;
1863 freqs.new = freq_table[index].frequency;
1864 freqs.flags = 0;
1865
1866 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1867 __func__, policy->cpu, freqs.old, freqs.new);
1868
1869 cpufreq_freq_transition_begin(policy, &freqs);
1870 }
1871
1872 retval = cpufreq_driver->target_index(policy, index);
1873 if (retval)
1874 pr_err("%s: Failed to change cpu frequency: %d\n",
1875 __func__, retval);
1876
1877 if (notify)
1878 cpufreq_freq_transition_end(policy, &freqs, retval);
1879 }
1880
1881 out:
1882 return retval;
1883 }
1884 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1885
1886 int cpufreq_driver_target(struct cpufreq_policy *policy,
1887 unsigned int target_freq,
1888 unsigned int relation)
1889 {
1890 int ret = -EINVAL;
1891
1892 down_write(&policy->rwsem);
1893
1894 ret = __cpufreq_driver_target(policy, target_freq, relation);
1895
1896 up_write(&policy->rwsem);
1897
1898 return ret;
1899 }
1900 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1901
1902 /*
1903 * when "event" is CPUFREQ_GOV_LIMITS
1904 */
1905
1906 static int __cpufreq_governor(struct cpufreq_policy *policy,
1907 unsigned int event)
1908 {
1909 int ret;
1910
1911 /* Only must be defined when default governor is known to have latency
1912 restrictions, like e.g. conservative or ondemand.
1913 That this is the case is already ensured in Kconfig
1914 */
1915 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1916 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1917 #else
1918 struct cpufreq_governor *gov = NULL;
1919 #endif
1920
1921 /* Don't start any governor operations if we are entering suspend */
1922 if (cpufreq_suspended)
1923 return 0;
1924
1925 if (policy->governor->max_transition_latency &&
1926 policy->cpuinfo.transition_latency >
1927 policy->governor->max_transition_latency) {
1928 if (!gov)
1929 return -EINVAL;
1930 else {
1931 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1932 policy->governor->name, gov->name);
1933 policy->governor = gov;
1934 }
1935 }
1936
1937 if (event == CPUFREQ_GOV_POLICY_INIT)
1938 if (!try_module_get(policy->governor->owner))
1939 return -EINVAL;
1940
1941 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1942 policy->cpu, event);
1943
1944 mutex_lock(&cpufreq_governor_lock);
1945 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1946 || (!policy->governor_enabled
1947 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1948 mutex_unlock(&cpufreq_governor_lock);
1949 return -EBUSY;
1950 }
1951
1952 if (event == CPUFREQ_GOV_STOP)
1953 policy->governor_enabled = false;
1954 else if (event == CPUFREQ_GOV_START)
1955 policy->governor_enabled = true;
1956
1957 mutex_unlock(&cpufreq_governor_lock);
1958
1959 ret = policy->governor->governor(policy, event);
1960
1961 if (!ret) {
1962 if (event == CPUFREQ_GOV_POLICY_INIT)
1963 policy->governor->initialized++;
1964 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1965 policy->governor->initialized--;
1966 } else {
1967 /* Restore original values */
1968 mutex_lock(&cpufreq_governor_lock);
1969 if (event == CPUFREQ_GOV_STOP)
1970 policy->governor_enabled = true;
1971 else if (event == CPUFREQ_GOV_START)
1972 policy->governor_enabled = false;
1973 mutex_unlock(&cpufreq_governor_lock);
1974 }
1975
1976 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1977 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1978 module_put(policy->governor->owner);
1979
1980 return ret;
1981 }
1982
1983 int cpufreq_register_governor(struct cpufreq_governor *governor)
1984 {
1985 int err;
1986
1987 if (!governor)
1988 return -EINVAL;
1989
1990 if (cpufreq_disabled())
1991 return -ENODEV;
1992
1993 mutex_lock(&cpufreq_governor_mutex);
1994
1995 governor->initialized = 0;
1996 err = -EBUSY;
1997 if (__find_governor(governor->name) == NULL) {
1998 err = 0;
1999 list_add(&governor->governor_list, &cpufreq_governor_list);
2000 }
2001
2002 mutex_unlock(&cpufreq_governor_mutex);
2003 return err;
2004 }
2005 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2006
2007 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2008 {
2009 int cpu;
2010
2011 if (!governor)
2012 return;
2013
2014 if (cpufreq_disabled())
2015 return;
2016
2017 for_each_present_cpu(cpu) {
2018 if (cpu_online(cpu))
2019 continue;
2020 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2021 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2022 }
2023
2024 mutex_lock(&cpufreq_governor_mutex);
2025 list_del(&governor->governor_list);
2026 mutex_unlock(&cpufreq_governor_mutex);
2027 return;
2028 }
2029 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2030
2031
2032 /*********************************************************************
2033 * POLICY INTERFACE *
2034 *********************************************************************/
2035
2036 /**
2037 * cpufreq_get_policy - get the current cpufreq_policy
2038 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2039 * is written
2040 *
2041 * Reads the current cpufreq policy.
2042 */
2043 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2044 {
2045 struct cpufreq_policy *cpu_policy;
2046 if (!policy)
2047 return -EINVAL;
2048
2049 cpu_policy = cpufreq_cpu_get(cpu);
2050 if (!cpu_policy)
2051 return -EINVAL;
2052
2053 memcpy(policy, cpu_policy, sizeof(*policy));
2054
2055 cpufreq_cpu_put(cpu_policy);
2056 return 0;
2057 }
2058 EXPORT_SYMBOL(cpufreq_get_policy);
2059
2060 /*
2061 * policy : current policy.
2062 * new_policy: policy to be set.
2063 */
2064 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2065 struct cpufreq_policy *new_policy)
2066 {
2067 struct cpufreq_governor *old_gov;
2068 int ret;
2069
2070 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2071 new_policy->cpu, new_policy->min, new_policy->max);
2072
2073 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2074
2075 if (new_policy->min > policy->max || new_policy->max < policy->min)
2076 return -EINVAL;
2077
2078 /* verify the cpu speed can be set within this limit */
2079 ret = cpufreq_driver->verify(new_policy);
2080 if (ret)
2081 return ret;
2082
2083 /* adjust if necessary - all reasons */
2084 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2085 CPUFREQ_ADJUST, new_policy);
2086
2087 /* adjust if necessary - hardware incompatibility*/
2088 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2089 CPUFREQ_INCOMPATIBLE, new_policy);
2090
2091 /*
2092 * verify the cpu speed can be set within this limit, which might be
2093 * different to the first one
2094 */
2095 ret = cpufreq_driver->verify(new_policy);
2096 if (ret)
2097 return ret;
2098
2099 /* notification of the new policy */
2100 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2101 CPUFREQ_NOTIFY, new_policy);
2102
2103 policy->min = new_policy->min;
2104 policy->max = new_policy->max;
2105
2106 pr_debug("new min and max freqs are %u - %u kHz\n",
2107 policy->min, policy->max);
2108
2109 if (cpufreq_driver->setpolicy) {
2110 policy->policy = new_policy->policy;
2111 pr_debug("setting range\n");
2112 return cpufreq_driver->setpolicy(new_policy);
2113 }
2114
2115 if (new_policy->governor == policy->governor)
2116 goto out;
2117
2118 pr_debug("governor switch\n");
2119
2120 /* save old, working values */
2121 old_gov = policy->governor;
2122 /* end old governor */
2123 if (old_gov) {
2124 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2125 up_write(&policy->rwsem);
2126 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2127 down_write(&policy->rwsem);
2128 }
2129
2130 /* start new governor */
2131 policy->governor = new_policy->governor;
2132 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2133 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2134 goto out;
2135
2136 up_write(&policy->rwsem);
2137 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2138 down_write(&policy->rwsem);
2139 }
2140
2141 /* new governor failed, so re-start old one */
2142 pr_debug("starting governor %s failed\n", policy->governor->name);
2143 if (old_gov) {
2144 policy->governor = old_gov;
2145 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2146 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2147 }
2148
2149 return -EINVAL;
2150
2151 out:
2152 pr_debug("governor: change or update limits\n");
2153 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2154 }
2155
2156 /**
2157 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2158 * @cpu: CPU which shall be re-evaluated
2159 *
2160 * Useful for policy notifiers which have different necessities
2161 * at different times.
2162 */
2163 int cpufreq_update_policy(unsigned int cpu)
2164 {
2165 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2166 struct cpufreq_policy new_policy;
2167 int ret;
2168
2169 if (!policy) {
2170 ret = -ENODEV;
2171 goto no_policy;
2172 }
2173
2174 down_write(&policy->rwsem);
2175
2176 pr_debug("updating policy for CPU %u\n", cpu);
2177 memcpy(&new_policy, policy, sizeof(*policy));
2178 new_policy.min = policy->user_policy.min;
2179 new_policy.max = policy->user_policy.max;
2180 new_policy.policy = policy->user_policy.policy;
2181 new_policy.governor = policy->user_policy.governor;
2182
2183 /*
2184 * BIOS might change freq behind our back
2185 * -> ask driver for current freq and notify governors about a change
2186 */
2187 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2188 new_policy.cur = cpufreq_driver->get(cpu);
2189 if (WARN_ON(!new_policy.cur)) {
2190 ret = -EIO;
2191 goto no_policy;
2192 }
2193
2194 if (!policy->cur) {
2195 pr_debug("Driver did not initialize current freq\n");
2196 policy->cur = new_policy.cur;
2197 } else {
2198 if (policy->cur != new_policy.cur && has_target())
2199 cpufreq_out_of_sync(cpu, policy->cur,
2200 new_policy.cur);
2201 }
2202 }
2203
2204 ret = cpufreq_set_policy(policy, &new_policy);
2205
2206 up_write(&policy->rwsem);
2207
2208 cpufreq_cpu_put(policy);
2209 no_policy:
2210 return ret;
2211 }
2212 EXPORT_SYMBOL(cpufreq_update_policy);
2213
2214 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2215 unsigned long action, void *hcpu)
2216 {
2217 unsigned int cpu = (unsigned long)hcpu;
2218 struct device *dev;
2219
2220 dev = get_cpu_device(cpu);
2221 if (dev) {
2222 switch (action & ~CPU_TASKS_FROZEN) {
2223 case CPU_ONLINE:
2224 __cpufreq_add_dev(dev, NULL);
2225 break;
2226
2227 case CPU_DOWN_PREPARE:
2228 __cpufreq_remove_dev_prepare(dev, NULL);
2229 break;
2230
2231 case CPU_POST_DEAD:
2232 __cpufreq_remove_dev_finish(dev, NULL);
2233 break;
2234
2235 case CPU_DOWN_FAILED:
2236 __cpufreq_add_dev(dev, NULL);
2237 break;
2238 }
2239 }
2240 return NOTIFY_OK;
2241 }
2242
2243 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2244 .notifier_call = cpufreq_cpu_callback,
2245 };
2246
2247 /*********************************************************************
2248 * BOOST *
2249 *********************************************************************/
2250 static int cpufreq_boost_set_sw(int state)
2251 {
2252 struct cpufreq_frequency_table *freq_table;
2253 struct cpufreq_policy *policy;
2254 int ret = -EINVAL;
2255
2256 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2257 freq_table = cpufreq_frequency_get_table(policy->cpu);
2258 if (freq_table) {
2259 ret = cpufreq_frequency_table_cpuinfo(policy,
2260 freq_table);
2261 if (ret) {
2262 pr_err("%s: Policy frequency update failed\n",
2263 __func__);
2264 break;
2265 }
2266 policy->user_policy.max = policy->max;
2267 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2268 }
2269 }
2270
2271 return ret;
2272 }
2273
2274 int cpufreq_boost_trigger_state(int state)
2275 {
2276 unsigned long flags;
2277 int ret = 0;
2278
2279 if (cpufreq_driver->boost_enabled == state)
2280 return 0;
2281
2282 write_lock_irqsave(&cpufreq_driver_lock, flags);
2283 cpufreq_driver->boost_enabled = state;
2284 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2285
2286 ret = cpufreq_driver->set_boost(state);
2287 if (ret) {
2288 write_lock_irqsave(&cpufreq_driver_lock, flags);
2289 cpufreq_driver->boost_enabled = !state;
2290 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2291
2292 pr_err("%s: Cannot %s BOOST\n",
2293 __func__, state ? "enable" : "disable");
2294 }
2295
2296 return ret;
2297 }
2298
2299 int cpufreq_boost_supported(void)
2300 {
2301 if (likely(cpufreq_driver))
2302 return cpufreq_driver->boost_supported;
2303
2304 return 0;
2305 }
2306 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2307
2308 int cpufreq_boost_enabled(void)
2309 {
2310 return cpufreq_driver->boost_enabled;
2311 }
2312 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2313
2314 /*********************************************************************
2315 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2316 *********************************************************************/
2317
2318 /**
2319 * cpufreq_register_driver - register a CPU Frequency driver
2320 * @driver_data: A struct cpufreq_driver containing the values#
2321 * submitted by the CPU Frequency driver.
2322 *
2323 * Registers a CPU Frequency driver to this core code. This code
2324 * returns zero on success, -EBUSY when another driver got here first
2325 * (and isn't unregistered in the meantime).
2326 *
2327 */
2328 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2329 {
2330 unsigned long flags;
2331 int ret;
2332
2333 if (cpufreq_disabled())
2334 return -ENODEV;
2335
2336 if (!driver_data || !driver_data->verify || !driver_data->init ||
2337 !(driver_data->setpolicy || driver_data->target_index ||
2338 driver_data->target) ||
2339 (driver_data->setpolicy && (driver_data->target_index ||
2340 driver_data->target)))
2341 return -EINVAL;
2342
2343 pr_debug("trying to register driver %s\n", driver_data->name);
2344
2345 if (driver_data->setpolicy)
2346 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2347
2348 write_lock_irqsave(&cpufreq_driver_lock, flags);
2349 if (cpufreq_driver) {
2350 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2351 return -EEXIST;
2352 }
2353 cpufreq_driver = driver_data;
2354 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2355
2356 if (cpufreq_boost_supported()) {
2357 /*
2358 * Check if driver provides function to enable boost -
2359 * if not, use cpufreq_boost_set_sw as default
2360 */
2361 if (!cpufreq_driver->set_boost)
2362 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2363
2364 ret = cpufreq_sysfs_create_file(&boost.attr);
2365 if (ret) {
2366 pr_err("%s: cannot register global BOOST sysfs file\n",
2367 __func__);
2368 goto err_null_driver;
2369 }
2370 }
2371
2372 ret = subsys_interface_register(&cpufreq_interface);
2373 if (ret)
2374 goto err_boost_unreg;
2375
2376 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2377 int i;
2378 ret = -ENODEV;
2379
2380 /* check for at least one working CPU */
2381 for (i = 0; i < nr_cpu_ids; i++)
2382 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2383 ret = 0;
2384 break;
2385 }
2386
2387 /* if all ->init() calls failed, unregister */
2388 if (ret) {
2389 pr_debug("no CPU initialized for driver %s\n",
2390 driver_data->name);
2391 goto err_if_unreg;
2392 }
2393 }
2394
2395 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2396 pr_debug("driver %s up and running\n", driver_data->name);
2397
2398 return 0;
2399 err_if_unreg:
2400 subsys_interface_unregister(&cpufreq_interface);
2401 err_boost_unreg:
2402 if (cpufreq_boost_supported())
2403 cpufreq_sysfs_remove_file(&boost.attr);
2404 err_null_driver:
2405 write_lock_irqsave(&cpufreq_driver_lock, flags);
2406 cpufreq_driver = NULL;
2407 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2408 return ret;
2409 }
2410 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2411
2412 /**
2413 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2414 *
2415 * Unregister the current CPUFreq driver. Only call this if you have
2416 * the right to do so, i.e. if you have succeeded in initialising before!
2417 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2418 * currently not initialised.
2419 */
2420 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2421 {
2422 unsigned long flags;
2423
2424 if (!cpufreq_driver || (driver != cpufreq_driver))
2425 return -EINVAL;
2426
2427 pr_debug("unregistering driver %s\n", driver->name);
2428
2429 subsys_interface_unregister(&cpufreq_interface);
2430 if (cpufreq_boost_supported())
2431 cpufreq_sysfs_remove_file(&boost.attr);
2432
2433 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2434
2435 down_write(&cpufreq_rwsem);
2436 write_lock_irqsave(&cpufreq_driver_lock, flags);
2437
2438 cpufreq_driver = NULL;
2439
2440 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2441 up_write(&cpufreq_rwsem);
2442
2443 return 0;
2444 }
2445 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2446
2447 static int __init cpufreq_core_init(void)
2448 {
2449 if (cpufreq_disabled())
2450 return -ENODEV;
2451
2452 cpufreq_global_kobject = kobject_create();
2453 BUG_ON(!cpufreq_global_kobject);
2454
2455 return 0;
2456 }
2457 core_initcall(cpufreq_core_init);
This page took 0.128472 seconds and 5 git commands to generate.