cpufreq: use cpufreq_driver->flags to mark CPUFREQ_HAVE_GOVERNOR_PER_POLICY
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 * (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7 *
8 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9 * Added handling for CPU hotplug
10 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11 * Fix handling for CPU hotplug -- affected CPUs
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/syscore_ops.h>
30 #include <linux/tick.h>
31 #include <trace/events/power.h>
32
33 /**
34 * The "cpufreq driver" - the arch- or hardware-dependent low
35 * level driver of CPUFreq support, and its spinlock. This lock
36 * also protects the cpufreq_cpu_data array.
37 */
38 static struct cpufreq_driver *cpufreq_driver;
39 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
40 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data_fallback);
41 static DEFINE_RWLOCK(cpufreq_driver_lock);
42 static DEFINE_MUTEX(cpufreq_governor_lock);
43 static LIST_HEAD(cpufreq_policy_list);
44
45 #ifdef CONFIG_HOTPLUG_CPU
46 /* This one keeps track of the previously set governor of a removed CPU */
47 static DEFINE_PER_CPU(char[CPUFREQ_NAME_LEN], cpufreq_cpu_governor);
48 #endif
49
50 /*
51 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
52 * all cpufreq/hotplug/workqueue/etc related lock issues.
53 *
54 * The rules for this semaphore:
55 * - Any routine that wants to read from the policy structure will
56 * do a down_read on this semaphore.
57 * - Any routine that will write to the policy structure and/or may take away
58 * the policy altogether (eg. CPU hotplug), will hold this lock in write
59 * mode before doing so.
60 *
61 * Additional rules:
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 * - Lock should not be held across
65 * __cpufreq_governor(data, CPUFREQ_GOV_STOP);
66 */
67 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
68
69 #define lock_policy_rwsem(mode, cpu) \
70 static void lock_policy_rwsem_##mode(int cpu) \
71 { \
72 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \
73 BUG_ON(!policy); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \
75 }
76
77 lock_policy_rwsem(read, cpu);
78 lock_policy_rwsem(write, cpu);
79
80 #define unlock_policy_rwsem(mode, cpu) \
81 static void unlock_policy_rwsem_##mode(int cpu) \
82 { \
83 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu); \
84 BUG_ON(!policy); \
85 up_##mode(&per_cpu(cpu_policy_rwsem, policy->cpu)); \
86 }
87
88 unlock_policy_rwsem(read, cpu);
89 unlock_policy_rwsem(write, cpu);
90
91 /*
92 * rwsem to guarantee that cpufreq driver module doesn't unload during critical
93 * sections
94 */
95 static DECLARE_RWSEM(cpufreq_rwsem);
96
97 /* internal prototypes */
98 static int __cpufreq_governor(struct cpufreq_policy *policy,
99 unsigned int event);
100 static unsigned int __cpufreq_get(unsigned int cpu);
101 static void handle_update(struct work_struct *work);
102
103 /**
104 * Two notifier lists: the "policy" list is involved in the
105 * validation process for a new CPU frequency policy; the
106 * "transition" list for kernel code that needs to handle
107 * changes to devices when the CPU clock speed changes.
108 * The mutex locks both lists.
109 */
110 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
111 static struct srcu_notifier_head cpufreq_transition_notifier_list;
112
113 static bool init_cpufreq_transition_notifier_list_called;
114 static int __init init_cpufreq_transition_notifier_list(void)
115 {
116 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
117 init_cpufreq_transition_notifier_list_called = true;
118 return 0;
119 }
120 pure_initcall(init_cpufreq_transition_notifier_list);
121
122 static int off __read_mostly;
123 static int cpufreq_disabled(void)
124 {
125 return off;
126 }
127 void disable_cpufreq(void)
128 {
129 off = 1;
130 }
131 static LIST_HEAD(cpufreq_governor_list);
132 static DEFINE_MUTEX(cpufreq_governor_mutex);
133
134 bool have_governor_per_policy(void)
135 {
136 return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
137 }
138 EXPORT_SYMBOL_GPL(have_governor_per_policy);
139
140 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
141 {
142 if (have_governor_per_policy())
143 return &policy->kobj;
144 else
145 return cpufreq_global_kobject;
146 }
147 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
148
149 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
150 {
151 u64 idle_time;
152 u64 cur_wall_time;
153 u64 busy_time;
154
155 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
156
157 busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
158 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
159 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
160 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
161 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
162 busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
163
164 idle_time = cur_wall_time - busy_time;
165 if (wall)
166 *wall = cputime_to_usecs(cur_wall_time);
167
168 return cputime_to_usecs(idle_time);
169 }
170
171 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
172 {
173 u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
174
175 if (idle_time == -1ULL)
176 return get_cpu_idle_time_jiffy(cpu, wall);
177 else if (!io_busy)
178 idle_time += get_cpu_iowait_time_us(cpu, wall);
179
180 return idle_time;
181 }
182 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
183
184 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
185 {
186 struct cpufreq_policy *policy = NULL;
187 unsigned long flags;
188
189 if (cpufreq_disabled() || (cpu >= nr_cpu_ids))
190 return NULL;
191
192 if (!down_read_trylock(&cpufreq_rwsem))
193 return NULL;
194
195 /* get the cpufreq driver */
196 read_lock_irqsave(&cpufreq_driver_lock, flags);
197
198 if (cpufreq_driver) {
199 /* get the CPU */
200 policy = per_cpu(cpufreq_cpu_data, cpu);
201 if (policy)
202 kobject_get(&policy->kobj);
203 }
204
205 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
206
207 if (!policy)
208 up_read(&cpufreq_rwsem);
209
210 return policy;
211 }
212 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
213
214 void cpufreq_cpu_put(struct cpufreq_policy *policy)
215 {
216 if (cpufreq_disabled())
217 return;
218
219 kobject_put(&policy->kobj);
220 up_read(&cpufreq_rwsem);
221 }
222 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
223
224 /*********************************************************************
225 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
226 *********************************************************************/
227
228 /**
229 * adjust_jiffies - adjust the system "loops_per_jiffy"
230 *
231 * This function alters the system "loops_per_jiffy" for the clock
232 * speed change. Note that loops_per_jiffy cannot be updated on SMP
233 * systems as each CPU might be scaled differently. So, use the arch
234 * per-CPU loops_per_jiffy value wherever possible.
235 */
236 #ifndef CONFIG_SMP
237 static unsigned long l_p_j_ref;
238 static unsigned int l_p_j_ref_freq;
239
240 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
241 {
242 if (ci->flags & CPUFREQ_CONST_LOOPS)
243 return;
244
245 if (!l_p_j_ref_freq) {
246 l_p_j_ref = loops_per_jiffy;
247 l_p_j_ref_freq = ci->old;
248 pr_debug("saving %lu as reference value for loops_per_jiffy; "
249 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
250 }
251 if ((val == CPUFREQ_POSTCHANGE && ci->old != ci->new) ||
252 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
253 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
254 ci->new);
255 pr_debug("scaling loops_per_jiffy to %lu "
256 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
257 }
258 }
259 #else
260 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
261 {
262 return;
263 }
264 #endif
265
266 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
267 struct cpufreq_freqs *freqs, unsigned int state)
268 {
269 BUG_ON(irqs_disabled());
270
271 if (cpufreq_disabled())
272 return;
273
274 freqs->flags = cpufreq_driver->flags;
275 pr_debug("notification %u of frequency transition to %u kHz\n",
276 state, freqs->new);
277
278 switch (state) {
279
280 case CPUFREQ_PRECHANGE:
281 /* detect if the driver reported a value as "old frequency"
282 * which is not equal to what the cpufreq core thinks is
283 * "old frequency".
284 */
285 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
286 if ((policy) && (policy->cpu == freqs->cpu) &&
287 (policy->cur) && (policy->cur != freqs->old)) {
288 pr_debug("Warning: CPU frequency is"
289 " %u, cpufreq assumed %u kHz.\n",
290 freqs->old, policy->cur);
291 freqs->old = policy->cur;
292 }
293 }
294 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
295 CPUFREQ_PRECHANGE, freqs);
296 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
297 break;
298
299 case CPUFREQ_POSTCHANGE:
300 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
301 pr_debug("FREQ: %lu - CPU: %lu", (unsigned long)freqs->new,
302 (unsigned long)freqs->cpu);
303 trace_cpu_frequency(freqs->new, freqs->cpu);
304 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
305 CPUFREQ_POSTCHANGE, freqs);
306 if (likely(policy) && likely(policy->cpu == freqs->cpu))
307 policy->cur = freqs->new;
308 break;
309 }
310 }
311
312 /**
313 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
314 * on frequency transition.
315 *
316 * This function calls the transition notifiers and the "adjust_jiffies"
317 * function. It is called twice on all CPU frequency changes that have
318 * external effects.
319 */
320 void cpufreq_notify_transition(struct cpufreq_policy *policy,
321 struct cpufreq_freqs *freqs, unsigned int state)
322 {
323 for_each_cpu(freqs->cpu, policy->cpus)
324 __cpufreq_notify_transition(policy, freqs, state);
325 }
326 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
327
328
329 /*********************************************************************
330 * SYSFS INTERFACE *
331 *********************************************************************/
332
333 static struct cpufreq_governor *__find_governor(const char *str_governor)
334 {
335 struct cpufreq_governor *t;
336
337 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
338 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
339 return t;
340
341 return NULL;
342 }
343
344 /**
345 * cpufreq_parse_governor - parse a governor string
346 */
347 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
348 struct cpufreq_governor **governor)
349 {
350 int err = -EINVAL;
351
352 if (!cpufreq_driver)
353 goto out;
354
355 if (cpufreq_driver->setpolicy) {
356 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
357 *policy = CPUFREQ_POLICY_PERFORMANCE;
358 err = 0;
359 } else if (!strnicmp(str_governor, "powersave",
360 CPUFREQ_NAME_LEN)) {
361 *policy = CPUFREQ_POLICY_POWERSAVE;
362 err = 0;
363 }
364 } else if (cpufreq_driver->target) {
365 struct cpufreq_governor *t;
366
367 mutex_lock(&cpufreq_governor_mutex);
368
369 t = __find_governor(str_governor);
370
371 if (t == NULL) {
372 int ret;
373
374 mutex_unlock(&cpufreq_governor_mutex);
375 ret = request_module("cpufreq_%s", str_governor);
376 mutex_lock(&cpufreq_governor_mutex);
377
378 if (ret == 0)
379 t = __find_governor(str_governor);
380 }
381
382 if (t != NULL) {
383 *governor = t;
384 err = 0;
385 }
386
387 mutex_unlock(&cpufreq_governor_mutex);
388 }
389 out:
390 return err;
391 }
392
393 /**
394 * cpufreq_per_cpu_attr_read() / show_##file_name() -
395 * print out cpufreq information
396 *
397 * Write out information from cpufreq_driver->policy[cpu]; object must be
398 * "unsigned int".
399 */
400
401 #define show_one(file_name, object) \
402 static ssize_t show_##file_name \
403 (struct cpufreq_policy *policy, char *buf) \
404 { \
405 return sprintf(buf, "%u\n", policy->object); \
406 }
407
408 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
409 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
410 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
411 show_one(scaling_min_freq, min);
412 show_one(scaling_max_freq, max);
413 show_one(scaling_cur_freq, cur);
414
415 static int cpufreq_set_policy(struct cpufreq_policy *policy,
416 struct cpufreq_policy *new_policy);
417
418 /**
419 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
420 */
421 #define store_one(file_name, object) \
422 static ssize_t store_##file_name \
423 (struct cpufreq_policy *policy, const char *buf, size_t count) \
424 { \
425 int ret; \
426 struct cpufreq_policy new_policy; \
427 \
428 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
429 if (ret) \
430 return -EINVAL; \
431 \
432 ret = sscanf(buf, "%u", &new_policy.object); \
433 if (ret != 1) \
434 return -EINVAL; \
435 \
436 ret = cpufreq_set_policy(policy, &new_policy); \
437 policy->user_policy.object = policy->object; \
438 \
439 return ret ? ret : count; \
440 }
441
442 store_one(scaling_min_freq, min);
443 store_one(scaling_max_freq, max);
444
445 /**
446 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
447 */
448 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
449 char *buf)
450 {
451 unsigned int cur_freq = __cpufreq_get(policy->cpu);
452 if (!cur_freq)
453 return sprintf(buf, "<unknown>");
454 return sprintf(buf, "%u\n", cur_freq);
455 }
456
457 /**
458 * show_scaling_governor - show the current policy for the specified CPU
459 */
460 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
461 {
462 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
463 return sprintf(buf, "powersave\n");
464 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
465 return sprintf(buf, "performance\n");
466 else if (policy->governor)
467 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
468 policy->governor->name);
469 return -EINVAL;
470 }
471
472 /**
473 * store_scaling_governor - store policy for the specified CPU
474 */
475 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
476 const char *buf, size_t count)
477 {
478 int ret;
479 char str_governor[16];
480 struct cpufreq_policy new_policy;
481
482 ret = cpufreq_get_policy(&new_policy, policy->cpu);
483 if (ret)
484 return ret;
485
486 ret = sscanf(buf, "%15s", str_governor);
487 if (ret != 1)
488 return -EINVAL;
489
490 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
491 &new_policy.governor))
492 return -EINVAL;
493
494 ret = cpufreq_set_policy(policy, &new_policy);
495
496 policy->user_policy.policy = policy->policy;
497 policy->user_policy.governor = policy->governor;
498
499 if (ret)
500 return ret;
501 else
502 return count;
503 }
504
505 /**
506 * show_scaling_driver - show the cpufreq driver currently loaded
507 */
508 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
509 {
510 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
511 }
512
513 /**
514 * show_scaling_available_governors - show the available CPUfreq governors
515 */
516 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
517 char *buf)
518 {
519 ssize_t i = 0;
520 struct cpufreq_governor *t;
521
522 if (!cpufreq_driver->target) {
523 i += sprintf(buf, "performance powersave");
524 goto out;
525 }
526
527 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
528 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
529 - (CPUFREQ_NAME_LEN + 2)))
530 goto out;
531 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
532 }
533 out:
534 i += sprintf(&buf[i], "\n");
535 return i;
536 }
537
538 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
539 {
540 ssize_t i = 0;
541 unsigned int cpu;
542
543 for_each_cpu(cpu, mask) {
544 if (i)
545 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
546 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
547 if (i >= (PAGE_SIZE - 5))
548 break;
549 }
550 i += sprintf(&buf[i], "\n");
551 return i;
552 }
553 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
554
555 /**
556 * show_related_cpus - show the CPUs affected by each transition even if
557 * hw coordination is in use
558 */
559 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
560 {
561 return cpufreq_show_cpus(policy->related_cpus, buf);
562 }
563
564 /**
565 * show_affected_cpus - show the CPUs affected by each transition
566 */
567 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
568 {
569 return cpufreq_show_cpus(policy->cpus, buf);
570 }
571
572 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
573 const char *buf, size_t count)
574 {
575 unsigned int freq = 0;
576 unsigned int ret;
577
578 if (!policy->governor || !policy->governor->store_setspeed)
579 return -EINVAL;
580
581 ret = sscanf(buf, "%u", &freq);
582 if (ret != 1)
583 return -EINVAL;
584
585 policy->governor->store_setspeed(policy, freq);
586
587 return count;
588 }
589
590 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
591 {
592 if (!policy->governor || !policy->governor->show_setspeed)
593 return sprintf(buf, "<unsupported>\n");
594
595 return policy->governor->show_setspeed(policy, buf);
596 }
597
598 /**
599 * show_bios_limit - show the current cpufreq HW/BIOS limitation
600 */
601 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
602 {
603 unsigned int limit;
604 int ret;
605 if (cpufreq_driver->bios_limit) {
606 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
607 if (!ret)
608 return sprintf(buf, "%u\n", limit);
609 }
610 return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
611 }
612
613 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
614 cpufreq_freq_attr_ro(cpuinfo_min_freq);
615 cpufreq_freq_attr_ro(cpuinfo_max_freq);
616 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
617 cpufreq_freq_attr_ro(scaling_available_governors);
618 cpufreq_freq_attr_ro(scaling_driver);
619 cpufreq_freq_attr_ro(scaling_cur_freq);
620 cpufreq_freq_attr_ro(bios_limit);
621 cpufreq_freq_attr_ro(related_cpus);
622 cpufreq_freq_attr_ro(affected_cpus);
623 cpufreq_freq_attr_rw(scaling_min_freq);
624 cpufreq_freq_attr_rw(scaling_max_freq);
625 cpufreq_freq_attr_rw(scaling_governor);
626 cpufreq_freq_attr_rw(scaling_setspeed);
627
628 static struct attribute *default_attrs[] = {
629 &cpuinfo_min_freq.attr,
630 &cpuinfo_max_freq.attr,
631 &cpuinfo_transition_latency.attr,
632 &scaling_min_freq.attr,
633 &scaling_max_freq.attr,
634 &affected_cpus.attr,
635 &related_cpus.attr,
636 &scaling_governor.attr,
637 &scaling_driver.attr,
638 &scaling_available_governors.attr,
639 &scaling_setspeed.attr,
640 NULL
641 };
642
643 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
644 #define to_attr(a) container_of(a, struct freq_attr, attr)
645
646 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
647 {
648 struct cpufreq_policy *policy = to_policy(kobj);
649 struct freq_attr *fattr = to_attr(attr);
650 ssize_t ret;
651
652 if (!down_read_trylock(&cpufreq_rwsem))
653 return -EINVAL;
654
655 lock_policy_rwsem_read(policy->cpu);
656
657 if (fattr->show)
658 ret = fattr->show(policy, buf);
659 else
660 ret = -EIO;
661
662 unlock_policy_rwsem_read(policy->cpu);
663 up_read(&cpufreq_rwsem);
664
665 return ret;
666 }
667
668 static ssize_t store(struct kobject *kobj, struct attribute *attr,
669 const char *buf, size_t count)
670 {
671 struct cpufreq_policy *policy = to_policy(kobj);
672 struct freq_attr *fattr = to_attr(attr);
673 ssize_t ret = -EINVAL;
674
675 get_online_cpus();
676
677 if (!cpu_online(policy->cpu))
678 goto unlock;
679
680 if (!down_read_trylock(&cpufreq_rwsem))
681 goto unlock;
682
683 lock_policy_rwsem_write(policy->cpu);
684
685 if (fattr->store)
686 ret = fattr->store(policy, buf, count);
687 else
688 ret = -EIO;
689
690 unlock_policy_rwsem_write(policy->cpu);
691
692 up_read(&cpufreq_rwsem);
693 unlock:
694 put_online_cpus();
695
696 return ret;
697 }
698
699 static void cpufreq_sysfs_release(struct kobject *kobj)
700 {
701 struct cpufreq_policy *policy = to_policy(kobj);
702 pr_debug("last reference is dropped\n");
703 complete(&policy->kobj_unregister);
704 }
705
706 static const struct sysfs_ops sysfs_ops = {
707 .show = show,
708 .store = store,
709 };
710
711 static struct kobj_type ktype_cpufreq = {
712 .sysfs_ops = &sysfs_ops,
713 .default_attrs = default_attrs,
714 .release = cpufreq_sysfs_release,
715 };
716
717 struct kobject *cpufreq_global_kobject;
718 EXPORT_SYMBOL(cpufreq_global_kobject);
719
720 static int cpufreq_global_kobject_usage;
721
722 int cpufreq_get_global_kobject(void)
723 {
724 if (!cpufreq_global_kobject_usage++)
725 return kobject_add(cpufreq_global_kobject,
726 &cpu_subsys.dev_root->kobj, "%s", "cpufreq");
727
728 return 0;
729 }
730 EXPORT_SYMBOL(cpufreq_get_global_kobject);
731
732 void cpufreq_put_global_kobject(void)
733 {
734 if (!--cpufreq_global_kobject_usage)
735 kobject_del(cpufreq_global_kobject);
736 }
737 EXPORT_SYMBOL(cpufreq_put_global_kobject);
738
739 int cpufreq_sysfs_create_file(const struct attribute *attr)
740 {
741 int ret = cpufreq_get_global_kobject();
742
743 if (!ret) {
744 ret = sysfs_create_file(cpufreq_global_kobject, attr);
745 if (ret)
746 cpufreq_put_global_kobject();
747 }
748
749 return ret;
750 }
751 EXPORT_SYMBOL(cpufreq_sysfs_create_file);
752
753 void cpufreq_sysfs_remove_file(const struct attribute *attr)
754 {
755 sysfs_remove_file(cpufreq_global_kobject, attr);
756 cpufreq_put_global_kobject();
757 }
758 EXPORT_SYMBOL(cpufreq_sysfs_remove_file);
759
760 /* symlink affected CPUs */
761 static int cpufreq_add_dev_symlink(struct cpufreq_policy *policy)
762 {
763 unsigned int j;
764 int ret = 0;
765
766 for_each_cpu(j, policy->cpus) {
767 struct device *cpu_dev;
768
769 if (j == policy->cpu)
770 continue;
771
772 pr_debug("Adding link for CPU: %u\n", j);
773 cpu_dev = get_cpu_device(j);
774 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
775 "cpufreq");
776 if (ret)
777 break;
778 }
779 return ret;
780 }
781
782 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy,
783 struct device *dev)
784 {
785 struct freq_attr **drv_attr;
786 int ret = 0;
787
788 /* prepare interface data */
789 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
790 &dev->kobj, "cpufreq");
791 if (ret)
792 return ret;
793
794 /* set up files for this cpu device */
795 drv_attr = cpufreq_driver->attr;
796 while ((drv_attr) && (*drv_attr)) {
797 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
798 if (ret)
799 goto err_out_kobj_put;
800 drv_attr++;
801 }
802 if (cpufreq_driver->get) {
803 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
804 if (ret)
805 goto err_out_kobj_put;
806 }
807 if (cpufreq_driver->target) {
808 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
809 if (ret)
810 goto err_out_kobj_put;
811 }
812 if (cpufreq_driver->bios_limit) {
813 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
814 if (ret)
815 goto err_out_kobj_put;
816 }
817
818 ret = cpufreq_add_dev_symlink(policy);
819 if (ret)
820 goto err_out_kobj_put;
821
822 return ret;
823
824 err_out_kobj_put:
825 kobject_put(&policy->kobj);
826 wait_for_completion(&policy->kobj_unregister);
827 return ret;
828 }
829
830 static void cpufreq_init_policy(struct cpufreq_policy *policy)
831 {
832 struct cpufreq_policy new_policy;
833 int ret = 0;
834
835 memcpy(&new_policy, policy, sizeof(*policy));
836 /* assure that the starting sequence is run in cpufreq_set_policy */
837 policy->governor = NULL;
838
839 /* set default policy */
840 ret = cpufreq_set_policy(policy, &new_policy);
841 policy->user_policy.policy = policy->policy;
842 policy->user_policy.governor = policy->governor;
843
844 if (ret) {
845 pr_debug("setting policy failed\n");
846 if (cpufreq_driver->exit)
847 cpufreq_driver->exit(policy);
848 }
849 }
850
851 #ifdef CONFIG_HOTPLUG_CPU
852 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy,
853 unsigned int cpu, struct device *dev,
854 bool frozen)
855 {
856 int ret = 0, has_target = !!cpufreq_driver->target;
857 unsigned long flags;
858
859 if (has_target) {
860 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
861 if (ret) {
862 pr_err("%s: Failed to stop governor\n", __func__);
863 return ret;
864 }
865 }
866
867 lock_policy_rwsem_write(policy->cpu);
868
869 write_lock_irqsave(&cpufreq_driver_lock, flags);
870
871 cpumask_set_cpu(cpu, policy->cpus);
872 per_cpu(cpufreq_cpu_data, cpu) = policy;
873 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
874
875 unlock_policy_rwsem_write(policy->cpu);
876
877 if (has_target) {
878 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
879 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
880 pr_err("%s: Failed to start governor\n", __func__);
881 return ret;
882 }
883 }
884
885 /* Don't touch sysfs links during light-weight init */
886 if (!frozen)
887 ret = sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq");
888
889 return ret;
890 }
891 #endif
892
893 static struct cpufreq_policy *cpufreq_policy_restore(unsigned int cpu)
894 {
895 struct cpufreq_policy *policy;
896 unsigned long flags;
897
898 read_lock_irqsave(&cpufreq_driver_lock, flags);
899
900 policy = per_cpu(cpufreq_cpu_data_fallback, cpu);
901
902 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
903
904 return policy;
905 }
906
907 static struct cpufreq_policy *cpufreq_policy_alloc(void)
908 {
909 struct cpufreq_policy *policy;
910
911 policy = kzalloc(sizeof(*policy), GFP_KERNEL);
912 if (!policy)
913 return NULL;
914
915 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
916 goto err_free_policy;
917
918 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
919 goto err_free_cpumask;
920
921 INIT_LIST_HEAD(&policy->policy_list);
922 return policy;
923
924 err_free_cpumask:
925 free_cpumask_var(policy->cpus);
926 err_free_policy:
927 kfree(policy);
928
929 return NULL;
930 }
931
932 static void cpufreq_policy_free(struct cpufreq_policy *policy)
933 {
934 free_cpumask_var(policy->related_cpus);
935 free_cpumask_var(policy->cpus);
936 kfree(policy);
937 }
938
939 static void update_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
940 {
941 if (cpu == policy->cpu)
942 return;
943
944 /*
945 * Take direct locks as lock_policy_rwsem_write wouldn't work here.
946 * Also lock for last cpu is enough here as contention will happen only
947 * after policy->cpu is changed and after it is changed, other threads
948 * will try to acquire lock for new cpu. And policy is already updated
949 * by then.
950 */
951 down_write(&per_cpu(cpu_policy_rwsem, policy->cpu));
952
953 policy->last_cpu = policy->cpu;
954 policy->cpu = cpu;
955
956 up_write(&per_cpu(cpu_policy_rwsem, policy->last_cpu));
957
958 #ifdef CONFIG_CPU_FREQ_TABLE
959 cpufreq_frequency_table_update_policy_cpu(policy);
960 #endif
961 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
962 CPUFREQ_UPDATE_POLICY_CPU, policy);
963 }
964
965 static int __cpufreq_add_dev(struct device *dev, struct subsys_interface *sif,
966 bool frozen)
967 {
968 unsigned int j, cpu = dev->id;
969 int ret = -ENOMEM;
970 struct cpufreq_policy *policy;
971 unsigned long flags;
972 #ifdef CONFIG_HOTPLUG_CPU
973 struct cpufreq_policy *tpolicy;
974 struct cpufreq_governor *gov;
975 #endif
976
977 if (cpu_is_offline(cpu))
978 return 0;
979
980 pr_debug("adding CPU %u\n", cpu);
981
982 #ifdef CONFIG_SMP
983 /* check whether a different CPU already registered this
984 * CPU because it is in the same boat. */
985 policy = cpufreq_cpu_get(cpu);
986 if (unlikely(policy)) {
987 cpufreq_cpu_put(policy);
988 return 0;
989 }
990 #endif
991
992 if (!down_read_trylock(&cpufreq_rwsem))
993 return 0;
994
995 #ifdef CONFIG_HOTPLUG_CPU
996 /* Check if this cpu was hot-unplugged earlier and has siblings */
997 read_lock_irqsave(&cpufreq_driver_lock, flags);
998 list_for_each_entry(tpolicy, &cpufreq_policy_list, policy_list) {
999 if (cpumask_test_cpu(cpu, tpolicy->related_cpus)) {
1000 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1001 ret = cpufreq_add_policy_cpu(tpolicy, cpu, dev, frozen);
1002 up_read(&cpufreq_rwsem);
1003 return ret;
1004 }
1005 }
1006 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1007 #endif
1008
1009 if (frozen)
1010 /* Restore the saved policy when doing light-weight init */
1011 policy = cpufreq_policy_restore(cpu);
1012 else
1013 policy = cpufreq_policy_alloc();
1014
1015 if (!policy)
1016 goto nomem_out;
1017
1018
1019 /*
1020 * In the resume path, since we restore a saved policy, the assignment
1021 * to policy->cpu is like an update of the existing policy, rather than
1022 * the creation of a brand new one. So we need to perform this update
1023 * by invoking update_policy_cpu().
1024 */
1025 if (frozen && cpu != policy->cpu)
1026 update_policy_cpu(policy, cpu);
1027 else
1028 policy->cpu = cpu;
1029
1030 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
1031 cpumask_copy(policy->cpus, cpumask_of(cpu));
1032
1033 init_completion(&policy->kobj_unregister);
1034 INIT_WORK(&policy->update, handle_update);
1035
1036 /* call driver. From then on the cpufreq must be able
1037 * to accept all calls to ->verify and ->setpolicy for this CPU
1038 */
1039 ret = cpufreq_driver->init(policy);
1040 if (ret) {
1041 pr_debug("initialization failed\n");
1042 goto err_set_policy_cpu;
1043 }
1044
1045 /* related cpus should atleast have policy->cpus */
1046 cpumask_or(policy->related_cpus, policy->related_cpus, policy->cpus);
1047
1048 /*
1049 * affected cpus must always be the one, which are online. We aren't
1050 * managing offline cpus here.
1051 */
1052 cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1053
1054 policy->user_policy.min = policy->min;
1055 policy->user_policy.max = policy->max;
1056
1057 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1058 CPUFREQ_START, policy);
1059
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 gov = __find_governor(per_cpu(cpufreq_cpu_governor, cpu));
1062 if (gov) {
1063 policy->governor = gov;
1064 pr_debug("Restoring governor %s for cpu %d\n",
1065 policy->governor->name, cpu);
1066 }
1067 #endif
1068
1069 write_lock_irqsave(&cpufreq_driver_lock, flags);
1070 for_each_cpu(j, policy->cpus)
1071 per_cpu(cpufreq_cpu_data, j) = policy;
1072 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1073
1074 if (!frozen) {
1075 ret = cpufreq_add_dev_interface(policy, dev);
1076 if (ret)
1077 goto err_out_unregister;
1078 }
1079
1080 write_lock_irqsave(&cpufreq_driver_lock, flags);
1081 list_add(&policy->policy_list, &cpufreq_policy_list);
1082 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1083
1084 cpufreq_init_policy(policy);
1085
1086 kobject_uevent(&policy->kobj, KOBJ_ADD);
1087 up_read(&cpufreq_rwsem);
1088
1089 pr_debug("initialization complete\n");
1090
1091 return 0;
1092
1093 err_out_unregister:
1094 write_lock_irqsave(&cpufreq_driver_lock, flags);
1095 for_each_cpu(j, policy->cpus)
1096 per_cpu(cpufreq_cpu_data, j) = NULL;
1097 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1098
1099 err_set_policy_cpu:
1100 cpufreq_policy_free(policy);
1101 nomem_out:
1102 up_read(&cpufreq_rwsem);
1103
1104 return ret;
1105 }
1106
1107 /**
1108 * cpufreq_add_dev - add a CPU device
1109 *
1110 * Adds the cpufreq interface for a CPU device.
1111 *
1112 * The Oracle says: try running cpufreq registration/unregistration concurrently
1113 * with with cpu hotplugging and all hell will break loose. Tried to clean this
1114 * mess up, but more thorough testing is needed. - Mathieu
1115 */
1116 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1117 {
1118 return __cpufreq_add_dev(dev, sif, false);
1119 }
1120
1121 static int cpufreq_nominate_new_policy_cpu(struct cpufreq_policy *policy,
1122 unsigned int old_cpu, bool frozen)
1123 {
1124 struct device *cpu_dev;
1125 int ret;
1126
1127 /* first sibling now owns the new sysfs dir */
1128 cpu_dev = get_cpu_device(cpumask_any_but(policy->cpus, old_cpu));
1129
1130 /* Don't touch sysfs files during light-weight tear-down */
1131 if (frozen)
1132 return cpu_dev->id;
1133
1134 sysfs_remove_link(&cpu_dev->kobj, "cpufreq");
1135 ret = kobject_move(&policy->kobj, &cpu_dev->kobj);
1136 if (ret) {
1137 pr_err("%s: Failed to move kobj: %d", __func__, ret);
1138
1139 lock_policy_rwsem_write(old_cpu);
1140 cpumask_set_cpu(old_cpu, policy->cpus);
1141 unlock_policy_rwsem_write(old_cpu);
1142
1143 ret = sysfs_create_link(&cpu_dev->kobj, &policy->kobj,
1144 "cpufreq");
1145
1146 return -EINVAL;
1147 }
1148
1149 return cpu_dev->id;
1150 }
1151
1152 static int __cpufreq_remove_dev_prepare(struct device *dev,
1153 struct subsys_interface *sif,
1154 bool frozen)
1155 {
1156 unsigned int cpu = dev->id, cpus;
1157 int new_cpu, ret;
1158 unsigned long flags;
1159 struct cpufreq_policy *policy;
1160
1161 pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1162
1163 write_lock_irqsave(&cpufreq_driver_lock, flags);
1164
1165 policy = per_cpu(cpufreq_cpu_data, cpu);
1166
1167 /* Save the policy somewhere when doing a light-weight tear-down */
1168 if (frozen)
1169 per_cpu(cpufreq_cpu_data_fallback, cpu) = policy;
1170
1171 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1172
1173 if (!policy) {
1174 pr_debug("%s: No cpu_data found\n", __func__);
1175 return -EINVAL;
1176 }
1177
1178 if (cpufreq_driver->target) {
1179 ret = __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1180 if (ret) {
1181 pr_err("%s: Failed to stop governor\n", __func__);
1182 return ret;
1183 }
1184 }
1185
1186 #ifdef CONFIG_HOTPLUG_CPU
1187 if (!cpufreq_driver->setpolicy)
1188 strncpy(per_cpu(cpufreq_cpu_governor, cpu),
1189 policy->governor->name, CPUFREQ_NAME_LEN);
1190 #endif
1191
1192 lock_policy_rwsem_read(cpu);
1193 cpus = cpumask_weight(policy->cpus);
1194 unlock_policy_rwsem_read(cpu);
1195
1196 if (cpu != policy->cpu) {
1197 if (!frozen)
1198 sysfs_remove_link(&dev->kobj, "cpufreq");
1199 } else if (cpus > 1) {
1200 new_cpu = cpufreq_nominate_new_policy_cpu(policy, cpu, frozen);
1201 if (new_cpu >= 0) {
1202 update_policy_cpu(policy, new_cpu);
1203
1204 if (!frozen) {
1205 pr_debug("%s: policy Kobject moved to cpu: %d from: %d\n",
1206 __func__, new_cpu, cpu);
1207 }
1208 }
1209 }
1210
1211 return 0;
1212 }
1213
1214 static int __cpufreq_remove_dev_finish(struct device *dev,
1215 struct subsys_interface *sif,
1216 bool frozen)
1217 {
1218 unsigned int cpu = dev->id, cpus;
1219 int ret;
1220 unsigned long flags;
1221 struct cpufreq_policy *policy;
1222 struct kobject *kobj;
1223 struct completion *cmp;
1224
1225 read_lock_irqsave(&cpufreq_driver_lock, flags);
1226 policy = per_cpu(cpufreq_cpu_data, cpu);
1227 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1228
1229 if (!policy) {
1230 pr_debug("%s: No cpu_data found\n", __func__);
1231 return -EINVAL;
1232 }
1233
1234 lock_policy_rwsem_write(cpu);
1235 cpus = cpumask_weight(policy->cpus);
1236
1237 if (cpus > 1)
1238 cpumask_clear_cpu(cpu, policy->cpus);
1239 unlock_policy_rwsem_write(cpu);
1240
1241 /* If cpu is last user of policy, free policy */
1242 if (cpus == 1) {
1243 if (cpufreq_driver->target) {
1244 ret = __cpufreq_governor(policy,
1245 CPUFREQ_GOV_POLICY_EXIT);
1246 if (ret) {
1247 pr_err("%s: Failed to exit governor\n",
1248 __func__);
1249 return ret;
1250 }
1251 }
1252
1253 if (!frozen) {
1254 lock_policy_rwsem_read(cpu);
1255 kobj = &policy->kobj;
1256 cmp = &policy->kobj_unregister;
1257 unlock_policy_rwsem_read(cpu);
1258 kobject_put(kobj);
1259
1260 /*
1261 * We need to make sure that the underlying kobj is
1262 * actually not referenced anymore by anybody before we
1263 * proceed with unloading.
1264 */
1265 pr_debug("waiting for dropping of refcount\n");
1266 wait_for_completion(cmp);
1267 pr_debug("wait complete\n");
1268 }
1269
1270 /*
1271 * Perform the ->exit() even during light-weight tear-down,
1272 * since this is a core component, and is essential for the
1273 * subsequent light-weight ->init() to succeed.
1274 */
1275 if (cpufreq_driver->exit)
1276 cpufreq_driver->exit(policy);
1277
1278 /* Remove policy from list of active policies */
1279 write_lock_irqsave(&cpufreq_driver_lock, flags);
1280 list_del(&policy->policy_list);
1281 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1282
1283 if (!frozen)
1284 cpufreq_policy_free(policy);
1285 } else {
1286 if (cpufreq_driver->target) {
1287 if ((ret = __cpufreq_governor(policy, CPUFREQ_GOV_START)) ||
1288 (ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS))) {
1289 pr_err("%s: Failed to start governor\n",
1290 __func__);
1291 return ret;
1292 }
1293 }
1294 }
1295
1296 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1297 return 0;
1298 }
1299
1300 /**
1301 * cpufreq_remove_dev - remove a CPU device
1302 *
1303 * Removes the cpufreq interface for a CPU device.
1304 */
1305 static int cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1306 {
1307 unsigned int cpu = dev->id;
1308 int ret;
1309
1310 if (cpu_is_offline(cpu))
1311 return 0;
1312
1313 ret = __cpufreq_remove_dev_prepare(dev, sif, false);
1314
1315 if (!ret)
1316 ret = __cpufreq_remove_dev_finish(dev, sif, false);
1317
1318 return ret;
1319 }
1320
1321 static void handle_update(struct work_struct *work)
1322 {
1323 struct cpufreq_policy *policy =
1324 container_of(work, struct cpufreq_policy, update);
1325 unsigned int cpu = policy->cpu;
1326 pr_debug("handle_update for cpu %u called\n", cpu);
1327 cpufreq_update_policy(cpu);
1328 }
1329
1330 /**
1331 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1332 * in deep trouble.
1333 * @cpu: cpu number
1334 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1335 * @new_freq: CPU frequency the CPU actually runs at
1336 *
1337 * We adjust to current frequency first, and need to clean up later.
1338 * So either call to cpufreq_update_policy() or schedule handle_update()).
1339 */
1340 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1341 unsigned int new_freq)
1342 {
1343 struct cpufreq_policy *policy;
1344 struct cpufreq_freqs freqs;
1345 unsigned long flags;
1346
1347 pr_debug("Warning: CPU frequency out of sync: cpufreq and timing "
1348 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1349
1350 freqs.old = old_freq;
1351 freqs.new = new_freq;
1352
1353 read_lock_irqsave(&cpufreq_driver_lock, flags);
1354 policy = per_cpu(cpufreq_cpu_data, cpu);
1355 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1356
1357 cpufreq_notify_transition(policy, &freqs, CPUFREQ_PRECHANGE);
1358 cpufreq_notify_transition(policy, &freqs, CPUFREQ_POSTCHANGE);
1359 }
1360
1361 /**
1362 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1363 * @cpu: CPU number
1364 *
1365 * This is the last known freq, without actually getting it from the driver.
1366 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1367 */
1368 unsigned int cpufreq_quick_get(unsigned int cpu)
1369 {
1370 struct cpufreq_policy *policy;
1371 unsigned int ret_freq = 0;
1372
1373 if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get)
1374 return cpufreq_driver->get(cpu);
1375
1376 policy = cpufreq_cpu_get(cpu);
1377 if (policy) {
1378 ret_freq = policy->cur;
1379 cpufreq_cpu_put(policy);
1380 }
1381
1382 return ret_freq;
1383 }
1384 EXPORT_SYMBOL(cpufreq_quick_get);
1385
1386 /**
1387 * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1388 * @cpu: CPU number
1389 *
1390 * Just return the max possible frequency for a given CPU.
1391 */
1392 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1393 {
1394 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1395 unsigned int ret_freq = 0;
1396
1397 if (policy) {
1398 ret_freq = policy->max;
1399 cpufreq_cpu_put(policy);
1400 }
1401
1402 return ret_freq;
1403 }
1404 EXPORT_SYMBOL(cpufreq_quick_get_max);
1405
1406 static unsigned int __cpufreq_get(unsigned int cpu)
1407 {
1408 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1409 unsigned int ret_freq = 0;
1410
1411 if (!cpufreq_driver->get)
1412 return ret_freq;
1413
1414 ret_freq = cpufreq_driver->get(cpu);
1415
1416 if (ret_freq && policy->cur &&
1417 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1418 /* verify no discrepancy between actual and
1419 saved value exists */
1420 if (unlikely(ret_freq != policy->cur)) {
1421 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1422 schedule_work(&policy->update);
1423 }
1424 }
1425
1426 return ret_freq;
1427 }
1428
1429 /**
1430 * cpufreq_get - get the current CPU frequency (in kHz)
1431 * @cpu: CPU number
1432 *
1433 * Get the CPU current (static) CPU frequency
1434 */
1435 unsigned int cpufreq_get(unsigned int cpu)
1436 {
1437 unsigned int ret_freq = 0;
1438
1439 if (cpufreq_disabled() || !cpufreq_driver)
1440 return -ENOENT;
1441
1442 if (!down_read_trylock(&cpufreq_rwsem))
1443 return 0;
1444
1445 lock_policy_rwsem_read(cpu);
1446
1447 ret_freq = __cpufreq_get(cpu);
1448
1449 unlock_policy_rwsem_read(cpu);
1450 up_read(&cpufreq_rwsem);
1451
1452 return ret_freq;
1453 }
1454 EXPORT_SYMBOL(cpufreq_get);
1455
1456 static struct subsys_interface cpufreq_interface = {
1457 .name = "cpufreq",
1458 .subsys = &cpu_subsys,
1459 .add_dev = cpufreq_add_dev,
1460 .remove_dev = cpufreq_remove_dev,
1461 };
1462
1463 /**
1464 * cpufreq_bp_suspend - Prepare the boot CPU for system suspend.
1465 *
1466 * This function is only executed for the boot processor. The other CPUs
1467 * have been put offline by means of CPU hotplug.
1468 */
1469 static int cpufreq_bp_suspend(void)
1470 {
1471 int ret = 0;
1472
1473 int cpu = smp_processor_id();
1474 struct cpufreq_policy *policy;
1475
1476 pr_debug("suspending cpu %u\n", cpu);
1477
1478 /* If there's no policy for the boot CPU, we have nothing to do. */
1479 policy = cpufreq_cpu_get(cpu);
1480 if (!policy)
1481 return 0;
1482
1483 if (cpufreq_driver->suspend) {
1484 ret = cpufreq_driver->suspend(policy);
1485 if (ret)
1486 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1487 "step on CPU %u\n", policy->cpu);
1488 }
1489
1490 cpufreq_cpu_put(policy);
1491 return ret;
1492 }
1493
1494 /**
1495 * cpufreq_bp_resume - Restore proper frequency handling of the boot CPU.
1496 *
1497 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1498 * 2.) schedule call cpufreq_update_policy() ASAP as interrupts are
1499 * restored. It will verify that the current freq is in sync with
1500 * what we believe it to be. This is a bit later than when it
1501 * should be, but nonethteless it's better than calling
1502 * cpufreq_driver->get() here which might re-enable interrupts...
1503 *
1504 * This function is only executed for the boot CPU. The other CPUs have not
1505 * been turned on yet.
1506 */
1507 static void cpufreq_bp_resume(void)
1508 {
1509 int ret = 0;
1510
1511 int cpu = smp_processor_id();
1512 struct cpufreq_policy *policy;
1513
1514 pr_debug("resuming cpu %u\n", cpu);
1515
1516 /* If there's no policy for the boot CPU, we have nothing to do. */
1517 policy = cpufreq_cpu_get(cpu);
1518 if (!policy)
1519 return;
1520
1521 if (cpufreq_driver->resume) {
1522 ret = cpufreq_driver->resume(policy);
1523 if (ret) {
1524 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1525 "step on CPU %u\n", policy->cpu);
1526 goto fail;
1527 }
1528 }
1529
1530 schedule_work(&policy->update);
1531
1532 fail:
1533 cpufreq_cpu_put(policy);
1534 }
1535
1536 static struct syscore_ops cpufreq_syscore_ops = {
1537 .suspend = cpufreq_bp_suspend,
1538 .resume = cpufreq_bp_resume,
1539 };
1540
1541 /**
1542 * cpufreq_get_current_driver - return current driver's name
1543 *
1544 * Return the name string of the currently loaded cpufreq driver
1545 * or NULL, if none.
1546 */
1547 const char *cpufreq_get_current_driver(void)
1548 {
1549 if (cpufreq_driver)
1550 return cpufreq_driver->name;
1551
1552 return NULL;
1553 }
1554 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1555
1556 /*********************************************************************
1557 * NOTIFIER LISTS INTERFACE *
1558 *********************************************************************/
1559
1560 /**
1561 * cpufreq_register_notifier - register a driver with cpufreq
1562 * @nb: notifier function to register
1563 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1564 *
1565 * Add a driver to one of two lists: either a list of drivers that
1566 * are notified about clock rate changes (once before and once after
1567 * the transition), or a list of drivers that are notified about
1568 * changes in cpufreq policy.
1569 *
1570 * This function may sleep, and has the same return conditions as
1571 * blocking_notifier_chain_register.
1572 */
1573 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1574 {
1575 int ret;
1576
1577 if (cpufreq_disabled())
1578 return -EINVAL;
1579
1580 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1581
1582 switch (list) {
1583 case CPUFREQ_TRANSITION_NOTIFIER:
1584 ret = srcu_notifier_chain_register(
1585 &cpufreq_transition_notifier_list, nb);
1586 break;
1587 case CPUFREQ_POLICY_NOTIFIER:
1588 ret = blocking_notifier_chain_register(
1589 &cpufreq_policy_notifier_list, nb);
1590 break;
1591 default:
1592 ret = -EINVAL;
1593 }
1594
1595 return ret;
1596 }
1597 EXPORT_SYMBOL(cpufreq_register_notifier);
1598
1599 /**
1600 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1601 * @nb: notifier block to be unregistered
1602 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1603 *
1604 * Remove a driver from the CPU frequency notifier list.
1605 *
1606 * This function may sleep, and has the same return conditions as
1607 * blocking_notifier_chain_unregister.
1608 */
1609 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1610 {
1611 int ret;
1612
1613 if (cpufreq_disabled())
1614 return -EINVAL;
1615
1616 switch (list) {
1617 case CPUFREQ_TRANSITION_NOTIFIER:
1618 ret = srcu_notifier_chain_unregister(
1619 &cpufreq_transition_notifier_list, nb);
1620 break;
1621 case CPUFREQ_POLICY_NOTIFIER:
1622 ret = blocking_notifier_chain_unregister(
1623 &cpufreq_policy_notifier_list, nb);
1624 break;
1625 default:
1626 ret = -EINVAL;
1627 }
1628
1629 return ret;
1630 }
1631 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1632
1633
1634 /*********************************************************************
1635 * GOVERNORS *
1636 *********************************************************************/
1637
1638 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1639 unsigned int target_freq,
1640 unsigned int relation)
1641 {
1642 int retval = -EINVAL;
1643 unsigned int old_target_freq = target_freq;
1644
1645 if (cpufreq_disabled())
1646 return -ENODEV;
1647
1648 /* Make sure that target_freq is within supported range */
1649 if (target_freq > policy->max)
1650 target_freq = policy->max;
1651 if (target_freq < policy->min)
1652 target_freq = policy->min;
1653
1654 pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1655 policy->cpu, target_freq, relation, old_target_freq);
1656
1657 if (target_freq == policy->cur)
1658 return 0;
1659
1660 if (cpufreq_driver->target)
1661 retval = cpufreq_driver->target(policy, target_freq, relation);
1662
1663 return retval;
1664 }
1665 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1666
1667 int cpufreq_driver_target(struct cpufreq_policy *policy,
1668 unsigned int target_freq,
1669 unsigned int relation)
1670 {
1671 int ret = -EINVAL;
1672
1673 lock_policy_rwsem_write(policy->cpu);
1674
1675 ret = __cpufreq_driver_target(policy, target_freq, relation);
1676
1677 unlock_policy_rwsem_write(policy->cpu);
1678
1679 return ret;
1680 }
1681 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1682
1683 /*
1684 * when "event" is CPUFREQ_GOV_LIMITS
1685 */
1686
1687 static int __cpufreq_governor(struct cpufreq_policy *policy,
1688 unsigned int event)
1689 {
1690 int ret;
1691
1692 /* Only must be defined when default governor is known to have latency
1693 restrictions, like e.g. conservative or ondemand.
1694 That this is the case is already ensured in Kconfig
1695 */
1696 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1697 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1698 #else
1699 struct cpufreq_governor *gov = NULL;
1700 #endif
1701
1702 if (policy->governor->max_transition_latency &&
1703 policy->cpuinfo.transition_latency >
1704 policy->governor->max_transition_latency) {
1705 if (!gov)
1706 return -EINVAL;
1707 else {
1708 printk(KERN_WARNING "%s governor failed, too long"
1709 " transition latency of HW, fallback"
1710 " to %s governor\n",
1711 policy->governor->name,
1712 gov->name);
1713 policy->governor = gov;
1714 }
1715 }
1716
1717 if (event == CPUFREQ_GOV_POLICY_INIT)
1718 if (!try_module_get(policy->governor->owner))
1719 return -EINVAL;
1720
1721 pr_debug("__cpufreq_governor for CPU %u, event %u\n",
1722 policy->cpu, event);
1723
1724 mutex_lock(&cpufreq_governor_lock);
1725 if ((policy->governor_enabled && event == CPUFREQ_GOV_START)
1726 || (!policy->governor_enabled
1727 && (event == CPUFREQ_GOV_LIMITS || event == CPUFREQ_GOV_STOP))) {
1728 mutex_unlock(&cpufreq_governor_lock);
1729 return -EBUSY;
1730 }
1731
1732 if (event == CPUFREQ_GOV_STOP)
1733 policy->governor_enabled = false;
1734 else if (event == CPUFREQ_GOV_START)
1735 policy->governor_enabled = true;
1736
1737 mutex_unlock(&cpufreq_governor_lock);
1738
1739 ret = policy->governor->governor(policy, event);
1740
1741 if (!ret) {
1742 if (event == CPUFREQ_GOV_POLICY_INIT)
1743 policy->governor->initialized++;
1744 else if (event == CPUFREQ_GOV_POLICY_EXIT)
1745 policy->governor->initialized--;
1746 } else {
1747 /* Restore original values */
1748 mutex_lock(&cpufreq_governor_lock);
1749 if (event == CPUFREQ_GOV_STOP)
1750 policy->governor_enabled = true;
1751 else if (event == CPUFREQ_GOV_START)
1752 policy->governor_enabled = false;
1753 mutex_unlock(&cpufreq_governor_lock);
1754 }
1755
1756 if (((event == CPUFREQ_GOV_POLICY_INIT) && ret) ||
1757 ((event == CPUFREQ_GOV_POLICY_EXIT) && !ret))
1758 module_put(policy->governor->owner);
1759
1760 return ret;
1761 }
1762
1763 int cpufreq_register_governor(struct cpufreq_governor *governor)
1764 {
1765 int err;
1766
1767 if (!governor)
1768 return -EINVAL;
1769
1770 if (cpufreq_disabled())
1771 return -ENODEV;
1772
1773 mutex_lock(&cpufreq_governor_mutex);
1774
1775 governor->initialized = 0;
1776 err = -EBUSY;
1777 if (__find_governor(governor->name) == NULL) {
1778 err = 0;
1779 list_add(&governor->governor_list, &cpufreq_governor_list);
1780 }
1781
1782 mutex_unlock(&cpufreq_governor_mutex);
1783 return err;
1784 }
1785 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1786
1787 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1788 {
1789 #ifdef CONFIG_HOTPLUG_CPU
1790 int cpu;
1791 #endif
1792
1793 if (!governor)
1794 return;
1795
1796 if (cpufreq_disabled())
1797 return;
1798
1799 #ifdef CONFIG_HOTPLUG_CPU
1800 for_each_present_cpu(cpu) {
1801 if (cpu_online(cpu))
1802 continue;
1803 if (!strcmp(per_cpu(cpufreq_cpu_governor, cpu), governor->name))
1804 strcpy(per_cpu(cpufreq_cpu_governor, cpu), "\0");
1805 }
1806 #endif
1807
1808 mutex_lock(&cpufreq_governor_mutex);
1809 list_del(&governor->governor_list);
1810 mutex_unlock(&cpufreq_governor_mutex);
1811 return;
1812 }
1813 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1814
1815
1816 /*********************************************************************
1817 * POLICY INTERFACE *
1818 *********************************************************************/
1819
1820 /**
1821 * cpufreq_get_policy - get the current cpufreq_policy
1822 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1823 * is written
1824 *
1825 * Reads the current cpufreq policy.
1826 */
1827 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1828 {
1829 struct cpufreq_policy *cpu_policy;
1830 if (!policy)
1831 return -EINVAL;
1832
1833 cpu_policy = cpufreq_cpu_get(cpu);
1834 if (!cpu_policy)
1835 return -EINVAL;
1836
1837 memcpy(policy, cpu_policy, sizeof(*policy));
1838
1839 cpufreq_cpu_put(cpu_policy);
1840 return 0;
1841 }
1842 EXPORT_SYMBOL(cpufreq_get_policy);
1843
1844 /*
1845 * policy : current policy.
1846 * new_policy: policy to be set.
1847 */
1848 static int cpufreq_set_policy(struct cpufreq_policy *policy,
1849 struct cpufreq_policy *new_policy)
1850 {
1851 int ret = 0, failed = 1;
1852
1853 pr_debug("setting new policy for CPU %u: %u - %u kHz\n", new_policy->cpu,
1854 new_policy->min, new_policy->max);
1855
1856 memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
1857
1858 if (new_policy->min > policy->max || new_policy->max < policy->min) {
1859 ret = -EINVAL;
1860 goto error_out;
1861 }
1862
1863 /* verify the cpu speed can be set within this limit */
1864 ret = cpufreq_driver->verify(new_policy);
1865 if (ret)
1866 goto error_out;
1867
1868 /* adjust if necessary - all reasons */
1869 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1870 CPUFREQ_ADJUST, new_policy);
1871
1872 /* adjust if necessary - hardware incompatibility*/
1873 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1874 CPUFREQ_INCOMPATIBLE, new_policy);
1875
1876 /*
1877 * verify the cpu speed can be set within this limit, which might be
1878 * different to the first one
1879 */
1880 ret = cpufreq_driver->verify(new_policy);
1881 if (ret)
1882 goto error_out;
1883
1884 /* notification of the new policy */
1885 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1886 CPUFREQ_NOTIFY, new_policy);
1887
1888 policy->min = new_policy->min;
1889 policy->max = new_policy->max;
1890
1891 pr_debug("new min and max freqs are %u - %u kHz\n",
1892 policy->min, policy->max);
1893
1894 if (cpufreq_driver->setpolicy) {
1895 policy->policy = new_policy->policy;
1896 pr_debug("setting range\n");
1897 ret = cpufreq_driver->setpolicy(new_policy);
1898 } else {
1899 if (new_policy->governor != policy->governor) {
1900 /* save old, working values */
1901 struct cpufreq_governor *old_gov = policy->governor;
1902
1903 pr_debug("governor switch\n");
1904
1905 /* end old governor */
1906 if (policy->governor) {
1907 __cpufreq_governor(policy, CPUFREQ_GOV_STOP);
1908 unlock_policy_rwsem_write(new_policy->cpu);
1909 __cpufreq_governor(policy,
1910 CPUFREQ_GOV_POLICY_EXIT);
1911 lock_policy_rwsem_write(new_policy->cpu);
1912 }
1913
1914 /* start new governor */
1915 policy->governor = new_policy->governor;
1916 if (!__cpufreq_governor(policy, CPUFREQ_GOV_POLICY_INIT)) {
1917 if (!__cpufreq_governor(policy, CPUFREQ_GOV_START)) {
1918 failed = 0;
1919 } else {
1920 unlock_policy_rwsem_write(new_policy->cpu);
1921 __cpufreq_governor(policy,
1922 CPUFREQ_GOV_POLICY_EXIT);
1923 lock_policy_rwsem_write(new_policy->cpu);
1924 }
1925 }
1926
1927 if (failed) {
1928 /* new governor failed, so re-start old one */
1929 pr_debug("starting governor %s failed\n",
1930 policy->governor->name);
1931 if (old_gov) {
1932 policy->governor = old_gov;
1933 __cpufreq_governor(policy,
1934 CPUFREQ_GOV_POLICY_INIT);
1935 __cpufreq_governor(policy,
1936 CPUFREQ_GOV_START);
1937 }
1938 ret = -EINVAL;
1939 goto error_out;
1940 }
1941 /* might be a policy change, too, so fall through */
1942 }
1943 pr_debug("governor: change or update limits\n");
1944 ret = __cpufreq_governor(policy, CPUFREQ_GOV_LIMITS);
1945 }
1946
1947 error_out:
1948 return ret;
1949 }
1950
1951 /**
1952 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1953 * @cpu: CPU which shall be re-evaluated
1954 *
1955 * Useful for policy notifiers which have different necessities
1956 * at different times.
1957 */
1958 int cpufreq_update_policy(unsigned int cpu)
1959 {
1960 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1961 struct cpufreq_policy new_policy;
1962 int ret;
1963
1964 if (!policy) {
1965 ret = -ENODEV;
1966 goto no_policy;
1967 }
1968
1969 lock_policy_rwsem_write(cpu);
1970
1971 pr_debug("updating policy for CPU %u\n", cpu);
1972 memcpy(&new_policy, policy, sizeof(*policy));
1973 new_policy.min = policy->user_policy.min;
1974 new_policy.max = policy->user_policy.max;
1975 new_policy.policy = policy->user_policy.policy;
1976 new_policy.governor = policy->user_policy.governor;
1977
1978 /*
1979 * BIOS might change freq behind our back
1980 * -> ask driver for current freq and notify governors about a change
1981 */
1982 if (cpufreq_driver->get) {
1983 new_policy.cur = cpufreq_driver->get(cpu);
1984 if (!policy->cur) {
1985 pr_debug("Driver did not initialize current freq");
1986 policy->cur = new_policy.cur;
1987 } else {
1988 if (policy->cur != new_policy.cur && cpufreq_driver->target)
1989 cpufreq_out_of_sync(cpu, policy->cur,
1990 new_policy.cur);
1991 }
1992 }
1993
1994 ret = cpufreq_set_policy(policy, &new_policy);
1995
1996 unlock_policy_rwsem_write(cpu);
1997
1998 cpufreq_cpu_put(policy);
1999 no_policy:
2000 return ret;
2001 }
2002 EXPORT_SYMBOL(cpufreq_update_policy);
2003
2004 static int cpufreq_cpu_callback(struct notifier_block *nfb,
2005 unsigned long action, void *hcpu)
2006 {
2007 unsigned int cpu = (unsigned long)hcpu;
2008 struct device *dev;
2009 bool frozen = false;
2010
2011 dev = get_cpu_device(cpu);
2012 if (dev) {
2013
2014 if (action & CPU_TASKS_FROZEN)
2015 frozen = true;
2016
2017 switch (action & ~CPU_TASKS_FROZEN) {
2018 case CPU_ONLINE:
2019 __cpufreq_add_dev(dev, NULL, frozen);
2020 cpufreq_update_policy(cpu);
2021 break;
2022
2023 case CPU_DOWN_PREPARE:
2024 __cpufreq_remove_dev_prepare(dev, NULL, frozen);
2025 break;
2026
2027 case CPU_POST_DEAD:
2028 __cpufreq_remove_dev_finish(dev, NULL, frozen);
2029 break;
2030
2031 case CPU_DOWN_FAILED:
2032 __cpufreq_add_dev(dev, NULL, frozen);
2033 break;
2034 }
2035 }
2036 return NOTIFY_OK;
2037 }
2038
2039 static struct notifier_block __refdata cpufreq_cpu_notifier = {
2040 .notifier_call = cpufreq_cpu_callback,
2041 };
2042
2043 /*********************************************************************
2044 * REGISTER / UNREGISTER CPUFREQ DRIVER *
2045 *********************************************************************/
2046
2047 /**
2048 * cpufreq_register_driver - register a CPU Frequency driver
2049 * @driver_data: A struct cpufreq_driver containing the values#
2050 * submitted by the CPU Frequency driver.
2051 *
2052 * Registers a CPU Frequency driver to this core code. This code
2053 * returns zero on success, -EBUSY when another driver got here first
2054 * (and isn't unregistered in the meantime).
2055 *
2056 */
2057 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2058 {
2059 unsigned long flags;
2060 int ret;
2061
2062 if (cpufreq_disabled())
2063 return -ENODEV;
2064
2065 if (!driver_data || !driver_data->verify || !driver_data->init ||
2066 ((!driver_data->setpolicy) && (!driver_data->target)))
2067 return -EINVAL;
2068
2069 pr_debug("trying to register driver %s\n", driver_data->name);
2070
2071 if (driver_data->setpolicy)
2072 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2073
2074 write_lock_irqsave(&cpufreq_driver_lock, flags);
2075 if (cpufreq_driver) {
2076 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2077 return -EEXIST;
2078 }
2079 cpufreq_driver = driver_data;
2080 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2081
2082 ret = subsys_interface_register(&cpufreq_interface);
2083 if (ret)
2084 goto err_null_driver;
2085
2086 if (!(cpufreq_driver->flags & CPUFREQ_STICKY)) {
2087 int i;
2088 ret = -ENODEV;
2089
2090 /* check for at least one working CPU */
2091 for (i = 0; i < nr_cpu_ids; i++)
2092 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
2093 ret = 0;
2094 break;
2095 }
2096
2097 /* if all ->init() calls failed, unregister */
2098 if (ret) {
2099 pr_debug("no CPU initialized for driver %s\n",
2100 driver_data->name);
2101 goto err_if_unreg;
2102 }
2103 }
2104
2105 register_hotcpu_notifier(&cpufreq_cpu_notifier);
2106 pr_debug("driver %s up and running\n", driver_data->name);
2107
2108 return 0;
2109 err_if_unreg:
2110 subsys_interface_unregister(&cpufreq_interface);
2111 err_null_driver:
2112 write_lock_irqsave(&cpufreq_driver_lock, flags);
2113 cpufreq_driver = NULL;
2114 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2115 return ret;
2116 }
2117 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2118
2119 /**
2120 * cpufreq_unregister_driver - unregister the current CPUFreq driver
2121 *
2122 * Unregister the current CPUFreq driver. Only call this if you have
2123 * the right to do so, i.e. if you have succeeded in initialising before!
2124 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2125 * currently not initialised.
2126 */
2127 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2128 {
2129 unsigned long flags;
2130
2131 if (!cpufreq_driver || (driver != cpufreq_driver))
2132 return -EINVAL;
2133
2134 pr_debug("unregistering driver %s\n", driver->name);
2135
2136 subsys_interface_unregister(&cpufreq_interface);
2137 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
2138
2139 down_write(&cpufreq_rwsem);
2140 write_lock_irqsave(&cpufreq_driver_lock, flags);
2141
2142 cpufreq_driver = NULL;
2143
2144 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2145 up_write(&cpufreq_rwsem);
2146
2147 return 0;
2148 }
2149 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2150
2151 static int __init cpufreq_core_init(void)
2152 {
2153 int cpu;
2154
2155 if (cpufreq_disabled())
2156 return -ENODEV;
2157
2158 for_each_possible_cpu(cpu)
2159 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
2160
2161 cpufreq_global_kobject = kobject_create();
2162 BUG_ON(!cpufreq_global_kobject);
2163 register_syscore_ops(&cpufreq_syscore_ops);
2164
2165 return 0;
2166 }
2167 core_initcall(cpufreq_core_init);
This page took 0.0794049999999999 seconds and 5 git commands to generate.