Merge branch 'for-linus' of git://git.open-osd.org/linux-open-osd into next
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 /**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44
45 /* This one keeps track of the previously set governor of a removed CPU */
46 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
47
48 /* Flag to suspend/resume CPUFreq governors */
49 static bool cpufreq_suspended;
50
51 static inline bool has_target(void)
52 {
53 return cpufreq_driver->target_index || cpufreq_driver->target;
54 }
55
56 /*
57 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
58 * sections
59 */
60 static DECLARE_RWSEM(cpufreq_rwsem);
61
62 /* internal prototypes */
63 static int __cpufreq_governor(struct cpufreq_policy *policy,
64 unsigned int event);
65 static unsigned int __cpufreq_get(unsigned int cpu);
66 static void handle_update(struct work_struct *work);
67
68 /**
69 * Two notifier lists: the "policy" list is involved in the
70 * validation process for a new CPU frequency policy; the
71 * "transition" list for kernel code that needs to handle
72 * changes to devices when the CPU clock speed changes.
73 * The mutex locks both lists.
74 */
75 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
76 static struct srcu_notifier_head cpufreq_transition_notifier_list;
77
78 static bool init_cpufreq_transition_notifier_list_called;
79 static int __init init_cpufreq_transition_notifier_list(void)
80 {
81 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
82 init_cpufreq_transition_notifier_list_called = true;
83 return 0;
84 }
85 pure_initcall(init_cpufreq_transition_notifier_list);
86
87 static int off __read_mostly;
88 static int cpufreq_disabled(void)
89 {
90 return off;
91 }
92 void disable_cpufreq(void)
93 {
94 off = 1;
95 }
96 static LIST_HEAD(cpufreq_governor_list);
97 static DEFINE_MUTEX(cpufreq_governor_mutex);
98
99 bool have_governor_per_policy(void)
100 {
101 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
102 }
103 EXPORT_SYMBOL_GPL(have_governor_per_policy);
104
105 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
106 {
107 if (have_governor_per_policy())
108 return &policy->kobj;
109 else
110 return cpufreq_global_kobject;
111 }
112 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
113
114 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
115 {
116 u64 idle_time;
117 u64 cur_wall_time;
118 u64 busy_time;
119
120 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
121
122 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
123 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
124 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
125 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
126 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
127 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
128
129 idle_time = cur_wall_time - busy_time;
130 if (wall)
131 *wall = cputime_to_usecs(cur_wall_time);
132
133 return cputime_to_usecs(idle_time);
134 }
135
136 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
137 {
138 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
139
140 if (idle_time == -1ULL)
141 return get_cpu_idle_time_jiffy(cpu, wall);
142 else if (!io_busy)
143 idle_time += get_cpu_iowait_time_us(cpu, wall);
144
145 return idle_time;
146 }
147 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
148
149 /*
150 * This is a generic cpufreq init() routine which can be used by cpufreq
151 * drivers of SMP systems. It will do following:
152 * - validate & show freq table passed
153 * - set policies transition latency
154 * - policy->cpus with all possible CPUs
155 */
156 int cpufreq_generic_init(struct cpufreq_policy *policy,
157 struct cpufreq_frequency_table *table,
158 unsigned int transition_latency)
159 {
160 int ret;
161
162 ret = cpufreq_table_validate_and_show(policy, table);
163 if (ret) {
164 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
165 return ret;
166 }
167
168 policy->cpuinfo.transition_latency = transition_latency;
169
170 /*
171 * The driver only supports the SMP configuartion where all processors
172 * share the clock and voltage and clock.
173 */
174 cpumask_setall(policy->cpus);
175
176 return 0;
177 }
178 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
179
180 unsigned int cpufreq_generic_get(unsigned int cpu)
181 {
182 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
183
184 if (!policy || IS_ERR(policy->clk)) {
185 pr_err("%s: No %s associated to cpu: %d\n",
186 __func__, policy ? "clk" : "policy", cpu);
187 return 0;
188 }
189
190 return clk_get_rate(policy->clk) / 1000;
191 }
192 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
193
194 /* Only for cpufreq core internal use */
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197 return per_cpu(cpufreq_cpu_data, cpu);
198 }
199
200 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
201 {
202 struct cpufreq_policy *policy = NULL;
203 unsigned long flags;
204
205 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
206 return NULL;
207
208 if (!down_read_trylock(&cpufreq_rwsem))
209 return NULL;
210
211 /* get the cpufreq driver */
212 read_lock_irqsave(&cpufreq_driver_lock, flags);
213
214 if (cpufreq_driver) {
215 /* get the CPU */
216 policy = per_cpu(cpufreq_cpu_data, cpu);
217 if (policy)
218 kobject_get(&policy->kobj);
219 }
220
221 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
222
223 if (!policy)
224 up_read(&cpufreq_rwsem);
225
226 return policy;
227 }
228 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
229
230 void cpufreq_cpu_put(struct cpufreq_policy *policy)
231 {
232 if (cpufreq_disabled())
233 return;
234
235 kobject_put(&policy->kobj);
236 up_read(&cpufreq_rwsem);
237 }
238 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
239
240 /*********************************************************************
241 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
242 *********************************************************************/
243
244 /**
245 * adjust_jiffies - adjust the system "loops_per_jiffy"
246 *
247 * This function alters the system "loops_per_jiffy" for the clock
248 * speed change. Note that loops_per_jiffy cannot be updated on SMP
249 * systems as each CPU might be scaled differently. So, use the arch
250 * per-CPU loops_per_jiffy value wherever possible.
251 */
252 #ifndef CONFIG_SMP
253 static unsigned long l_p_j_ref;
254 static unsigned int l_p_j_ref_freq;
255
256 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
257 {
258 if (ci->flags & CPUFREQ_CONST_LOOPS)
259 return;
260
261 if (!l_p_j_ref_freq) {
262 l_p_j_ref = loops_per_jiffy;
263 l_p_j_ref_freq = ci->old;
264 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
265 l_p_j_ref, l_p_j_ref_freq);
266 }
267 if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
268 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
269 ci->new);
270 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
271 loops_per_jiffy, ci->new);
272 }
273 }
274 #else
275 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
276 {
277 return;
278 }
279 #endif
280
281 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
282 struct cpufreq_freqs *freqs, unsigned int state)
283 {
284 BUG_ON(irqs_disabled());
285
286 if (cpufreq_disabled())
287 return;
288
289 freqs->flags = cpufreq_driver->flags;
290 pr_debug("notification %u of frequency transition to %u kHz\n",
291 state, freqs->new);
292
293 switch (state) {
294
295 case CPUFREQ_PRECHANGE:
296 /* detect if the driver reported a value as "old frequency"
297 * which is not equal to what the cpufreq core thinks is
298 * "old frequency".
299 */
300 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
301 if ((policy) && (policy->cpu == freqs->cpu) &&
302 (policy->cur) && (policy->cur != freqs->old)) {
303 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
304 freqs->old, policy->cur);
305 freqs->old = policy->cur;
306 }
307 }
308 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
309 CPUFREQ_PRECHANGE, freqs);
310 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
311 break;
312
313 case CPUFREQ_POSTCHANGE:
314 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
315 pr_debug("FREQ: %lu - CPU: %lu\n",
316 (unsigned long)freqs->new, (unsigned long)freqs->cpu);
317 trace_cpu_frequency(freqs->new, freqs->cpu);
318 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
319 CPUFREQ_POSTCHANGE, freqs);
320 if (likely(policy) && likely(policy->cpu == freqs->cpu))
321 policy->cur = freqs->new;
322 break;
323 }
324 }
325
326 /**
327 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
328 * on frequency transition.
329 *
330 * This function calls the transition notifiers and the "adjust_jiffies"
331 * function. It is called twice on all CPU frequency changes that have
332 * external effects.
333 */
334 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
335 struct cpufreq_freqs *freqs, unsigned int state)
336 {
337 for_each_cpu(freqs->cpu, policy->cpus)
338 __cpufreq_notify_transition(policy, freqs, state);
339 }
340
341 /* Do post notifications when there are chances that transition has failed */
342 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
343 struct cpufreq_freqs *freqs, int transition_failed)
344 {
345 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
346 if (!transition_failed)
347 return;
348
349 swap(freqs->old, freqs->new);
350 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
351 cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
352 }
353
354 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
355 struct cpufreq_freqs *freqs)
356 {
357
358 /*
359 * Catch double invocations of _begin() which lead to self-deadlock.
360 * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
361 * doesn't invoke _begin() on their behalf, and hence the chances of
362 * double invocations are very low. Moreover, there are scenarios
363 * where these checks can emit false-positive warnings in these
364 * drivers; so we avoid that by skipping them altogether.
365 */
366 WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
367 && current == policy->transition_task);
368
369 wait:
370 wait_event(policy->transition_wait, !policy->transition_ongoing);
371
372 spin_lock(&policy->transition_lock);
373
374 if (unlikely(policy->transition_ongoing)) {
375 spin_unlock(&policy->transition_lock);
376 goto wait;
377 }
378
379 policy->transition_ongoing = true;
380 policy->transition_task = current;
381
382 spin_unlock(&policy->transition_lock);
383
384 cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
385 }
386 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
387
388 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
389 struct cpufreq_freqs *freqs, int transition_failed)
390 {
391 if (unlikely(WARN_ON(!policy->transition_ongoing)))
392 return;
393
394 cpufreq_notify_post_transition(policy, freqs, transition_failed);
395
396 policy->transition_ongoing = false;
397 policy->transition_task = NULL;
398
399 wake_up(&policy->transition_wait);
400 }
401 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
402
403
404 /*********************************************************************
405 * SYSFS INTERFACE *
406 *********************************************************************/
407 static ssize_t show_boost(struct kobject *kobj,
408 struct attribute *attr, char *buf)
409 {
410 return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
411 }
412
413 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
414 const char *buf, size_t count)
415 {
416 int ret, enable;
417
418 ret = sscanf(buf, "%d", &enable);
419 if (ret != 1 || enable < 0 || enable > 1)
420 return -EINVAL;
421
422 if (cpufreq_boost_trigger_state(enable)) {
423 pr_err("%s: Cannot %s BOOST!\n",
424 __func__, enable ? "enable" : "disable");
425 return -EINVAL;
426 }
427
428 pr_debug("%s: cpufreq BOOST %s\n",
429 __func__, enable ? "enabled" : "disabled");
430
431 return count;
432 }
433 define_one_global_rw(boost);
434
435 static struct cpufreq_governor *__find_governor(const char *str_governor)
436 {
437 struct cpufreq_governor *t;
438
439 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
440 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
441 return t;
442
443 return NULL;
444 }
445
446 /**
447 * cpufreq_parse_governor - parse a governor string
448 */
449 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
450 struct cpufreq_governor **governor)
451 {
452 int err = -EINVAL;
453
454 if (!cpufreq_driver)
455 goto out;
456
457 if (cpufreq_driver->setpolicy) {
458 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
459 *policy = CPUFREQ_POLICY_PERFORMANCE;
460 err = 0;
461 } else if (!strnicmp(str_governor, "powersave",
462 CPUFREQ_NAME_LEN)) {
463 *policy = CPUFREQ_POLICY_POWERSAVE;
464 err = 0;
465 }
466 } else if (has_target()) {
467 struct cpufreq_governor *t;
468
469 mutex_lock(&cpufreq_governor_mutex);
470
471 t = __find_governor(str_governor);
472
473 if (t == NULL) {
474 int ret;
475
476 mutex_unlock(&cpufreq_governor_mutex);
477 ret = request_module("cpufreq_%s", str_governor);
478 mutex_lock(&cpufreq_governor_mutex);
479
480 if (ret == 0)
481 t = __find_governor(str_governor);
482 }
483
484 if (t != NULL) {
485 *governor = t;
486 err = 0;
487 }
488
489 mutex_unlock(&cpufreq_governor_mutex);
490 }
491 out:
492 return err;
493 }
494
495 /**
496 * cpufreq_per_cpu_attr_read() / show_##file_name() -
497 * print out cpufreq information
498 *
499 * Write out information from cpufreq_driver->policy[cpu]; object must be
500 * "unsigned int".
501 */
502
503 #define show_one(file_name, object) \
504 static ssize_t show_##file_name \
505 (struct cpufreq_policy *policy, char *buf) \
506 { \
507 return sprintf(buf, "%u\n", policy->object); \
508 }
509
510 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
511 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
512 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
513 show_one(scaling_min_freq, min);
514 show_one(scaling_max_freq, max);
515 show_one(scaling_cur_freq, cur);
516
517 static int cpufreq_set_policy(struct cpufreq_policy *policy,
518 struct cpufreq_policy *new_policy);
519
520 /**
521 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
522 */
523 #define store_one(file_name, object) \
524 static ssize_t store_##file_name \
525 (struct cpufreq_policy *policy, const char *buf, size_t count) \
526 { \
527 int ret; \
528 struct cpufreq_policy new_policy; \
529 \
530 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
531 if (ret) \
532 return -EINVAL; \
533 \
534 ret = sscanf(buf, "%u", &new_policy.object); \
535 if (ret != 1) \
536 return -EINVAL; \
537 \
538 ret = cpufreq_set_policy(policy, &new_policy); \
539 policy->user_policy.object = policy->object; \
540 \
541 return ret ? ret : count; \
542 }
543
544 store_one(scaling_min_freq, min);
545 store_one(scaling_max_freq, max);
546
547 /**
548 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
549 */
550 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
551 char *buf)
552 {
553 unsigned int cur_freq = __cpufreq_get(policy->cpu);
554 if (!cur_freq)
555 return sprintf(buf, "<unknown>");
556 return sprintf(buf, "%u\n", cur_freq);
557 }
558
559 /**
560 * show_scaling_governor - show the current policy for the specified CPU
561 */
562 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
563 {
564 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
565 return sprintf(buf, "powersave\n");
566 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
567 return sprintf(buf, "performance\n");
568 else if (policy->governor)
569 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
570 policy->governor->name);
571 return -EINVAL;
572 }
573
574 /**
575 * store_scaling_governor - store policy for the specified CPU
576 */
577 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
578 const char *buf, size_t count)
579 {
580 int ret;
581 char str_governor[16];
582 struct cpufreq_policy new_policy;
583
584 ret = cpufreq_get_policy(&new_policy, policy->cpu);
585 if (ret)
586 return ret;
587
588 ret = sscanf(buf, "%15s", str_governor);
589 if (ret != 1)
590 return -EINVAL;
591
592 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
593 &new_policy.governor))
594 return -EINVAL;
595
596 ret = cpufreq_set_policy(policy, &new_policy);
597
598 policy->user_policy.policy = policy->policy;
599 policy->user_policy.governor = policy->governor;
600
601 if (ret)
602 return ret;
603 else
604 return count;
605 }
606
607 /**
608 * show_scaling_driver - show the cpufreq driver currently loaded
609 */
610 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
611 {
612 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
613 }
614
615 /**
616 * show_scaling_available_governors - show the available CPUfreq governors
617 */
618 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
619 char *buf)
620 {
621 ssize_t i = 0;
622 struct cpufreq_governor *t;
623
624 if (!has_target()) {
625 i += sprintf(buf, "performance powersave");
626 goto out;
627 }
628
629 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
630 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
631 - (CPUFREQ_NAME_LEN + 2)))
632 goto out;
633 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
634 }
635 out:
636 i += sprintf(&buf[i], "\n");
637 return i;
638 }
639
640 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
641 {
642 ssize_t i = 0;
643 unsigned int cpu;
644
645 for_each_cpu(cpu, mask) {
646 if (i)
647 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
648 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
649 if (i >= (PAGE_SIZE - 5))
650 break;
651 }
652 i += sprintf(&buf[i], "\n");
653 return i;
654 }
655 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
656
657 /**
658 * show_related_cpus - show the CPUs affected by each transition even if
659 * hw coordination is in use
660 */
661 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
662 {
663 return cpufreq_show_cpus(policy->related_cpus, buf);
664 }
665
666 /**
667 * show_affected_cpus - show the CPUs affected by each transition
668 */
669 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
670 {
671 return cpufreq_show_cpus(policy->cpus, buf);
672 }
673
674 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
675 const char *buf, size_t count)
676 {
677 unsigned int freq = 0;
678 unsigned int ret;
679
680 if (!policy->governor || !policy->governor->store_setspeed)
681 return -EINVAL;
682
683 ret = sscanf(buf, "%u", &freq);
684 if (ret != 1)
685 return -EINVAL;
686
687 policy->governor->store_setspeed(policy, freq);
688
689 return count;
690 }
691
692 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
693 {
694 if (!policy->governor || !policy->governor->show_setspeed)
695 return sprintf(buf, "<unsupported>\n");
696
697 return policy->governor->show_setspeed(policy, buf);
698 }
699
700 /**
701 * show_bios_limit - show the current cpufreq HW/BIOS limitation
702 */
703 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
704 {
705 unsigned int limit;
706 int ret;
707 if (cpufreq_driver->bios_limit) {
708 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
709 if (!ret)
710 return sprintf(buf, "%u\n", limit);
711 }
712 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
713 }
714
715 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
716 cpufreq_freq_attr_ro(cpuinfo_min_freq);
717 cpufreq_freq_attr_ro(cpuinfo_max_freq);
718 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
719 cpufreq_freq_attr_ro(scaling_available_governors);
720 cpufreq_freq_attr_ro(scaling_driver);
721 cpufreq_freq_attr_ro(scaling_cur_freq);
722 cpufreq_freq_attr_ro(bios_limit);
723 cpufreq_freq_attr_ro(related_cpus);
724 cpufreq_freq_attr_ro(affected_cpus);
725 cpufreq_freq_attr_rw(scaling_min_freq);
726 cpufreq_freq_attr_rw(scaling_max_freq);
727 cpufreq_freq_attr_rw(scaling_governor);
728 cpufreq_freq_attr_rw(scaling_setspeed);
729
730 static struct attribute *default_attrs[] = {
731 &cpuinfo_min_freq.attr,
732 &cpuinfo_max_freq.attr,
733 &cpuinfo_transition_latency.attr,
734 &scaling_min_freq.attr,
735 &scaling_max_freq.attr,
736 &affected_cpus.attr,
737 &related_cpus.attr,
738 &scaling_governor.attr,
739 &scaling_driver.attr,
740 &scaling_available_governors.attr,
741 &scaling_setspeed.attr,
742 NULL
743 };
744
745 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
746 #define to_attr(a) container_of(a, struct freq_attr, attr)
747
748 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
749 {
750 struct cpufreq_policy *policy = to_policy(kobj);
751 struct freq_attr *fattr = to_attr(attr);
752 ssize_t ret;
753
754 if (!down_read_trylock(&cpufreq_rwsem))
755 return -EINVAL;
756
757 down_read(&policy->rwsem);
758
759 if (fattr->show)
760 ret = fattr->show(policy, buf);
761 else
762 ret = -EIO;
763
764 up_read(&policy->rwsem);
765 up_read(&cpufreq_rwsem);
766
767 return ret;
768 }
769
770 static ssize_t store(struct kobject *kobj, struct attribute *attr,
771 const char *buf, size_t count)
772 {
773 struct cpufreq_policy *policy = to_policy(kobj);
774 struct freq_attr *fattr = to_attr(attr);
775 ssize_t ret = -EINVAL;
776
777 get_online_cpus();
778
779 if (!cpu_online(policy->cpu))
780 goto unlock;
781
782 if (!down_read_trylock(&cpufreq_rwsem))
783 goto unlock;
784
785 down_write(&policy->rwsem);
786
787 if (fattr->store)
788 ret = fattr->store(policy, buf, count);
789 else
790 ret = -EIO;
791
792 up_write(&policy->rwsem);
793
794 up_read(&cpufreq_rwsem);
795 unlock:
796 put_online_cpus();
797
798 return ret;
799 }
800
801 static void cpufreq_sysfs_release(struct kobject *kobj)
802 {
803 struct cpufreq_policy *policy = to_policy(kobj);
804 pr_debug("last reference is dropped\n");
805 complete(&policy->kobj_unregister);
806 }
807
808 static const struct sysfs_ops sysfs_ops = {
809 .show = show,
810 .store = store,
811 };
812
813 static struct kobj_type ktype_cpufreq = {
814 .sysfs_ops = &sysfs_ops,
815 .default_attrs = default_attrs,
816 .release = cpufreq_sysfs_release,
817 };
818
819 struct kobject *cpufreq_global_kobject;
820 EXPORT_SYMBOL(cpufreq_global_kobject);
821
822 static int cpufreq_global_kobject_usage;
823
824 int cpufreq_get_global_kobject(void)
825 {
826 if (!cpufreq_global_kobject_usage++)
827 return kobject_add(cpufreq_global_kobject,
828 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
829
830 return 0;
831 }
832 EXPORT_SYMBOL(cpufreq_get_global_kobject);
833
834 void cpufreq_put_global_kobject(void)
835 {
836 if (!--cpufreq_global_kobject_usage)
837 kobject_del(cpufreq_global_kobject);
838 }
839 EXPORT_SYMBOL(cpufreq_put_global_kobject);
840
841 int cpufreq_sysfs_create_file(const struct attribute *attr)
842 {
843 int ret = cpufreq_get_global_kobject();
844
845 if (!ret) {
846 ret = sysfs_create_file(cpufreq_global_kobject, attr);
847 if (ret)
848 cpufreq_put_global_kobject();
849 }
850
851 return ret;
852 }
853 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
854
855 void cpufreq_sysfs_remove_file(const struct attribute *attr)
856 {
857 sysfs_remove_file(cpufreq_global_kobject, attr);
858 cpufreq_put_global_kobject();
859 }
860 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
861
862 /* symlink affected CPUs */
863 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
864 {
865 unsigned int j;
866 int ret = 0;
867
868 for_each_cpu(j, policy->cpus) {
869 struct device *cpu_dev;
870
871 if (j == policy->cpu)
872 continue;
873
874 pr_debug("Adding link for CPU: %u\n", j);
875 cpu_dev = get_cpu_device(j);
876 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
877 "cpufreq");
878 if (ret)
879 break;
880 }
881 return ret;
882 }
883
884 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
885 struct device *dev)
886 {
887 struct freq_attr **drv_attr;
888 int ret = 0;
889
890 /* prepare interface data */
891 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
892 &dev->kobj, "cpufreq");
893 if (ret)
894 return ret;
895
896 /* set up files for this cpu device */
897 drv_attr = cpufreq_driver->attr;
898 while ((drv_attr) && (*drv_attr)) {
899 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
900 if (ret)
901 goto err_out_kobj_put;
902 drv_attr++;
903 }
904 if (cpufreq_driver->get) {
905 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
906 if (ret)
907 goto err_out_kobj_put;
908 }
909 if (has_target()) {
910 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
911 if (ret)
912 goto err_out_kobj_put;
913 }
914 if (cpufreq_driver->bios_limit) {
915 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
916 if (ret)
917 goto err_out_kobj_put;
918 }
919
920 ret = cpufreq_add_dev_symlink(policy);
921 if (ret)
922 goto err_out_kobj_put;
923
924 return ret;
925
926 err_out_kobj_put:
927 kobject_put(&policy->kobj);
928 wait_for_completion(&policy->kobj_unregister);
929 return ret;
930 }
931
932 static void cpufreq_init_policy(struct cpufreq_policy *policy)
933 {
934 struct cpufreq_governor *gov = NULL;
935 struct cpufreq_policy new_policy;
936 int ret = 0;
937
938 memcpy(&new_policy, policy, sizeof(*policy));
939
940 /* Update governor of new_policy to the governor used before hotplug */
941 gov = __find_governor(per_cpu(cpufreq_cpu_governor, policy->cpu));
942 if (gov)
943 pr_debug("Restoring governor %s for cpu %d\n",
944 policy->governor->name, policy->cpu);
945 else
946 gov = CPUFREQ_DEFAULT_GOVERNOR;
947
948 new_policy.governor = gov;
949
950 /* Use the default policy if its valid. */
951 if (cpufreq_driver->setpolicy)
952 cpufreq_parse_governor(gov->name, &new_policy.policy, NULL);
953
954 /* set default policy */
955 ret = cpufreq_set_policy(policy, &new_policy);
956 if (ret) {
957 pr_debug("setting policy failed\n");
958 if (cpufreq_driver->exit)
959 cpufreq_driver->exit(policy);
960 }
961 }
962
963 #ifdef CONFIG_HOTPLUG_CPU
964 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
965 unsigned int cpu, struct device *dev)
966 {
967 int ret = 0;
968 unsigned long flags;
969
970 if (has_target()) {
971 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
972 if (ret) {
973 pr_err("%s: Failed to stop governor\n", __func__);
974 return ret;
975 }
976 }
977
978 down_write(&policy->rwsem);
979
980 write_lock_irqsave(&cpufreq_driver_lock, flags);
981
982 cpumask_set_cpu(cpu, policy->cpus);
983 per_cpu(cpufreq_cpu_data, cpu) = policy;
984 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
985
986 up_write(&policy->rwsem);
987
988 if (has_target()) {
989 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
990 if (!ret)
991 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
992
993 if (ret) {
994 pr_err("%s: Failed to start governor\n", __func__);
995 return ret;
996 }
997 }
998
999 return sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
1000 }
1001 #endif
1002
1003 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
1004 {
1005 struct cpufreq_policy *policy;
1006 unsigned long flags;
1007
1008 read_lock_irqsave(&cpufreq_driver_lock, flags);
1009
1010 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
1011
1012 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1013
1014 policy->governor = NULL;
1015
1016 return policy;
1017 }
1018
1019 static struct cpufreq_policy *cpufreq_policy_alloc(void)
1020 {
1021 struct cpufreq_policy *policy;
1022
1023 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1024 if (!policy)
1025 return NULL;
1026
1027 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1028 goto err_free_policy;
1029
1030 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1031 goto err_free_cpumask;
1032
1033 INIT_LIST_HEAD(&policy->policy_list);
1034 init_rwsem(&policy->rwsem);
1035 spin_lock_init(&policy->transition_lock);
1036 init_waitqueue_head(&policy->transition_wait);
1037
1038 return policy;
1039
1040 err_free_cpumask:
1041 free_cpumask_var(policy->cpus);
1042 err_free_policy:
1043 kfree(policy);
1044
1045 return NULL;
1046 }
1047
1048 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1049 {
1050 struct kobject *kobj;
1051 struct completion *cmp;
1052
1053 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1054 CPUFREQ_REMOVE_POLICY, policy);
1055
1056 down_read(&policy->rwsem);
1057 kobj = &policy->kobj;
1058 cmp = &policy->kobj_unregister;
1059 up_read(&policy->rwsem);
1060 kobject_put(kobj);
1061
1062 /*
1063 * We need to make sure that the underlying kobj is
1064 * actually not referenced anymore by anybody before we
1065 * proceed with unloading.
1066 */
1067 pr_debug("waiting for dropping of refcount\n");
1068 wait_for_completion(cmp);
1069 pr_debug("wait complete\n");
1070 }
1071
1072 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1073 {
1074 free_cpumask_var(policy->related_cpus);
1075 free_cpumask_var(policy->cpus);
1076 kfree(policy);
1077 }
1078
1079 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1080 {
1081 if (WARN_ON(cpu == policy->cpu))
1082 return;
1083
1084 down_write(&policy->rwsem);
1085
1086 policy->last_cpu = policy->cpu;
1087 policy->cpu = cpu;
1088
1089 up_write(&policy->rwsem);
1090
1091 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1092 CPUFREQ_UPDATE_POLICY_CPU, policy);
1093 }
1094
1095 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1096 {
1097 unsigned int j, cpu = dev->id;
1098 int ret = -ENOMEM;
1099 struct cpufreq_policy *policy;
1100 unsigned long flags;
1101 bool recover_policy = cpufreq_suspended;
1102 #ifdef CONFIG_HOTPLUG_CPU
1103 struct cpufreq_policy *tpolicy;
1104 #endif
1105
1106 if (cpu_is_offline(cpu))
1107 return 0;
1108
1109 pr_debug("adding CPU %u\n", cpu);
1110
1111 #ifdef CONFIG_SMP
1112 /* check whether a different CPU already registered this
1113 * CPU because it is in the same boat. */
1114 policy = cpufreq_cpu_get(cpu);
1115 if (unlikely(policy)) {
1116 cpufreq_cpu_put(policy);
1117 return 0;
1118 }
1119 #endif
1120
1121 if (!down_read_trylock(&cpufreq_rwsem))
1122 return 0;
1123
1124 #ifdef CONFIG_HOTPLUG_CPU
1125 /* Check if this cpu was hot-unplugged earlier and has siblings */
1126 read_lock_irqsave(&cpufreq_driver_lock, flags);
1127 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
1128 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1129 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1130 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev);
1131 up_read(&cpufreq_rwsem);
1132 return ret;
1133 }
1134 }
1135 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1136 #endif
1137
1138 /*
1139 * Restore the saved policy when doing light-weight init and fall back
1140 * to the full init if that fails.
1141 */
1142 policy = recover_policy ? cpufreq_policy_restore(cpu) : NULL;
1143 if (!policy) {
1144 recover_policy = false;
1145 policy = cpufreq_policy_alloc();
1146 if (!policy)
1147 goto nomem_out;
1148 }
1149
1150 /*
1151 * In the resume path, since we restore a saved policy, the assignment
1152 * to policy->cpu is like an update of the existing policy, rather than
1153 * the creation of a brand new one. So we need to perform this update
1154 * by invoking update_policy_cpu().
1155 */
1156 if (recover_policy && cpu != policy->cpu)
1157 update_policy_cpu(policy, cpu);
1158 else
1159 policy->cpu = cpu;
1160
1161 cpumask_copy(policy->cpus, cpumask_of(cpu));
1162
1163 init_completion(&policy->kobj_unregister);
1164 INIT_WORK(&policy->update, handle_update);
1165
1166 /* call driver. From then on the cpufreq must be able
1167 * to accept all calls to ->verify and ->setpolicy for this CPU
1168 */
1169 ret = cpufreq_driver->init(policy);
1170 if (ret) {
1171 pr_debug("initialization failed\n");
1172 goto err_set_policy_cpu;
1173 }
1174
1175 /* related cpus should atleast have policy->cpus */
1176 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1177
1178 /*
1179 * affected cpus must always be the one, which are online. We aren't
1180 * managing offline cpus here.
1181 */
1182 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1183
1184 if (!recover_policy) {
1185 policy->user_policy.min = policy->min;
1186 policy->user_policy.max = policy->max;
1187 }
1188
1189 down_write(&policy->rwsem);
1190 write_lock_irqsave(&cpufreq_driver_lock, flags);
1191 for_each_cpu(j, policy->cpus)
1192 per_cpu(cpufreq_cpu_data, j) = policy;
1193 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1194
1195 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1196 policy->cur = cpufreq_driver->get(policy->cpu);
1197 if (!policy->cur) {
1198 pr_err("%s: ->get() failed\n", __func__);
1199 goto err_get_freq;
1200 }
1201 }
1202
1203 /*
1204 * Sometimes boot loaders set CPU frequency to a value outside of
1205 * frequency table present with cpufreq core. In such cases CPU might be
1206 * unstable if it has to run on that frequency for long duration of time
1207 * and so its better to set it to a frequency which is specified in
1208 * freq-table. This also makes cpufreq stats inconsistent as
1209 * cpufreq-stats would fail to register because current frequency of CPU
1210 * isn't found in freq-table.
1211 *
1212 * Because we don't want this change to effect boot process badly, we go
1213 * for the next freq which is >= policy->cur ('cur' must be set by now,
1214 * otherwise we will end up setting freq to lowest of the table as 'cur'
1215 * is initialized to zero).
1216 *
1217 * We are passing target-freq as "policy->cur - 1" otherwise
1218 * __cpufreq_driver_target() would simply fail, as policy->cur will be
1219 * equal to target-freq.
1220 */
1221 if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1222 && has_target()) {
1223 /* Are we running at unknown frequency ? */
1224 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1225 if (ret == -EINVAL) {
1226 /* Warn user and fix it */
1227 pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1228 __func__, policy->cpu, policy->cur);
1229 ret = __cpufreq_driver_target(policy, policy->cur - 1,
1230 CPUFREQ_RELATION_L);
1231
1232 /*
1233 * Reaching here after boot in a few seconds may not
1234 * mean that system will remain stable at "unknown"
1235 * frequency for longer duration. Hence, a BUG_ON().
1236 */
1237 BUG_ON(ret);
1238 pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1239 __func__, policy->cpu, policy->cur);
1240 }
1241 }
1242
1243 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1244 CPUFREQ_START, policy);
1245
1246 if (!recover_policy) {
1247 ret = cpufreq_add_dev_interface(policy, dev);
1248 if (ret)
1249 goto err_out_unregister;
1250 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1251 CPUFREQ_CREATE_POLICY, policy);
1252 }
1253
1254 write_lock_irqsave(&cpufreq_driver_lock, flags);
1255 list_add(&policy->policy_list, &cpufreq_policy_list);
1256 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1257
1258 cpufreq_init_policy(policy);
1259
1260 if (!recover_policy) {
1261 policy->user_policy.policy = policy->policy;
1262 policy->user_policy.governor = policy->governor;
1263 }
1264 up_write(&policy->rwsem);
1265
1266 kobject_uevent(&policy->kobj, KOBJ_ADD);
1267 up_read(&cpufreq_rwsem);
1268
1269 pr_debug("initialization complete\n");
1270
1271 return 0;
1272
1273 err_out_unregister:
1274 err_get_freq:
1275 write_lock_irqsave(&cpufreq_driver_lock, flags);
1276 for_each_cpu(j, policy->cpus)
1277 per_cpu(cpufreq_cpu_data, j) = NULL;
1278 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1279
1280 if (cpufreq_driver->exit)
1281 cpufreq_driver->exit(policy);
1282 err_set_policy_cpu:
1283 if (recover_policy) {
1284 /* Do not leave stale fallback data behind. */
1285 per_cpu(cpufreq_cpu_data_fallback, cpu) = NULL;
1286 cpufreq_policy_put_kobj(policy);
1287 }
1288 cpufreq_policy_free(policy);
1289
1290 nomem_out:
1291 up_read(&cpufreq_rwsem);
1292
1293 return ret;
1294 }
1295
1296 /**
1297 * cpufreq_add_dev - add a CPU device
1298 *
1299 * Adds the cpufreq interface for a CPU device.
1300 *
1301 * The Oracle says: try running cpufreq registration/unregistration concurrently
1302 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1303 * mess up, but more thorough testing is needed. - Mathieu
1304 */
1305 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1306 {
1307 return __cpufreq_add_dev(dev, sif);
1308 }
1309
1310 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1311 unsigned int old_cpu)
1312 {
1313 struct device *cpu_dev;
1314 int ret;
1315
1316 /* first sibling now owns the new sysfs dir */
1317 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1318
1319 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1320 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1321 if (ret) {
1322 pr_err("%s: Failed to move kobj: %d\n", __func__, ret);
1323
1324 down_write(&policy->rwsem);
1325 cpumask_set_cpu(old_cpu, policy->cpus);
1326 up_write(&policy->rwsem);
1327
1328 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1329 "cpufreq");
1330
1331 return -EINVAL;
1332 }
1333
1334 return cpu_dev->id;
1335 }
1336
1337 static int __cpufreq_remove_dev_prepare(struct device *dev,
1338 struct subsys_interface *sif)
1339 {
1340 unsigned int cpu = dev->id, cpus;
1341 int new_cpu, ret;
1342 unsigned long flags;
1343 struct cpufreq_policy *policy;
1344
1345 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1346
1347 write_lock_irqsave(&cpufreq_driver_lock, flags);
1348
1349 policy = per_cpu(cpufreq_cpu_data, cpu);
1350
1351 /* Save the policy somewhere when doing a light-weight tear-down */
1352 if (cpufreq_suspended)
1353 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1354
1355 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1356
1357 if (!policy) {
1358 pr_debug("%s: No cpu_data found\n", __func__);
1359 return -EINVAL;
1360 }
1361
1362 if (has_target()) {
1363 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1364 if (ret) {
1365 pr_err("%s: Failed to stop governor\n", __func__);
1366 return ret;
1367 }
1368 }
1369
1370 if (!cpufreq_driver->setpolicy)
1371 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1372 policy->governor->name, CPUFREQ_NAME_LEN);
1373
1374 down_read(&policy->rwsem);
1375 cpus = cpumask_weight(policy->cpus);
1376 up_read(&policy->rwsem);
1377
1378 if (cpu != policy->cpu) {
1379 sysfs_remove_link(&dev->kobj, "cpufreq");
1380 } else if (cpus > 1) {
1381 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu);
1382 if (new_cpu >= 0) {
1383 update_policy_cpu(policy, new_cpu);
1384
1385 if (!cpufreq_suspended)
1386 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1387 __func__, new_cpu, cpu);
1388 }
1389 } else if (cpufreq_driver->stop_cpu && cpufreq_driver->setpolicy) {
1390 cpufreq_driver->stop_cpu(policy);
1391 }
1392
1393 return 0;
1394 }
1395
1396 static int __cpufreq_remove_dev_finish(struct device *dev,
1397 struct subsys_interface *sif)
1398 {
1399 unsigned int cpu = dev->id, cpus;
1400 int ret;
1401 unsigned long flags;
1402 struct cpufreq_policy *policy;
1403
1404 read_lock_irqsave(&cpufreq_driver_lock, flags);
1405 policy = per_cpu(cpufreq_cpu_data, cpu);
1406 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1407
1408 if (!policy) {
1409 pr_debug("%s: No cpu_data found\n", __func__);
1410 return -EINVAL;
1411 }
1412
1413 down_write(&policy->rwsem);
1414 cpus = cpumask_weight(policy->cpus);
1415
1416 if (cpus > 1)
1417 cpumask_clear_cpu(cpu, policy->cpus);
1418 up_write(&policy->rwsem);
1419
1420 /* If cpu is last user of policy, free policy */
1421 if (cpus == 1) {
1422 if (has_target()) {
1423 ret = __cpufreq_governor(policy,
1424 CPUFREQ_GOV_POLICY_EXIT);
1425 if (ret) {
1426 pr_err("%s: Failed to exit governor\n",
1427 __func__);
1428 return ret;
1429 }
1430 }
1431
1432 if (!cpufreq_suspended)
1433 cpufreq_policy_put_kobj(policy);
1434
1435 /*
1436 * Perform the ->exit() even during light-weight tear-down,
1437 * since this is a core component, and is essential for the
1438 * subsequent light-weight ->init() to succeed.
1439 */
1440 if (cpufreq_driver->exit)
1441 cpufreq_driver->exit(policy);
1442
1443 /* Remove policy from list of active policies */
1444 write_lock_irqsave(&cpufreq_driver_lock, flags);
1445 list_del(&policy->policy_list);
1446 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1447
1448 if (!cpufreq_suspended)
1449 cpufreq_policy_free(policy);
1450 } else if (has_target()) {
1451 ret = __cpufreq_governor(policy, CPUFREQ_GOV_START);
1452 if (!ret)
1453 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1454
1455 if (ret) {
1456 pr_err("%s: Failed to start governor\n", __func__);
1457 return ret;
1458 }
1459 }
1460
1461 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1462 return 0;
1463 }
1464
1465 /**
1466 * cpufreq_remove_dev - remove a CPU device
1467 *
1468 * Removes the cpufreq interface for a CPU device.
1469 */
1470 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1471 {
1472 unsigned int cpu = dev->id;
1473 int ret;
1474
1475 if (cpu_is_offline(cpu))
1476 return 0;
1477
1478 ret = __cpufreq_remove_dev_prepare(dev, sif);
1479
1480 if (!ret)
1481 ret = __cpufreq_remove_dev_finish(dev, sif);
1482
1483 return ret;
1484 }
1485
1486 static void handle_update(struct work_struct *work)
1487 {
1488 struct cpufreq_policy *policy =
1489 container_of(work, struct cpufreq_policy, update);
1490 unsigned int cpu = policy->cpu;
1491 pr_debug("handle_update for cpu %u called\n", cpu);
1492 cpufreq_update_policy(cpu);
1493 }
1494
1495 /**
1496 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1497 * in deep trouble.
1498 * @cpu: cpu number
1499 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1500 * @new_freq: CPU frequency the CPU actually runs at
1501 *
1502 * We adjust to current frequency first, and need to clean up later.
1503 * So either call to cpufreq_update_policy() or schedule handle_update()).
1504 */
1505 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1506 unsigned int new_freq)
1507 {
1508 struct cpufreq_policy *policy;
1509 struct cpufreq_freqs freqs;
1510 unsigned long flags;
1511
1512 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1513 old_freq, new_freq);
1514
1515 freqs.old = old_freq;
1516 freqs.new = new_freq;
1517
1518 read_lock_irqsave(&cpufreq_driver_lock, flags);
1519 policy = per_cpu(cpufreq_cpu_data, cpu);
1520 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1521
1522 cpufreq_freq_transition_begin(policy, &freqs);
1523 cpufreq_freq_transition_end(policy, &freqs, 0);
1524 }
1525
1526 /**
1527 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1528 * @cpu: CPU number
1529 *
1530 * This is the last known freq, without actually getting it from the driver.
1531 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1532 */
1533 unsigned int cpufreq_quick_get(unsigned int cpu)
1534 {
1535 struct cpufreq_policy *policy;
1536 unsigned int ret_freq = 0;
1537
1538 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1539 return cpufreq_driver->get(cpu);
1540
1541 policy = cpufreq_cpu_get(cpu);
1542 if (policy) {
1543 ret_freq = policy->cur;
1544 cpufreq_cpu_put(policy);
1545 }
1546
1547 return ret_freq;
1548 }
1549 EXPORT_SYMBOL(cpufreq_quick_get);
1550
1551 /**
1552 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1553 * @cpu: CPU number
1554 *
1555 * Just return the max possible frequency for a given CPU.
1556 */
1557 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1558 {
1559 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1560 unsigned int ret_freq = 0;
1561
1562 if (policy) {
1563 ret_freq = policy->max;
1564 cpufreq_cpu_put(policy);
1565 }
1566
1567 return ret_freq;
1568 }
1569 EXPORT_SYMBOL(cpufreq_quick_get_max);
1570
1571 static unsigned int __cpufreq_get(unsigned int cpu)
1572 {
1573 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1574 unsigned int ret_freq = 0;
1575
1576 if (!cpufreq_driver->get)
1577 return ret_freq;
1578
1579 ret_freq = cpufreq_driver->get(cpu);
1580
1581 if (ret_freq && policy->cur &&
1582 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1583 /* verify no discrepancy between actual and
1584 saved value exists */
1585 if (unlikely(ret_freq != policy->cur)) {
1586 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1587 schedule_work(&policy->update);
1588 }
1589 }
1590
1591 return ret_freq;
1592 }
1593
1594 /**
1595 * cpufreq_get - get the current CPU frequency (in kHz)
1596 * @cpu: CPU number
1597 *
1598 * Get the CPU current (static) CPU frequency
1599 */
1600 unsigned int cpufreq_get(unsigned int cpu)
1601 {
1602 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1603 unsigned int ret_freq = 0;
1604
1605 if (policy) {
1606 down_read(&policy->rwsem);
1607 ret_freq = __cpufreq_get(cpu);
1608 up_read(&policy->rwsem);
1609
1610 cpufreq_cpu_put(policy);
1611 }
1612
1613 return ret_freq;
1614 }
1615 EXPORT_SYMBOL(cpufreq_get);
1616
1617 static struct subsys_interface cpufreq_interface = {
1618 .name = "cpufreq",
1619 .subsys = &cpu_subsys,
1620 .add_dev = cpufreq_add_dev,
1621 .remove_dev = cpufreq_remove_dev,
1622 };
1623
1624 /*
1625 * In case platform wants some specific frequency to be configured
1626 * during suspend..
1627 */
1628 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1629 {
1630 int ret;
1631
1632 if (!policy->suspend_freq) {
1633 pr_err("%s: suspend_freq can't be zero\n", __func__);
1634 return -EINVAL;
1635 }
1636
1637 pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1638 policy->suspend_freq);
1639
1640 ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1641 CPUFREQ_RELATION_H);
1642 if (ret)
1643 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1644 __func__, policy->suspend_freq, ret);
1645
1646 return ret;
1647 }
1648 EXPORT_SYMBOL(cpufreq_generic_suspend);
1649
1650 /**
1651 * cpufreq_suspend() - Suspend CPUFreq governors
1652 *
1653 * Called during system wide Suspend/Hibernate cycles for suspending governors
1654 * as some platforms can't change frequency after this point in suspend cycle.
1655 * Because some of the devices (like: i2c, regulators, etc) they use for
1656 * changing frequency are suspended quickly after this point.
1657 */
1658 void cpufreq_suspend(void)
1659 {
1660 struct cpufreq_policy *policy;
1661
1662 if (!cpufreq_driver)
1663 return;
1664
1665 if (!has_target())
1666 return;
1667
1668 pr_debug("%s: Suspending Governors\n", __func__);
1669
1670 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1671 if (__cpufreq_governor(policy, CPUFREQ_GOV_STOP))
1672 pr_err("%s: Failed to stop governor for policy: %p\n",
1673 __func__, policy);
1674 else if (cpufreq_driver->suspend
1675 && cpufreq_driver->suspend(policy))
1676 pr_err("%s: Failed to suspend driver: %p\n", __func__,
1677 policy);
1678 }
1679
1680 cpufreq_suspended = true;
1681 }
1682
1683 /**
1684 * cpufreq_resume() - Resume CPUFreq governors
1685 *
1686 * Called during system wide Suspend/Hibernate cycle for resuming governors that
1687 * are suspended with cpufreq_suspend().
1688 */
1689 void cpufreq_resume(void)
1690 {
1691 struct cpufreq_policy *policy;
1692
1693 if (!cpufreq_driver)
1694 return;
1695
1696 if (!has_target())
1697 return;
1698
1699 pr_debug("%s: Resuming Governors\n", __func__);
1700
1701 cpufreq_suspended = false;
1702
1703 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
1704 if (cpufreq_driver->resume && cpufreq_driver->resume(policy))
1705 pr_err("%s: Failed to resume driver: %p\n", __func__,
1706 policy);
1707 else if (__cpufreq_governor(policy, CPUFREQ_GOV_START)
1708 || __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))
1709 pr_err("%s: Failed to start governor for policy: %p\n",
1710 __func__, policy);
1711
1712 /*
1713 * schedule call cpufreq_update_policy() for boot CPU, i.e. last
1714 * policy in list. It will verify that the current freq is in
1715 * sync with what we believe it to be.
1716 */
1717 if (list_is_last(&policy->policy_list, &cpufreq_policy_list))
1718 schedule_work(&policy->update);
1719 }
1720 }
1721
1722 /**
1723 * cpufreq_get_current_driver - return current driver's name
1724 *
1725 * Return the name string of the currently loaded cpufreq driver
1726 * or NULL, if none.
1727 */
1728 const char *cpufreq_get_current_driver(void)
1729 {
1730 if (cpufreq_driver)
1731 return cpufreq_driver->name;
1732
1733 return NULL;
1734 }
1735 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1736
1737 /*********************************************************************
1738 * NOTIFIER LISTS INTERFACE *
1739 *********************************************************************/
1740
1741 /**
1742 * cpufreq_register_notifier - register a driver with cpufreq
1743 * @nb: notifier function to register
1744 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1745 *
1746 * Add a driver to one of two lists: either a list of drivers that
1747 * are notified about clock rate changes (once before and once after
1748 * the transition), or a list of drivers that are notified about
1749 * changes in cpufreq policy.
1750 *
1751 * This function may sleep, and has the same return conditions as
1752 * blocking_notifier_chain_register.
1753 */
1754 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1755 {
1756 int ret;
1757
1758 if (cpufreq_disabled())
1759 return -EINVAL;
1760
1761 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1762
1763 switch (list) {
1764 case CPUFREQ_TRANSITION_NOTIFIER:
1765 ret = srcu_notifier_chain_register(
1766 &cpufreq_transition_notifier_list, nb);
1767 break;
1768 case CPUFREQ_POLICY_NOTIFIER:
1769 ret = blocking_notifier_chain_register(
1770 &cpufreq_policy_notifier_list, nb);
1771 break;
1772 default:
1773 ret = -EINVAL;
1774 }
1775
1776 return ret;
1777 }
1778 EXPORT_SYMBOL(cpufreq_register_notifier);
1779
1780 /**
1781 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1782 * @nb: notifier block to be unregistered
1783 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1784 *
1785 * Remove a driver from the CPU frequency notifier list.
1786 *
1787 * This function may sleep, and has the same return conditions as
1788 * blocking_notifier_chain_unregister.
1789 */
1790 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1791 {
1792 int ret;
1793
1794 if (cpufreq_disabled())
1795 return -EINVAL;
1796
1797 switch (list) {
1798 case CPUFREQ_TRANSITION_NOTIFIER:
1799 ret = srcu_notifier_chain_unregister(
1800 &cpufreq_transition_notifier_list, nb);
1801 break;
1802 case CPUFREQ_POLICY_NOTIFIER:
1803 ret = blocking_notifier_chain_unregister(
1804 &cpufreq_policy_notifier_list, nb);
1805 break;
1806 default:
1807 ret = -EINVAL;
1808 }
1809
1810 return ret;
1811 }
1812 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1813
1814
1815 /*********************************************************************
1816 * GOVERNORS *
1817 *********************************************************************/
1818
1819 static int __target_index(struct cpufreq_policy *policy,
1820 struct cpufreq_frequency_table *freq_table, int index)
1821 {
1822 struct cpufreq_freqs freqs;
1823 int retval = -EINVAL;
1824 bool notify;
1825
1826 notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1827
1828 if (notify) {
1829 freqs.old = policy->cur;
1830 freqs.new = freq_table[index].frequency;
1831 freqs.flags = 0;
1832
1833 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1834 __func__, policy->cpu, freqs.old, freqs.new);
1835
1836 cpufreq_freq_transition_begin(policy, &freqs);
1837 }
1838
1839 retval = cpufreq_driver->target_index(policy, index);
1840 if (retval)
1841 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1842 retval);
1843
1844 if (notify)
1845 cpufreq_freq_transition_end(policy, &freqs, retval);
1846
1847 return retval;
1848 }
1849
1850 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1851 unsigned int target_freq,
1852 unsigned int relation)
1853 {
1854 unsigned int old_target_freq = target_freq;
1855 int retval = -EINVAL;
1856
1857 if (cpufreq_disabled())
1858 return -ENODEV;
1859
1860 /* Make sure that target_freq is within supported range */
1861 if (target_freq > policy->max)
1862 target_freq = policy->max;
1863 if (target_freq < policy->min)
1864 target_freq = policy->min;
1865
1866 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1867 policy->cpu, target_freq, relation, old_target_freq);
1868
1869 /*
1870 * This might look like a redundant call as we are checking it again
1871 * after finding index. But it is left intentionally for cases where
1872 * exactly same freq is called again and so we can save on few function
1873 * calls.
1874 */
1875 if (target_freq == policy->cur)
1876 return 0;
1877
1878 if (cpufreq_driver->target)
1879 retval = cpufreq_driver->target(policy, target_freq, relation);
1880 else if (cpufreq_driver->target_index) {
1881 struct cpufreq_frequency_table *freq_table;
1882 int index;
1883
1884 freq_table = cpufreq_frequency_get_table(policy->cpu);
1885 if (unlikely(!freq_table)) {
1886 pr_err("%s: Unable to find freq_table\n", __func__);
1887 goto out;
1888 }
1889
1890 retval = cpufreq_frequency_table_target(policy, freq_table,
1891 target_freq, relation, &index);
1892 if (unlikely(retval)) {
1893 pr_err("%s: Unable to find matching freq\n", __func__);
1894 goto out;
1895 }
1896
1897 if (freq_table[index].frequency == policy->cur) {
1898 retval = 0;
1899 goto out;
1900 }
1901
1902 retval = __target_index(policy, freq_table, index);
1903 }
1904
1905 out:
1906 return retval;
1907 }
1908 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1909
1910 int cpufreq_driver_target(struct cpufreq_policy *policy,
1911 unsigned int target_freq,
1912 unsigned int relation)
1913 {
1914 int ret = -EINVAL;
1915
1916 down_write(&policy->rwsem);
1917
1918 ret = __cpufreq_driver_target(policy, target_freq, relation);
1919
1920 up_write(&policy->rwsem);
1921
1922 return ret;
1923 }
1924 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1925
1926 /*
1927 * when "event" is CPUFREQ_GOV_LIMITS
1928 */
1929
1930 static int __cpufreq_governor(struct cpufreq_policy *policy,
1931 unsigned int event)
1932 {
1933 int ret;
1934
1935 /* Only must be defined when default governor is known to have latency
1936 restrictions, like e.g. conservative or ondemand.
1937 That this is the case is already ensured in Kconfig
1938 */
1939 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1940 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1941 #else
1942 struct cpufreq_governor *gov = NULL;
1943 #endif
1944
1945 /* Don't start any governor operations if we are entering suspend */
1946 if (cpufreq_suspended)
1947 return 0;
1948
1949 if (policy->governor->max_transition_latency &&
1950 policy->cpuinfo.transition_latency >
1951 policy->governor->max_transition_latency) {
1952 if (!gov)
1953 return -EINVAL;
1954 else {
1955 pr_warn("%s governor failed, too long transition latency of HW, fallback to %s governor\n",
1956 policy->governor->name, gov->name);
1957 policy->governor = gov;
1958 }
1959 }
1960
1961 if (event == CPUFREQ_GOV_POLICY_INIT)
1962 if (!try_module_get(policy->governor->owner))
1963 return -EINVAL;
1964
1965 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1966 policy->cpu, event);
1967
1968 mutex_lock(&cpufreq_governor_lock);
1969 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1970 || (!policy->governor_enabled
1971 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1972 mutex_unlock(&cpufreq_governor_lock);
1973 return -EBUSY;
1974 }
1975
1976 if (event == CPUFREQ_GOV_STOP)
1977 policy->governor_enabled = false;
1978 else if (event == CPUFREQ_GOV_START)
1979 policy->governor_enabled = true;
1980
1981 mutex_unlock(&cpufreq_governor_lock);
1982
1983 ret = policy->governor->governor(policy, event);
1984
1985 if (!ret) {
1986 if (event == CPUFREQ_GOV_POLICY_INIT)
1987 policy->governor->initialized++;
1988 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1989 policy->governor->initialized--;
1990 } else {
1991 /* Restore original values */
1992 mutex_lock(&cpufreq_governor_lock);
1993 if (event == CPUFREQ_GOV_STOP)
1994 policy->governor_enabled = true;
1995 else if (event == CPUFREQ_GOV_START)
1996 policy->governor_enabled = false;
1997 mutex_unlock(&cpufreq_governor_lock);
1998 }
1999
2000 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
2001 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
2002 module_put(policy->governor->owner);
2003
2004 return ret;
2005 }
2006
2007 int cpufreq_register_governor(struct cpufreq_governor *governor)
2008 {
2009 int err;
2010
2011 if (!governor)
2012 return -EINVAL;
2013
2014 if (cpufreq_disabled())
2015 return -ENODEV;
2016
2017 mutex_lock(&cpufreq_governor_mutex);
2018
2019 governor->initialized = 0;
2020 err = -EBUSY;
2021 if (__find_governor(governor->name) == NULL) {
2022 err = 0;
2023 list_add(&governor->governor_list, &cpufreq_governor_list);
2024 }
2025
2026 mutex_unlock(&cpufreq_governor_mutex);
2027 return err;
2028 }
2029 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2030
2031 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2032 {
2033 int cpu;
2034
2035 if (!governor)
2036 return;
2037
2038 if (cpufreq_disabled())
2039 return;
2040
2041 for_each_present_cpu(cpu) {
2042 if (cpu_online(cpu))
2043 continue;
2044 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
2045 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
2046 }
2047
2048 mutex_lock(&cpufreq_governor_mutex);
2049 list_del(&governor->governor_list);
2050 mutex_unlock(&cpufreq_governor_mutex);
2051 return;
2052 }
2053 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2054
2055
2056 /*********************************************************************
2057 * POLICY INTERFACE *
2058 *********************************************************************/
2059
2060 /**
2061 * cpufreq_get_policy - get the current cpufreq_policy
2062 * @policy: struct cpufreq_policy into which the current cpufreq_policy
2063 * is written
2064 *
2065 * Reads the current cpufreq policy.
2066 */
2067 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2068 {
2069 struct cpufreq_policy *cpu_policy;
2070 if (!policy)
2071 return -EINVAL;
2072
2073 cpu_policy = cpufreq_cpu_get(cpu);
2074 if (!cpu_policy)
2075 return -EINVAL;
2076
2077 memcpy(policy, cpu_policy, sizeof(*policy));
2078
2079 cpufreq_cpu_put(cpu_policy);
2080 return 0;
2081 }
2082 EXPORT_SYMBOL(cpufreq_get_policy);
2083
2084 /*
2085 * policy : current policy.
2086 * new_policy: policy to be set.
2087 */
2088 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2089 struct cpufreq_policy *new_policy)
2090 {
2091 struct cpufreq_governor *old_gov;
2092 int ret;
2093
2094 pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2095 new_policy->cpu, new_policy->min, new_policy->max);
2096
2097 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2098
2099 if (new_policy->min > policy->max || new_policy->max < policy->min)
2100 return -EINVAL;
2101
2102 /* verify the cpu speed can be set within this limit */
2103 ret = cpufreq_driver->verify(new_policy);
2104 if (ret)
2105 return ret;
2106
2107 /* adjust if necessary - all reasons */
2108 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2109 CPUFREQ_ADJUST, new_policy);
2110
2111 /* adjust if necessary - hardware incompatibility*/
2112 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2113 CPUFREQ_INCOMPATIBLE, new_policy);
2114
2115 /*
2116 * verify the cpu speed can be set within this limit, which might be
2117 * different to the first one
2118 */
2119 ret = cpufreq_driver->verify(new_policy);
2120 if (ret)
2121 return ret;
2122
2123 /* notification of the new policy */
2124 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2125 CPUFREQ_NOTIFY, new_policy);
2126
2127 policy->min = new_policy->min;
2128 policy->max = new_policy->max;
2129
2130 pr_debug("new min and max freqs are %u - %u kHz\n",
2131 policy->min, policy->max);
2132
2133 if (cpufreq_driver->setpolicy) {
2134 policy->policy = new_policy->policy;
2135 pr_debug("setting range\n");
2136 return cpufreq_driver->setpolicy(new_policy);
2137 }
2138
2139 if (new_policy->governor == policy->governor)
2140 goto out;
2141
2142 pr_debug("governor switch\n");
2143
2144 /* save old, working values */
2145 old_gov = policy->governor;
2146 /* end old governor */
2147 if (old_gov) {
2148 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
2149 up_write(&policy->rwsem);
2150 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2151 down_write(&policy->rwsem);
2152 }
2153
2154 /* start new governor */
2155 policy->governor = new_policy->governor;
2156 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
2157 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START))
2158 goto out;
2159
2160 up_write(&policy->rwsem);
2161 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_EXIT);
2162 down_write(&policy->rwsem);
2163 }
2164
2165 /* new governor failed, so re-start old one */
2166 pr_debug("starting governor %s failed\n", policy->governor->name);
2167 if (old_gov) {
2168 policy->governor = old_gov;
2169 __cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT);
2170 __cpufreq_governor(policy, CPUFREQ_GOV_START);
2171 }
2172
2173 return -EINVAL;
2174
2175 out:
2176 pr_debug("governor: change or update limits\n");
2177 return __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2178 }
2179
2180 /**
2181 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
2182 * @cpu: CPU which shall be re-evaluated
2183 *
2184 * Useful for policy notifiers which have different necessities
2185 * at different times.
2186 */
2187 int cpufreq_update_policy(unsigned int cpu)
2188 {
2189 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2190 struct cpufreq_policy new_policy;
2191 int ret;
2192
2193 if (!policy) {
2194 ret = -ENODEV;
2195 goto no_policy;
2196 }
2197
2198 down_write(&policy->rwsem);
2199
2200 pr_debug("updating policy for CPU %u\n", cpu);
2201 memcpy(&new_policy, policy, sizeof(*policy));
2202 new_policy.min = policy->user_policy.min;
2203 new_policy.max = policy->user_policy.max;
2204 new_policy.policy = policy->user_policy.policy;
2205 new_policy.governor = policy->user_policy.governor;
2206
2207 /*
2208 * BIOS might change freq behind our back
2209 * -> ask driver for current freq and notify governors about a change
2210 */
2211 if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2212 new_policy.cur = cpufreq_driver->get(cpu);
2213 if (WARN_ON(!new_policy.cur)) {
2214 ret = -EIO;
2215 goto no_policy;
2216 }
2217
2218 if (!policy->cur) {
2219 pr_debug("Driver did not initialize current freq\n");
2220 policy->cur = new_policy.cur;
2221 } else {
2222 if (policy->cur != new_policy.cur && has_target())
2223 cpufreq_out_of_sync(cpu, policy->cur,
2224 new_policy.cur);
2225 }
2226 }
2227
2228 ret = cpufreq_set_policy(policy, &new_policy);
2229
2230 up_write(&policy->rwsem);
2231
2232 cpufreq_cpu_put(policy);
2233 no_policy:
2234 return ret;
2235 }
2236 EXPORT_SYMBOL(cpufreq_update_policy);
2237
2238 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2239 unsigned long action, void *hcpu)
2240 {
2241 unsigned int cpu = (unsigned long)hcpu;
2242 struct device *dev;
2243
2244 dev = get_cpu_device(cpu);
2245 if (dev) {
2246 switch (action & ~CPU_TASKS_FROZEN) {
2247 case CPU_ONLINE:
2248 __cpufreq_add_dev(dev, NULL);
2249 break;
2250
2251 case CPU_DOWN_PREPARE:
2252 __cpufreq_remove_dev_prepare(dev, NULL);
2253 break;
2254
2255 case CPU_POST_DEAD:
2256 __cpufreq_remove_dev_finish(dev, NULL);
2257 break;
2258
2259 case CPU_DOWN_FAILED:
2260 __cpufreq_add_dev(dev, NULL);
2261 break;
2262 }
2263 }
2264 return NOTIFY_OK;
2265 }
2266
2267 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2268 .notifier_call = cpufreq_cpu_callback,
2269 };
2270
2271 /*********************************************************************
2272 * BOOST *
2273 *********************************************************************/
2274 static int cpufreq_boost_set_sw(int state)
2275 {
2276 struct cpufreq_frequency_table *freq_table;
2277 struct cpufreq_policy *policy;
2278 int ret = -EINVAL;
2279
2280 list_for_each_entry(policy, &cpufreq_policy_list, policy_list) {
2281 freq_table = cpufreq_frequency_get_table(policy->cpu);
2282 if (freq_table) {
2283 ret = cpufreq_frequency_table_cpuinfo(policy,
2284 freq_table);
2285 if (ret) {
2286 pr_err("%s: Policy frequency update failed\n",
2287 __func__);
2288 break;
2289 }
2290 policy->user_policy.max = policy->max;
2291 __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
2292 }
2293 }
2294
2295 return ret;
2296 }
2297
2298 int cpufreq_boost_trigger_state(int state)
2299 {
2300 unsigned long flags;
2301 int ret = 0;
2302
2303 if (cpufreq_driver->boost_enabled == state)
2304 return 0;
2305
2306 write_lock_irqsave(&cpufreq_driver_lock, flags);
2307 cpufreq_driver->boost_enabled = state;
2308 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2309
2310 ret = cpufreq_driver->set_boost(state);
2311 if (ret) {
2312 write_lock_irqsave(&cpufreq_driver_lock, flags);
2313 cpufreq_driver->boost_enabled = !state;
2314 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2315
2316 pr_err("%s: Cannot %s BOOST\n",
2317 __func__, state ? "enable" : "disable");
2318 }
2319
2320 return ret;
2321 }
2322
2323 int cpufreq_boost_supported(void)
2324 {
2325 if (likely(cpufreq_driver))
2326 return cpufreq_driver->boost_supported;
2327
2328 return 0;
2329 }
2330 EXPORT_SYMBOL_GPL(cpufreq_boost_supported);
2331
2332 int cpufreq_boost_enabled(void)
2333 {
2334 return cpufreq_driver->boost_enabled;
2335 }
2336 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2337
2338 /*********************************************************************
2339 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2340 *********************************************************************/
2341
2342 /**
2343 * cpufreq_register_driver - register a CPU Frequency driver
2344 * @driver_data: A struct cpufreq_driver containing the values#
2345 * submitted by the CPU Frequency driver.
2346 *
2347 * Registers a CPU Frequency driver to this core code. This code
2348 * returns zero on success, -EBUSY when another driver got here first
2349 * (and isn't unregistered in the meantime).
2350 *
2351 */
2352 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2353 {
2354 unsigned long flags;
2355 int ret;
2356
2357 if (cpufreq_disabled())
2358 return -ENODEV;
2359
2360 if (!driver_data || !driver_data->verify || !driver_data->init ||
2361 !(driver_data->setpolicy || driver_data->target_index ||
2362 driver_data->target) ||
2363 (driver_data->setpolicy && (driver_data->target_index ||
2364 driver_data->target)))
2365 return -EINVAL;
2366
2367 pr_debug("trying to register driver %s\n", driver_data->name);
2368
2369 if (driver_data->setpolicy)
2370 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2371
2372 write_lock_irqsave(&cpufreq_driver_lock, flags);
2373 if (cpufreq_driver) {
2374 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2375 return -EEXIST;
2376 }
2377 cpufreq_driver = driver_data;
2378 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2379
2380 if (cpufreq_boost_supported()) {
2381 /*
2382 * Check if driver provides function to enable boost -
2383 * if not, use cpufreq_boost_set_sw as default
2384 */
2385 if (!cpufreq_driver->set_boost)
2386 cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2387
2388 ret = cpufreq_sysfs_create_file(&boost.attr);
2389 if (ret) {
2390 pr_err("%s: cannot register global BOOST sysfs file\n",
2391 __func__);
2392 goto err_null_driver;
2393 }
2394 }
2395
2396 ret = subsys_interface_register(&cpufreq_interface);
2397 if (ret)
2398 goto err_boost_unreg;
2399
2400 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2401 int i;
2402 ret = -ENODEV;
2403
2404 /* check for at least one working CPU */
2405 for (i = 0; i < nr_cpu_ids; i++)
2406 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2407 ret = 0;
2408 break;
2409 }
2410
2411 /* if all ->init() calls failed, unregister */
2412 if (ret) {
2413 pr_debug("no CPU initialized for driver %s\n",
2414 driver_data->name);
2415 goto err_if_unreg;
2416 }
2417 }
2418
2419 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2420 pr_debug("driver %s up and running\n", driver_data->name);
2421
2422 return 0;
2423 err_if_unreg:
2424 subsys_interface_unregister(&cpufreq_interface);
2425 err_boost_unreg:
2426 if (cpufreq_boost_supported())
2427 cpufreq_sysfs_remove_file(&boost.attr);
2428 err_null_driver:
2429 write_lock_irqsave(&cpufreq_driver_lock, flags);
2430 cpufreq_driver = NULL;
2431 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2432 return ret;
2433 }
2434 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2435
2436 /**
2437 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2438 *
2439 * Unregister the current CPUFreq driver. Only call this if you have
2440 * the right to do so, i.e. if you have succeeded in initialising before!
2441 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2442 * currently not initialised.
2443 */
2444 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2445 {
2446 unsigned long flags;
2447
2448 if (!cpufreq_driver || (driver != cpufreq_driver))
2449 return -EINVAL;
2450
2451 pr_debug("unregistering driver %s\n", driver->name);
2452
2453 subsys_interface_unregister(&cpufreq_interface);
2454 if (cpufreq_boost_supported())
2455 cpufreq_sysfs_remove_file(&boost.attr);
2456
2457 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2458
2459 down_write(&cpufreq_rwsem);
2460 write_lock_irqsave(&cpufreq_driver_lock, flags);
2461
2462 cpufreq_driver = NULL;
2463
2464 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2465 up_write(&cpufreq_rwsem);
2466
2467 return 0;
2468 }
2469 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2470
2471 static int __init cpufreq_core_init(void)
2472 {
2473 if (cpufreq_disabled())
2474 return -ENODEV;
2475
2476 cpufreq_global_kobject = kobject_create();
2477 BUG_ON(!cpufreq_global_kobject);
2478
2479 return 0;
2480 }
2481 core_initcall(cpufreq_core_init);
This page took 0.083671 seconds and 5 git commands to generate.