Merge branch 'core-fixes-for-linus-2' of git://git.kernel.org/pub/scm/linux/kernel...
[deliverable/linux.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static DEFINE_PER_CPU(struct cpufreq_governor *, cpufreq_cpu_governor);
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu) \
69 int lock_policy_rwsem_##mode \
70 (int cpu) \
71 { \
72 int policy_cpu = per_cpu(policy_cpu, cpu); \
73 BUG_ON(policy_cpu == -1); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
75 if (unlikely(!cpu_online(cpu))) { \
76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 return -1; \
78 } \
79 \
80 return 0; \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91 int policy_cpu = per_cpu(policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99 int policy_cpu = per_cpu(policy_cpu, cpu);
100 BUG_ON(policy_cpu == -1);
101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy,
108 unsigned int event);
109 static unsigned int __cpufreq_get(unsigned int cpu);
110 static void handle_update(struct work_struct *work);
111
112 /**
113 * Two notifier lists: the "policy" list is involved in the
114 * validation process for a new CPU frequency policy; the
115 * "transition" list for kernel code that needs to handle
116 * changes to devices when the CPU clock speed changes.
117 * The mutex locks both lists.
118 */
119 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
120 static struct srcu_notifier_head cpufreq_transition_notifier_list;
121
122 static bool init_cpufreq_transition_notifier_list_called;
123 static int __init init_cpufreq_transition_notifier_list(void)
124 {
125 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
126 init_cpufreq_transition_notifier_list_called = true;
127 return 0;
128 }
129 pure_initcall(init_cpufreq_transition_notifier_list);
130
131 static LIST_HEAD(cpufreq_governor_list);
132 static DEFINE_MUTEX(cpufreq_governor_mutex);
133
134 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
135 {
136 struct cpufreq_policy *data;
137 unsigned long flags;
138
139 if (cpu >= nr_cpu_ids)
140 goto err_out;
141
142 /* get the cpufreq driver */
143 spin_lock_irqsave(&cpufreq_driver_lock, flags);
144
145 if (!cpufreq_driver)
146 goto err_out_unlock;
147
148 if (!try_module_get(cpufreq_driver->owner))
149 goto err_out_unlock;
150
151
152 /* get the CPU */
153 data = per_cpu(cpufreq_cpu_data, cpu);
154
155 if (!data)
156 goto err_out_put_module;
157
158 if (!kobject_get(&data->kobj))
159 goto err_out_put_module;
160
161 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
162 return data;
163
164 err_out_put_module:
165 module_put(cpufreq_driver->owner);
166 err_out_unlock:
167 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
168 err_out:
169 return NULL;
170 }
171 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
172
173
174 void cpufreq_cpu_put(struct cpufreq_policy *data)
175 {
176 kobject_put(&data->kobj);
177 module_put(cpufreq_driver->owner);
178 }
179 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
180
181
182 /*********************************************************************
183 * UNIFIED DEBUG HELPERS *
184 *********************************************************************/
185 #ifdef CONFIG_CPU_FREQ_DEBUG
186
187 /* what part(s) of the CPUfreq subsystem are debugged? */
188 static unsigned int debug;
189
190 /* is the debug output ratelimit'ed using printk_ratelimit? User can
191 * set or modify this value.
192 */
193 static unsigned int debug_ratelimit = 1;
194
195 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
196 * loading of a cpufreq driver, temporarily disabled when a new policy
197 * is set, and disabled upon cpufreq driver removal
198 */
199 static unsigned int disable_ratelimit = 1;
200 static DEFINE_SPINLOCK(disable_ratelimit_lock);
201
202 static void cpufreq_debug_enable_ratelimit(void)
203 {
204 unsigned long flags;
205
206 spin_lock_irqsave(&disable_ratelimit_lock, flags);
207 if (disable_ratelimit)
208 disable_ratelimit--;
209 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
210 }
211
212 static void cpufreq_debug_disable_ratelimit(void)
213 {
214 unsigned long flags;
215
216 spin_lock_irqsave(&disable_ratelimit_lock, flags);
217 disable_ratelimit++;
218 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
219 }
220
221 void cpufreq_debug_printk(unsigned int type, const char *prefix,
222 const char *fmt, ...)
223 {
224 char s[256];
225 va_list args;
226 unsigned int len;
227 unsigned long flags;
228
229 WARN_ON(!prefix);
230 if (type & debug) {
231 spin_lock_irqsave(&disable_ratelimit_lock, flags);
232 if (!disable_ratelimit && debug_ratelimit
233 && !printk_ratelimit()) {
234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235 return;
236 }
237 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
238
239 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
240
241 va_start(args, fmt);
242 len += vsnprintf(&s[len], (256 - len), fmt, args);
243 va_end(args);
244
245 printk(s);
246
247 WARN_ON(len < 5);
248 }
249 }
250 EXPORT_SYMBOL(cpufreq_debug_printk);
251
252
253 module_param(debug, uint, 0644);
254 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
255 " 2 to debug drivers, and 4 to debug governors.");
256
257 module_param(debug_ratelimit, uint, 0644);
258 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
259 " set to 0 to disable ratelimiting.");
260
261 #else /* !CONFIG_CPU_FREQ_DEBUG */
262
263 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
264 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
265
266 #endif /* CONFIG_CPU_FREQ_DEBUG */
267
268
269 /*********************************************************************
270 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
271 *********************************************************************/
272
273 /**
274 * adjust_jiffies - adjust the system "loops_per_jiffy"
275 *
276 * This function alters the system "loops_per_jiffy" for the clock
277 * speed change. Note that loops_per_jiffy cannot be updated on SMP
278 * systems as each CPU might be scaled differently. So, use the arch
279 * per-CPU loops_per_jiffy value wherever possible.
280 */
281 #ifndef CONFIG_SMP
282 static unsigned long l_p_j_ref;
283 static unsigned int l_p_j_ref_freq;
284
285 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
286 {
287 if (ci->flags & CPUFREQ_CONST_LOOPS)
288 return;
289
290 if (!l_p_j_ref_freq) {
291 l_p_j_ref = loops_per_jiffy;
292 l_p_j_ref_freq = ci->old;
293 dprintk("saving %lu as reference value for loops_per_jiffy; "
294 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
295 }
296 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
297 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
298 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
299 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
300 ci->new);
301 dprintk("scaling loops_per_jiffy to %lu "
302 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
303 }
304 }
305 #else
306 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
307 {
308 return;
309 }
310 #endif
311
312
313 /**
314 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
315 * on frequency transition.
316 *
317 * This function calls the transition notifiers and the "adjust_jiffies"
318 * function. It is called twice on all CPU frequency changes that have
319 * external effects.
320 */
321 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
322 {
323 struct cpufreq_policy *policy;
324
325 BUG_ON(irqs_disabled());
326
327 freqs->flags = cpufreq_driver->flags;
328 dprintk("notification %u of frequency transition to %u kHz\n",
329 state, freqs->new);
330
331 policy = per_cpu(cpufreq_cpu_data, freqs->cpu);
332 switch (state) {
333
334 case CPUFREQ_PRECHANGE:
335 /* detect if the driver reported a value as "old frequency"
336 * which is not equal to what the cpufreq core thinks is
337 * "old frequency".
338 */
339 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
340 if ((policy) && (policy->cpu == freqs->cpu) &&
341 (policy->cur) && (policy->cur != freqs->old)) {
342 dprintk("Warning: CPU frequency is"
343 " %u, cpufreq assumed %u kHz.\n",
344 freqs->old, policy->cur);
345 freqs->old = policy->cur;
346 }
347 }
348 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
349 CPUFREQ_PRECHANGE, freqs);
350 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
351 break;
352
353 case CPUFREQ_POSTCHANGE:
354 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
355 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
356 CPUFREQ_POSTCHANGE, freqs);
357 if (likely(policy) && likely(policy->cpu == freqs->cpu))
358 policy->cur = freqs->new;
359 break;
360 }
361 }
362 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
363
364
365
366 /*********************************************************************
367 * SYSFS INTERFACE *
368 *********************************************************************/
369
370 static struct cpufreq_governor *__find_governor(const char *str_governor)
371 {
372 struct cpufreq_governor *t;
373
374 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
375 if (!strnicmp(str_governor, t->name, CPUFREQ_NAME_LEN))
376 return t;
377
378 return NULL;
379 }
380
381 /**
382 * cpufreq_parse_governor - parse a governor string
383 */
384 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
385 struct cpufreq_governor **governor)
386 {
387 int err = -EINVAL;
388
389 if (!cpufreq_driver)
390 goto out;
391
392 if (cpufreq_driver->setpolicy) {
393 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
394 *policy = CPUFREQ_POLICY_PERFORMANCE;
395 err = 0;
396 } else if (!strnicmp(str_governor, "powersave",
397 CPUFREQ_NAME_LEN)) {
398 *policy = CPUFREQ_POLICY_POWERSAVE;
399 err = 0;
400 }
401 } else if (cpufreq_driver->target) {
402 struct cpufreq_governor *t;
403
404 mutex_lock(&cpufreq_governor_mutex);
405
406 t = __find_governor(str_governor);
407
408 if (t == NULL) {
409 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
410 str_governor);
411
412 if (name) {
413 int ret;
414
415 mutex_unlock(&cpufreq_governor_mutex);
416 ret = request_module("%s", name);
417 mutex_lock(&cpufreq_governor_mutex);
418
419 if (ret == 0)
420 t = __find_governor(str_governor);
421 }
422
423 kfree(name);
424 }
425
426 if (t != NULL) {
427 *governor = t;
428 err = 0;
429 }
430
431 mutex_unlock(&cpufreq_governor_mutex);
432 }
433 out:
434 return err;
435 }
436
437
438 /**
439 * cpufreq_per_cpu_attr_read() / show_##file_name() -
440 * print out cpufreq information
441 *
442 * Write out information from cpufreq_driver->policy[cpu]; object must be
443 * "unsigned int".
444 */
445
446 #define show_one(file_name, object) \
447 static ssize_t show_##file_name \
448 (struct cpufreq_policy *policy, char *buf) \
449 { \
450 return sprintf(buf, "%u\n", policy->object); \
451 }
452
453 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
454 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
455 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461 struct cpufreq_policy *policy);
462
463 /**
464 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465 */
466 #define store_one(file_name, object) \
467 static ssize_t store_##file_name \
468 (struct cpufreq_policy *policy, const char *buf, size_t count) \
469 { \
470 unsigned int ret = -EINVAL; \
471 struct cpufreq_policy new_policy; \
472 \
473 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
474 if (ret) \
475 return -EINVAL; \
476 \
477 ret = sscanf(buf, "%u", &new_policy.object); \
478 if (ret != 1) \
479 return -EINVAL; \
480 \
481 ret = __cpufreq_set_policy(policy, &new_policy); \
482 policy->user_policy.object = policy->object; \
483 \
484 return ret ? ret : count; \
485 }
486
487 store_one(scaling_min_freq, min);
488 store_one(scaling_max_freq, max);
489
490 /**
491 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492 */
493 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
494 char *buf)
495 {
496 unsigned int cur_freq = __cpufreq_get(policy->cpu);
497 if (!cur_freq)
498 return sprintf(buf, "<unknown>");
499 return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504 * show_scaling_governor - show the current policy for the specified CPU
505 */
506 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
507 {
508 if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
509 return sprintf(buf, "powersave\n");
510 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
511 return sprintf(buf, "performance\n");
512 else if (policy->governor)
513 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n",
514 policy->governor->name);
515 return -EINVAL;
516 }
517
518
519 /**
520 * store_scaling_governor - store policy for the specified CPU
521 */
522 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
523 const char *buf, size_t count)
524 {
525 unsigned int ret = -EINVAL;
526 char str_governor[16];
527 struct cpufreq_policy new_policy;
528
529 ret = cpufreq_get_policy(&new_policy, policy->cpu);
530 if (ret)
531 return ret;
532
533 ret = sscanf(buf, "%15s", str_governor);
534 if (ret != 1)
535 return -EINVAL;
536
537 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538 &new_policy.governor))
539 return -EINVAL;
540
541 /* Do not use cpufreq_set_policy here or the user_policy.max
542 will be wrongly overridden */
543 ret = __cpufreq_set_policy(policy, &new_policy);
544
545 policy->user_policy.policy = policy->policy;
546 policy->user_policy.governor = policy->governor;
547
548 if (ret)
549 return ret;
550 else
551 return count;
552 }
553
554 /**
555 * show_scaling_driver - show the cpufreq driver currently loaded
556 */
557 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
558 {
559 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561
562 /**
563 * show_scaling_available_governors - show the available CPUfreq governors
564 */
565 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
566 char *buf)
567 {
568 ssize_t i = 0;
569 struct cpufreq_governor *t;
570
571 if (!cpufreq_driver->target) {
572 i += sprintf(buf, "performance powersave");
573 goto out;
574 }
575
576 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
578 - (CPUFREQ_NAME_LEN + 2)))
579 goto out;
580 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
581 }
582 out:
583 i += sprintf(&buf[i], "\n");
584 return i;
585 }
586
587 static ssize_t show_cpus(const struct cpumask *mask, char *buf)
588 {
589 ssize_t i = 0;
590 unsigned int cpu;
591
592 for_each_cpu(cpu, mask) {
593 if (i)
594 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
596 if (i >= (PAGE_SIZE - 5))
597 break;
598 }
599 i += sprintf(&buf[i], "\n");
600 return i;
601 }
602
603 /**
604 * show_related_cpus - show the CPUs affected by each transition even if
605 * hw coordination is in use
606 */
607 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
608 {
609 if (cpumask_empty(policy->related_cpus))
610 return show_cpus(policy->cpus, buf);
611 return show_cpus(policy->related_cpus, buf);
612 }
613
614 /**
615 * show_affected_cpus - show the CPUs affected by each transition
616 */
617 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
618 {
619 return show_cpus(policy->cpus, buf);
620 }
621
622 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
623 const char *buf, size_t count)
624 {
625 unsigned int freq = 0;
626 unsigned int ret;
627
628 if (!policy->governor || !policy->governor->store_setspeed)
629 return -EINVAL;
630
631 ret = sscanf(buf, "%u", &freq);
632 if (ret != 1)
633 return -EINVAL;
634
635 policy->governor->store_setspeed(policy, freq);
636
637 return count;
638 }
639
640 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
641 {
642 if (!policy->governor || !policy->governor->show_setspeed)
643 return sprintf(buf, "<unsupported>\n");
644
645 return policy->governor->show_setspeed(policy, buf);
646 }
647
648 #define define_one_ro(_name) \
649 static struct freq_attr _name = \
650 __ATTR(_name, 0444, show_##_name, NULL)
651
652 #define define_one_ro0400(_name) \
653 static struct freq_attr _name = \
654 __ATTR(_name, 0400, show_##_name, NULL)
655
656 #define define_one_rw(_name) \
657 static struct freq_attr _name = \
658 __ATTR(_name, 0644, show_##_name, store_##_name)
659
660 define_one_ro0400(cpuinfo_cur_freq);
661 define_one_ro(cpuinfo_min_freq);
662 define_one_ro(cpuinfo_max_freq);
663 define_one_ro(cpuinfo_transition_latency);
664 define_one_ro(scaling_available_governors);
665 define_one_ro(scaling_driver);
666 define_one_ro(scaling_cur_freq);
667 define_one_ro(related_cpus);
668 define_one_ro(affected_cpus);
669 define_one_rw(scaling_min_freq);
670 define_one_rw(scaling_max_freq);
671 define_one_rw(scaling_governor);
672 define_one_rw(scaling_setspeed);
673
674 static struct attribute *default_attrs[] = {
675 &cpuinfo_min_freq.attr,
676 &cpuinfo_max_freq.attr,
677 &cpuinfo_transition_latency.attr,
678 &scaling_min_freq.attr,
679 &scaling_max_freq.attr,
680 &affected_cpus.attr,
681 &related_cpus.attr,
682 &scaling_governor.attr,
683 &scaling_driver.attr,
684 &scaling_available_governors.attr,
685 &scaling_setspeed.attr,
686 NULL
687 };
688
689 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
690 #define to_attr(a) container_of(a, struct freq_attr, attr)
691
692 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
693 {
694 struct cpufreq_policy *policy = to_policy(kobj);
695 struct freq_attr *fattr = to_attr(attr);
696 ssize_t ret = -EINVAL;
697 policy = cpufreq_cpu_get(policy->cpu);
698 if (!policy)
699 goto no_policy;
700
701 if (lock_policy_rwsem_read(policy->cpu) < 0)
702 goto fail;
703
704 if (fattr->show)
705 ret = fattr->show(policy, buf);
706 else
707 ret = -EIO;
708
709 unlock_policy_rwsem_read(policy->cpu);
710 fail:
711 cpufreq_cpu_put(policy);
712 no_policy:
713 return ret;
714 }
715
716 static ssize_t store(struct kobject *kobj, struct attribute *attr,
717 const char *buf, size_t count)
718 {
719 struct cpufreq_policy *policy = to_policy(kobj);
720 struct freq_attr *fattr = to_attr(attr);
721 ssize_t ret = -EINVAL;
722 policy = cpufreq_cpu_get(policy->cpu);
723 if (!policy)
724 goto no_policy;
725
726 if (lock_policy_rwsem_write(policy->cpu) < 0)
727 goto fail;
728
729 if (fattr->store)
730 ret = fattr->store(policy, buf, count);
731 else
732 ret = -EIO;
733
734 unlock_policy_rwsem_write(policy->cpu);
735 fail:
736 cpufreq_cpu_put(policy);
737 no_policy:
738 return ret;
739 }
740
741 static void cpufreq_sysfs_release(struct kobject *kobj)
742 {
743 struct cpufreq_policy *policy = to_policy(kobj);
744 dprintk("last reference is dropped\n");
745 complete(&policy->kobj_unregister);
746 }
747
748 static struct sysfs_ops sysfs_ops = {
749 .show = show,
750 .store = store,
751 };
752
753 static struct kobj_type ktype_cpufreq = {
754 .sysfs_ops = &sysfs_ops,
755 .default_attrs = default_attrs,
756 .release = cpufreq_sysfs_release,
757 };
758
759
760 /**
761 * cpufreq_add_dev - add a CPU device
762 *
763 * Adds the cpufreq interface for a CPU device.
764 *
765 * The Oracle says: try running cpufreq registration/unregistration concurrently
766 * with with cpu hotplugging and all hell will break loose. Tried to clean this
767 * mess up, but more thorough testing is needed. - Mathieu
768 */
769 static int cpufreq_add_dev(struct sys_device *sys_dev)
770 {
771 unsigned int cpu = sys_dev->id;
772 int ret = 0;
773 struct cpufreq_policy new_policy;
774 struct cpufreq_policy *policy;
775 struct freq_attr **drv_attr;
776 struct sys_device *cpu_sys_dev;
777 unsigned long flags;
778 unsigned int j;
779
780 if (cpu_is_offline(cpu))
781 return 0;
782
783 cpufreq_debug_disable_ratelimit();
784 dprintk("adding CPU %u\n", cpu);
785
786 #ifdef CONFIG_SMP
787 /* check whether a different CPU already registered this
788 * CPU because it is in the same boat. */
789 policy = cpufreq_cpu_get(cpu);
790 if (unlikely(policy)) {
791 cpufreq_cpu_put(policy);
792 cpufreq_debug_enable_ratelimit();
793 return 0;
794 }
795 #endif
796
797 if (!try_module_get(cpufreq_driver->owner)) {
798 ret = -EINVAL;
799 goto module_out;
800 }
801
802 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
803 if (!policy) {
804 ret = -ENOMEM;
805 goto nomem_out;
806 }
807 if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL)) {
808 ret = -ENOMEM;
809 goto err_free_policy;
810 }
811 if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL)) {
812 ret = -ENOMEM;
813 goto err_free_cpumask;
814 }
815
816 policy->cpu = cpu;
817 cpumask_copy(policy->cpus, cpumask_of(cpu));
818
819 /* Initially set CPU itself as the policy_cpu */
820 per_cpu(policy_cpu, cpu) = cpu;
821 ret = (lock_policy_rwsem_write(cpu) < 0);
822 WARN_ON(ret);
823
824 init_completion(&policy->kobj_unregister);
825 INIT_WORK(&policy->update, handle_update);
826
827 /* Set governor before ->init, so that driver could check it */
828 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
829 /* call driver. From then on the cpufreq must be able
830 * to accept all calls to ->verify and ->setpolicy for this CPU
831 */
832 ret = cpufreq_driver->init(policy);
833 if (ret) {
834 dprintk("initialization failed\n");
835 goto err_unlock_policy;
836 }
837 policy->user_policy.min = policy->min;
838 policy->user_policy.max = policy->max;
839
840 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
841 CPUFREQ_START, policy);
842
843 #ifdef CONFIG_SMP
844
845 #ifdef CONFIG_HOTPLUG_CPU
846 if (per_cpu(cpufreq_cpu_governor, cpu)) {
847 policy->governor = per_cpu(cpufreq_cpu_governor, cpu);
848 dprintk("Restoring governor %s for cpu %d\n",
849 policy->governor->name, cpu);
850 }
851 #endif
852
853 for_each_cpu(j, policy->cpus) {
854 struct cpufreq_policy *managed_policy;
855
856 if (cpu == j)
857 continue;
858
859 /* Check for existing affected CPUs.
860 * They may not be aware of it due to CPU Hotplug.
861 */
862 managed_policy = cpufreq_cpu_get(j);
863 if (unlikely(managed_policy)) {
864
865 /* Set proper policy_cpu */
866 unlock_policy_rwsem_write(cpu);
867 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
868
869 if (lock_policy_rwsem_write(cpu) < 0) {
870 /* Should not go through policy unlock path */
871 if (cpufreq_driver->exit)
872 cpufreq_driver->exit(policy);
873 ret = -EBUSY;
874 cpufreq_cpu_put(managed_policy);
875 goto err_free_cpumask;
876 }
877
878 spin_lock_irqsave(&cpufreq_driver_lock, flags);
879 cpumask_copy(managed_policy->cpus, policy->cpus);
880 per_cpu(cpufreq_cpu_data, cpu) = managed_policy;
881 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
882
883 dprintk("CPU already managed, adding link\n");
884 ret = sysfs_create_link(&sys_dev->kobj,
885 &managed_policy->kobj,
886 "cpufreq");
887 if (!ret)
888 cpufreq_cpu_put(managed_policy);
889 /*
890 * Success. We only needed to be added to the mask.
891 * Call driver->exit() because only the cpu parent of
892 * the kobj needed to call init().
893 */
894 goto out_driver_exit; /* call driver->exit() */
895 }
896 }
897 #endif
898 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
899
900 /* prepare interface data */
901 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
902 "cpufreq");
903 if (ret)
904 goto out_driver_exit;
905
906 /* set up files for this cpu device */
907 drv_attr = cpufreq_driver->attr;
908 while ((drv_attr) && (*drv_attr)) {
909 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
910 if (ret)
911 goto err_out_kobj_put;
912 drv_attr++;
913 }
914 if (cpufreq_driver->get) {
915 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
916 if (ret)
917 goto err_out_kobj_put;
918 }
919 if (cpufreq_driver->target) {
920 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
921 if (ret)
922 goto err_out_kobj_put;
923 }
924
925 spin_lock_irqsave(&cpufreq_driver_lock, flags);
926 for_each_cpu(j, policy->cpus) {
927 per_cpu(cpufreq_cpu_data, j) = policy;
928 per_cpu(policy_cpu, j) = policy->cpu;
929 }
930 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
931
932 /* symlink affected CPUs */
933 for_each_cpu(j, policy->cpus) {
934 struct cpufreq_policy *managed_policy;
935
936 if (j == cpu)
937 continue;
938 if (!cpu_online(j))
939 continue;
940
941 dprintk("CPU %u already managed, adding link\n", j);
942 managed_policy = cpufreq_cpu_get(cpu);
943 cpu_sys_dev = get_cpu_sysdev(j);
944 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
945 "cpufreq");
946 if (ret) {
947 cpufreq_cpu_put(managed_policy);
948 goto err_out_unregister;
949 }
950 }
951
952 policy->governor = NULL; /* to assure that the starting sequence is
953 * run in cpufreq_set_policy */
954
955 /* set default policy */
956 ret = __cpufreq_set_policy(policy, &new_policy);
957 policy->user_policy.policy = policy->policy;
958 policy->user_policy.governor = policy->governor;
959
960 if (ret) {
961 dprintk("setting policy failed\n");
962 goto err_out_unregister;
963 }
964
965 unlock_policy_rwsem_write(cpu);
966
967 kobject_uevent(&policy->kobj, KOBJ_ADD);
968 module_put(cpufreq_driver->owner);
969 dprintk("initialization complete\n");
970 cpufreq_debug_enable_ratelimit();
971
972 return 0;
973
974
975 err_out_unregister:
976 spin_lock_irqsave(&cpufreq_driver_lock, flags);
977 for_each_cpu(j, policy->cpus)
978 per_cpu(cpufreq_cpu_data, j) = NULL;
979 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
980
981 err_out_kobj_put:
982 kobject_put(&policy->kobj);
983 wait_for_completion(&policy->kobj_unregister);
984
985 out_driver_exit:
986 if (cpufreq_driver->exit)
987 cpufreq_driver->exit(policy);
988
989 err_unlock_policy:
990 unlock_policy_rwsem_write(cpu);
991 err_free_cpumask:
992 free_cpumask_var(policy->cpus);
993 err_free_policy:
994 kfree(policy);
995 nomem_out:
996 module_put(cpufreq_driver->owner);
997 module_out:
998 cpufreq_debug_enable_ratelimit();
999 return ret;
1000 }
1001
1002
1003 /**
1004 * __cpufreq_remove_dev - remove a CPU device
1005 *
1006 * Removes the cpufreq interface for a CPU device.
1007 * Caller should already have policy_rwsem in write mode for this CPU.
1008 * This routine frees the rwsem before returning.
1009 */
1010 static int __cpufreq_remove_dev(struct sys_device *sys_dev)
1011 {
1012 unsigned int cpu = sys_dev->id;
1013 unsigned long flags;
1014 struct cpufreq_policy *data;
1015 #ifdef CONFIG_SMP
1016 struct sys_device *cpu_sys_dev;
1017 unsigned int j;
1018 #endif
1019
1020 cpufreq_debug_disable_ratelimit();
1021 dprintk("unregistering CPU %u\n", cpu);
1022
1023 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1024 data = per_cpu(cpufreq_cpu_data, cpu);
1025
1026 if (!data) {
1027 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1028 cpufreq_debug_enable_ratelimit();
1029 unlock_policy_rwsem_write(cpu);
1030 return -EINVAL;
1031 }
1032 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1033
1034
1035 #ifdef CONFIG_SMP
1036 /* if this isn't the CPU which is the parent of the kobj, we
1037 * only need to unlink, put and exit
1038 */
1039 if (unlikely(cpu != data->cpu)) {
1040 dprintk("removing link\n");
1041 cpumask_clear_cpu(cpu, data->cpus);
1042 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1043 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
1044 cpufreq_cpu_put(data);
1045 cpufreq_debug_enable_ratelimit();
1046 unlock_policy_rwsem_write(cpu);
1047 return 0;
1048 }
1049 #endif
1050
1051 #ifdef CONFIG_SMP
1052
1053 #ifdef CONFIG_HOTPLUG_CPU
1054 per_cpu(cpufreq_cpu_governor, cpu) = data->governor;
1055 #endif
1056
1057 /* if we have other CPUs still registered, we need to unlink them,
1058 * or else wait_for_completion below will lock up. Clean the
1059 * per_cpu(cpufreq_cpu_data) while holding the lock, and remove
1060 * the sysfs links afterwards.
1061 */
1062 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1063 for_each_cpu(j, data->cpus) {
1064 if (j == cpu)
1065 continue;
1066 per_cpu(cpufreq_cpu_data, j) = NULL;
1067 }
1068 }
1069
1070 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1071
1072 if (unlikely(cpumask_weight(data->cpus) > 1)) {
1073 for_each_cpu(j, data->cpus) {
1074 if (j == cpu)
1075 continue;
1076 dprintk("removing link for cpu %u\n", j);
1077 #ifdef CONFIG_HOTPLUG_CPU
1078 per_cpu(cpufreq_cpu_governor, j) = data->governor;
1079 #endif
1080 cpu_sys_dev = get_cpu_sysdev(j);
1081 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1082 cpufreq_cpu_put(data);
1083 }
1084 }
1085 #else
1086 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1087 #endif
1088
1089 if (cpufreq_driver->target)
1090 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1091
1092 kobject_put(&data->kobj);
1093
1094 /* we need to make sure that the underlying kobj is actually
1095 * not referenced anymore by anybody before we proceed with
1096 * unloading.
1097 */
1098 dprintk("waiting for dropping of refcount\n");
1099 wait_for_completion(&data->kobj_unregister);
1100 dprintk("wait complete\n");
1101
1102 if (cpufreq_driver->exit)
1103 cpufreq_driver->exit(data);
1104
1105 unlock_policy_rwsem_write(cpu);
1106
1107 free_cpumask_var(data->related_cpus);
1108 free_cpumask_var(data->cpus);
1109 kfree(data);
1110 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1111
1112 cpufreq_debug_enable_ratelimit();
1113 return 0;
1114 }
1115
1116
1117 static int cpufreq_remove_dev(struct sys_device *sys_dev)
1118 {
1119 unsigned int cpu = sys_dev->id;
1120 int retval;
1121
1122 if (cpu_is_offline(cpu))
1123 return 0;
1124
1125 if (unlikely(lock_policy_rwsem_write(cpu)))
1126 BUG();
1127
1128 retval = __cpufreq_remove_dev(sys_dev);
1129 return retval;
1130 }
1131
1132
1133 static void handle_update(struct work_struct *work)
1134 {
1135 struct cpufreq_policy *policy =
1136 container_of(work, struct cpufreq_policy, update);
1137 unsigned int cpu = policy->cpu;
1138 dprintk("handle_update for cpu %u called\n", cpu);
1139 cpufreq_update_policy(cpu);
1140 }
1141
1142 /**
1143 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1144 * @cpu: cpu number
1145 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1146 * @new_freq: CPU frequency the CPU actually runs at
1147 *
1148 * We adjust to current frequency first, and need to clean up later.
1149 * So either call to cpufreq_update_policy() or schedule handle_update()).
1150 */
1151 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1152 unsigned int new_freq)
1153 {
1154 struct cpufreq_freqs freqs;
1155
1156 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1157 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1158
1159 freqs.cpu = cpu;
1160 freqs.old = old_freq;
1161 freqs.new = new_freq;
1162 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1163 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1164 }
1165
1166
1167 /**
1168 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1169 * @cpu: CPU number
1170 *
1171 * This is the last known freq, without actually getting it from the driver.
1172 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1173 */
1174 unsigned int cpufreq_quick_get(unsigned int cpu)
1175 {
1176 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1177 unsigned int ret_freq = 0;
1178
1179 if (policy) {
1180 ret_freq = policy->cur;
1181 cpufreq_cpu_put(policy);
1182 }
1183
1184 return ret_freq;
1185 }
1186 EXPORT_SYMBOL(cpufreq_quick_get);
1187
1188
1189 static unsigned int __cpufreq_get(unsigned int cpu)
1190 {
1191 struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1192 unsigned int ret_freq = 0;
1193
1194 if (!cpufreq_driver->get)
1195 return ret_freq;
1196
1197 ret_freq = cpufreq_driver->get(cpu);
1198
1199 if (ret_freq && policy->cur &&
1200 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1201 /* verify no discrepancy between actual and
1202 saved value exists */
1203 if (unlikely(ret_freq != policy->cur)) {
1204 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1205 schedule_work(&policy->update);
1206 }
1207 }
1208
1209 return ret_freq;
1210 }
1211
1212 /**
1213 * cpufreq_get - get the current CPU frequency (in kHz)
1214 * @cpu: CPU number
1215 *
1216 * Get the CPU current (static) CPU frequency
1217 */
1218 unsigned int cpufreq_get(unsigned int cpu)
1219 {
1220 unsigned int ret_freq = 0;
1221 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1222
1223 if (!policy)
1224 goto out;
1225
1226 if (unlikely(lock_policy_rwsem_read(cpu)))
1227 goto out_policy;
1228
1229 ret_freq = __cpufreq_get(cpu);
1230
1231 unlock_policy_rwsem_read(cpu);
1232
1233 out_policy:
1234 cpufreq_cpu_put(policy);
1235 out:
1236 return ret_freq;
1237 }
1238 EXPORT_SYMBOL(cpufreq_get);
1239
1240
1241 /**
1242 * cpufreq_suspend - let the low level driver prepare for suspend
1243 */
1244
1245 static int cpufreq_suspend(struct sys_device *sysdev, pm_message_t pmsg)
1246 {
1247 int cpu = sysdev->id;
1248 int ret = 0;
1249 unsigned int cur_freq = 0;
1250 struct cpufreq_policy *cpu_policy;
1251
1252 dprintk("suspending cpu %u\n", cpu);
1253
1254 if (!cpu_online(cpu))
1255 return 0;
1256
1257 /* we may be lax here as interrupts are off. Nonetheless
1258 * we need to grab the correct cpu policy, as to check
1259 * whether we really run on this CPU.
1260 */
1261
1262 cpu_policy = cpufreq_cpu_get(cpu);
1263 if (!cpu_policy)
1264 return -EINVAL;
1265
1266 /* only handle each CPU group once */
1267 if (unlikely(cpu_policy->cpu != cpu))
1268 goto out;
1269
1270 if (cpufreq_driver->suspend) {
1271 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1272 if (ret) {
1273 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1274 "step on CPU %u\n", cpu_policy->cpu);
1275 goto out;
1276 }
1277 }
1278
1279 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1280 goto out;
1281
1282 if (cpufreq_driver->get)
1283 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1284
1285 if (!cur_freq || !cpu_policy->cur) {
1286 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1287 "frequency is what timing core thinks it is.\n");
1288 goto out;
1289 }
1290
1291 if (unlikely(cur_freq != cpu_policy->cur)) {
1292 struct cpufreq_freqs freqs;
1293
1294 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1295 dprintk("Warning: CPU frequency is %u, "
1296 "cpufreq assumed %u kHz.\n",
1297 cur_freq, cpu_policy->cur);
1298
1299 freqs.cpu = cpu;
1300 freqs.old = cpu_policy->cur;
1301 freqs.new = cur_freq;
1302
1303 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1304 CPUFREQ_SUSPENDCHANGE, &freqs);
1305 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1306
1307 cpu_policy->cur = cur_freq;
1308 }
1309
1310 out:
1311 cpufreq_cpu_put(cpu_policy);
1312 return ret;
1313 }
1314
1315 /**
1316 * cpufreq_resume - restore proper CPU frequency handling after resume
1317 *
1318 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1319 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1320 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1321 * restored.
1322 */
1323 static int cpufreq_resume(struct sys_device *sysdev)
1324 {
1325 int cpu = sysdev->id;
1326 int ret = 0;
1327 struct cpufreq_policy *cpu_policy;
1328
1329 dprintk("resuming cpu %u\n", cpu);
1330
1331 if (!cpu_online(cpu))
1332 return 0;
1333
1334 /* we may be lax here as interrupts are off. Nonetheless
1335 * we need to grab the correct cpu policy, as to check
1336 * whether we really run on this CPU.
1337 */
1338
1339 cpu_policy = cpufreq_cpu_get(cpu);
1340 if (!cpu_policy)
1341 return -EINVAL;
1342
1343 /* only handle each CPU group once */
1344 if (unlikely(cpu_policy->cpu != cpu))
1345 goto fail;
1346
1347 if (cpufreq_driver->resume) {
1348 ret = cpufreq_driver->resume(cpu_policy);
1349 if (ret) {
1350 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1351 "step on CPU %u\n", cpu_policy->cpu);
1352 goto fail;
1353 }
1354 }
1355
1356 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1357 unsigned int cur_freq = 0;
1358
1359 if (cpufreq_driver->get)
1360 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1361
1362 if (!cur_freq || !cpu_policy->cur) {
1363 printk(KERN_ERR "cpufreq: resume failed to assert "
1364 "current frequency is what timing core "
1365 "thinks it is.\n");
1366 goto out;
1367 }
1368
1369 if (unlikely(cur_freq != cpu_policy->cur)) {
1370 struct cpufreq_freqs freqs;
1371
1372 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1373 dprintk("Warning: CPU frequency "
1374 "is %u, cpufreq assumed %u kHz.\n",
1375 cur_freq, cpu_policy->cur);
1376
1377 freqs.cpu = cpu;
1378 freqs.old = cpu_policy->cur;
1379 freqs.new = cur_freq;
1380
1381 srcu_notifier_call_chain(
1382 &cpufreq_transition_notifier_list,
1383 CPUFREQ_RESUMECHANGE, &freqs);
1384 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1385
1386 cpu_policy->cur = cur_freq;
1387 }
1388 }
1389
1390 out:
1391 schedule_work(&cpu_policy->update);
1392 fail:
1393 cpufreq_cpu_put(cpu_policy);
1394 return ret;
1395 }
1396
1397 static struct sysdev_driver cpufreq_sysdev_driver = {
1398 .add = cpufreq_add_dev,
1399 .remove = cpufreq_remove_dev,
1400 .suspend = cpufreq_suspend,
1401 .resume = cpufreq_resume,
1402 };
1403
1404
1405 /*********************************************************************
1406 * NOTIFIER LISTS INTERFACE *
1407 *********************************************************************/
1408
1409 /**
1410 * cpufreq_register_notifier - register a driver with cpufreq
1411 * @nb: notifier function to register
1412 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1413 *
1414 * Add a driver to one of two lists: either a list of drivers that
1415 * are notified about clock rate changes (once before and once after
1416 * the transition), or a list of drivers that are notified about
1417 * changes in cpufreq policy.
1418 *
1419 * This function may sleep, and has the same return conditions as
1420 * blocking_notifier_chain_register.
1421 */
1422 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1423 {
1424 int ret;
1425
1426 WARN_ON(!init_cpufreq_transition_notifier_list_called);
1427
1428 switch (list) {
1429 case CPUFREQ_TRANSITION_NOTIFIER:
1430 ret = srcu_notifier_chain_register(
1431 &cpufreq_transition_notifier_list, nb);
1432 break;
1433 case CPUFREQ_POLICY_NOTIFIER:
1434 ret = blocking_notifier_chain_register(
1435 &cpufreq_policy_notifier_list, nb);
1436 break;
1437 default:
1438 ret = -EINVAL;
1439 }
1440
1441 return ret;
1442 }
1443 EXPORT_SYMBOL(cpufreq_register_notifier);
1444
1445
1446 /**
1447 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1448 * @nb: notifier block to be unregistered
1449 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1450 *
1451 * Remove a driver from the CPU frequency notifier list.
1452 *
1453 * This function may sleep, and has the same return conditions as
1454 * blocking_notifier_chain_unregister.
1455 */
1456 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1457 {
1458 int ret;
1459
1460 switch (list) {
1461 case CPUFREQ_TRANSITION_NOTIFIER:
1462 ret = srcu_notifier_chain_unregister(
1463 &cpufreq_transition_notifier_list, nb);
1464 break;
1465 case CPUFREQ_POLICY_NOTIFIER:
1466 ret = blocking_notifier_chain_unregister(
1467 &cpufreq_policy_notifier_list, nb);
1468 break;
1469 default:
1470 ret = -EINVAL;
1471 }
1472
1473 return ret;
1474 }
1475 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1476
1477
1478 /*********************************************************************
1479 * GOVERNORS *
1480 *********************************************************************/
1481
1482
1483 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1484 unsigned int target_freq,
1485 unsigned int relation)
1486 {
1487 int retval = -EINVAL;
1488
1489 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1490 target_freq, relation);
1491 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1492 retval = cpufreq_driver->target(policy, target_freq, relation);
1493
1494 return retval;
1495 }
1496 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1497
1498 int cpufreq_driver_target(struct cpufreq_policy *policy,
1499 unsigned int target_freq,
1500 unsigned int relation)
1501 {
1502 int ret = -EINVAL;
1503
1504 policy = cpufreq_cpu_get(policy->cpu);
1505 if (!policy)
1506 goto no_policy;
1507
1508 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1509 goto fail;
1510
1511 ret = __cpufreq_driver_target(policy, target_freq, relation);
1512
1513 unlock_policy_rwsem_write(policy->cpu);
1514
1515 fail:
1516 cpufreq_cpu_put(policy);
1517 no_policy:
1518 return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1521
1522 int __cpufreq_driver_getavg(struct cpufreq_policy *policy, unsigned int cpu)
1523 {
1524 int ret = 0;
1525
1526 policy = cpufreq_cpu_get(policy->cpu);
1527 if (!policy)
1528 return -EINVAL;
1529
1530 if (cpu_online(cpu) && cpufreq_driver->getavg)
1531 ret = cpufreq_driver->getavg(policy, cpu);
1532
1533 cpufreq_cpu_put(policy);
1534 return ret;
1535 }
1536 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1537
1538 /*
1539 * when "event" is CPUFREQ_GOV_LIMITS
1540 */
1541
1542 static int __cpufreq_governor(struct cpufreq_policy *policy,
1543 unsigned int event)
1544 {
1545 int ret;
1546
1547 /* Only must be defined when default governor is known to have latency
1548 restrictions, like e.g. conservative or ondemand.
1549 That this is the case is already ensured in Kconfig
1550 */
1551 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1552 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1553 #else
1554 struct cpufreq_governor *gov = NULL;
1555 #endif
1556
1557 if (policy->governor->max_transition_latency &&
1558 policy->cpuinfo.transition_latency >
1559 policy->governor->max_transition_latency) {
1560 if (!gov)
1561 return -EINVAL;
1562 else {
1563 printk(KERN_WARNING "%s governor failed, too long"
1564 " transition latency of HW, fallback"
1565 " to %s governor\n",
1566 policy->governor->name,
1567 gov->name);
1568 policy->governor = gov;
1569 }
1570 }
1571
1572 if (!try_module_get(policy->governor->owner))
1573 return -EINVAL;
1574
1575 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1576 policy->cpu, event);
1577 ret = policy->governor->governor(policy, event);
1578
1579 /* we keep one module reference alive for
1580 each CPU governed by this CPU */
1581 if ((event != CPUFREQ_GOV_START) || ret)
1582 module_put(policy->governor->owner);
1583 if ((event == CPUFREQ_GOV_STOP) && !ret)
1584 module_put(policy->governor->owner);
1585
1586 return ret;
1587 }
1588
1589
1590 int cpufreq_register_governor(struct cpufreq_governor *governor)
1591 {
1592 int err;
1593
1594 if (!governor)
1595 return -EINVAL;
1596
1597 mutex_lock(&cpufreq_governor_mutex);
1598
1599 err = -EBUSY;
1600 if (__find_governor(governor->name) == NULL) {
1601 err = 0;
1602 list_add(&governor->governor_list, &cpufreq_governor_list);
1603 }
1604
1605 mutex_unlock(&cpufreq_governor_mutex);
1606 return err;
1607 }
1608 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1609
1610
1611 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1612 {
1613 if (!governor)
1614 return;
1615
1616 mutex_lock(&cpufreq_governor_mutex);
1617 list_del(&governor->governor_list);
1618 mutex_unlock(&cpufreq_governor_mutex);
1619 return;
1620 }
1621 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1622
1623
1624
1625 /*********************************************************************
1626 * POLICY INTERFACE *
1627 *********************************************************************/
1628
1629 /**
1630 * cpufreq_get_policy - get the current cpufreq_policy
1631 * @policy: struct cpufreq_policy into which the current cpufreq_policy
1632 * is written
1633 *
1634 * Reads the current cpufreq policy.
1635 */
1636 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1637 {
1638 struct cpufreq_policy *cpu_policy;
1639 if (!policy)
1640 return -EINVAL;
1641
1642 cpu_policy = cpufreq_cpu_get(cpu);
1643 if (!cpu_policy)
1644 return -EINVAL;
1645
1646 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1647
1648 cpufreq_cpu_put(cpu_policy);
1649 return 0;
1650 }
1651 EXPORT_SYMBOL(cpufreq_get_policy);
1652
1653
1654 /*
1655 * data : current policy.
1656 * policy : policy to be set.
1657 */
1658 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1659 struct cpufreq_policy *policy)
1660 {
1661 int ret = 0;
1662
1663 cpufreq_debug_disable_ratelimit();
1664 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1665 policy->min, policy->max);
1666
1667 memcpy(&policy->cpuinfo, &data->cpuinfo,
1668 sizeof(struct cpufreq_cpuinfo));
1669
1670 if (policy->min > data->max || policy->max < data->min) {
1671 ret = -EINVAL;
1672 goto error_out;
1673 }
1674
1675 /* verify the cpu speed can be set within this limit */
1676 ret = cpufreq_driver->verify(policy);
1677 if (ret)
1678 goto error_out;
1679
1680 /* adjust if necessary - all reasons */
1681 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1682 CPUFREQ_ADJUST, policy);
1683
1684 /* adjust if necessary - hardware incompatibility*/
1685 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1686 CPUFREQ_INCOMPATIBLE, policy);
1687
1688 /* verify the cpu speed can be set within this limit,
1689 which might be different to the first one */
1690 ret = cpufreq_driver->verify(policy);
1691 if (ret)
1692 goto error_out;
1693
1694 /* notification of the new policy */
1695 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1696 CPUFREQ_NOTIFY, policy);
1697
1698 data->min = policy->min;
1699 data->max = policy->max;
1700
1701 dprintk("new min and max freqs are %u - %u kHz\n",
1702 data->min, data->max);
1703
1704 if (cpufreq_driver->setpolicy) {
1705 data->policy = policy->policy;
1706 dprintk("setting range\n");
1707 ret = cpufreq_driver->setpolicy(policy);
1708 } else {
1709 if (policy->governor != data->governor) {
1710 /* save old, working values */
1711 struct cpufreq_governor *old_gov = data->governor;
1712
1713 dprintk("governor switch\n");
1714
1715 /* end old governor */
1716 if (data->governor)
1717 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1718
1719 /* start new governor */
1720 data->governor = policy->governor;
1721 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1722 /* new governor failed, so re-start old one */
1723 dprintk("starting governor %s failed\n",
1724 data->governor->name);
1725 if (old_gov) {
1726 data->governor = old_gov;
1727 __cpufreq_governor(data,
1728 CPUFREQ_GOV_START);
1729 }
1730 ret = -EINVAL;
1731 goto error_out;
1732 }
1733 /* might be a policy change, too, so fall through */
1734 }
1735 dprintk("governor: change or update limits\n");
1736 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1737 }
1738
1739 error_out:
1740 cpufreq_debug_enable_ratelimit();
1741 return ret;
1742 }
1743
1744 /**
1745 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1746 * @cpu: CPU which shall be re-evaluated
1747 *
1748 * Usefull for policy notifiers which have different necessities
1749 * at different times.
1750 */
1751 int cpufreq_update_policy(unsigned int cpu)
1752 {
1753 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1754 struct cpufreq_policy policy;
1755 int ret;
1756
1757 if (!data) {
1758 ret = -ENODEV;
1759 goto no_policy;
1760 }
1761
1762 if (unlikely(lock_policy_rwsem_write(cpu))) {
1763 ret = -EINVAL;
1764 goto fail;
1765 }
1766
1767 dprintk("updating policy for CPU %u\n", cpu);
1768 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1769 policy.min = data->user_policy.min;
1770 policy.max = data->user_policy.max;
1771 policy.policy = data->user_policy.policy;
1772 policy.governor = data->user_policy.governor;
1773
1774 /* BIOS might change freq behind our back
1775 -> ask driver for current freq and notify governors about a change */
1776 if (cpufreq_driver->get) {
1777 policy.cur = cpufreq_driver->get(cpu);
1778 if (!data->cur) {
1779 dprintk("Driver did not initialize current freq");
1780 data->cur = policy.cur;
1781 } else {
1782 if (data->cur != policy.cur)
1783 cpufreq_out_of_sync(cpu, data->cur,
1784 policy.cur);
1785 }
1786 }
1787
1788 ret = __cpufreq_set_policy(data, &policy);
1789
1790 unlock_policy_rwsem_write(cpu);
1791
1792 fail:
1793 cpufreq_cpu_put(data);
1794 no_policy:
1795 return ret;
1796 }
1797 EXPORT_SYMBOL(cpufreq_update_policy);
1798
1799 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1800 unsigned long action, void *hcpu)
1801 {
1802 unsigned int cpu = (unsigned long)hcpu;
1803 struct sys_device *sys_dev;
1804
1805 sys_dev = get_cpu_sysdev(cpu);
1806 if (sys_dev) {
1807 switch (action) {
1808 case CPU_ONLINE:
1809 case CPU_ONLINE_FROZEN:
1810 cpufreq_add_dev(sys_dev);
1811 break;
1812 case CPU_DOWN_PREPARE:
1813 case CPU_DOWN_PREPARE_FROZEN:
1814 if (unlikely(lock_policy_rwsem_write(cpu)))
1815 BUG();
1816
1817 __cpufreq_remove_dev(sys_dev);
1818 break;
1819 case CPU_DOWN_FAILED:
1820 case CPU_DOWN_FAILED_FROZEN:
1821 cpufreq_add_dev(sys_dev);
1822 break;
1823 }
1824 }
1825 return NOTIFY_OK;
1826 }
1827
1828 static struct notifier_block __refdata cpufreq_cpu_notifier =
1829 {
1830 .notifier_call = cpufreq_cpu_callback,
1831 };
1832
1833 /*********************************************************************
1834 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1835 *********************************************************************/
1836
1837 /**
1838 * cpufreq_register_driver - register a CPU Frequency driver
1839 * @driver_data: A struct cpufreq_driver containing the values#
1840 * submitted by the CPU Frequency driver.
1841 *
1842 * Registers a CPU Frequency driver to this core code. This code
1843 * returns zero on success, -EBUSY when another driver got here first
1844 * (and isn't unregistered in the meantime).
1845 *
1846 */
1847 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1848 {
1849 unsigned long flags;
1850 int ret;
1851
1852 if (!driver_data || !driver_data->verify || !driver_data->init ||
1853 ((!driver_data->setpolicy) && (!driver_data->target)))
1854 return -EINVAL;
1855
1856 dprintk("trying to register driver %s\n", driver_data->name);
1857
1858 if (driver_data->setpolicy)
1859 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1860
1861 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1862 if (cpufreq_driver) {
1863 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1864 return -EBUSY;
1865 }
1866 cpufreq_driver = driver_data;
1867 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1868
1869 ret = sysdev_driver_register(&cpu_sysdev_class,
1870 &cpufreq_sysdev_driver);
1871
1872 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1873 int i;
1874 ret = -ENODEV;
1875
1876 /* check for at least one working CPU */
1877 for (i = 0; i < nr_cpu_ids; i++)
1878 if (cpu_possible(i) && per_cpu(cpufreq_cpu_data, i)) {
1879 ret = 0;
1880 break;
1881 }
1882
1883 /* if all ->init() calls failed, unregister */
1884 if (ret) {
1885 dprintk("no CPU initialized for driver %s\n",
1886 driver_data->name);
1887 sysdev_driver_unregister(&cpu_sysdev_class,
1888 &cpufreq_sysdev_driver);
1889
1890 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1891 cpufreq_driver = NULL;
1892 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1893 }
1894 }
1895
1896 if (!ret) {
1897 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1898 dprintk("driver %s up and running\n", driver_data->name);
1899 cpufreq_debug_enable_ratelimit();
1900 }
1901
1902 return ret;
1903 }
1904 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1905
1906
1907 /**
1908 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1909 *
1910 * Unregister the current CPUFreq driver. Only call this if you have
1911 * the right to do so, i.e. if you have succeeded in initialising before!
1912 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1913 * currently not initialised.
1914 */
1915 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1916 {
1917 unsigned long flags;
1918
1919 cpufreq_debug_disable_ratelimit();
1920
1921 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1922 cpufreq_debug_enable_ratelimit();
1923 return -EINVAL;
1924 }
1925
1926 dprintk("unregistering driver %s\n", driver->name);
1927
1928 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1929 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1930
1931 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1932 cpufreq_driver = NULL;
1933 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1934
1935 return 0;
1936 }
1937 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1938
1939 static int __init cpufreq_core_init(void)
1940 {
1941 int cpu;
1942
1943 for_each_possible_cpu(cpu) {
1944 per_cpu(policy_cpu, cpu) = -1;
1945 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1946 }
1947 return 0;
1948 }
1949
1950 core_initcall(cpufreq_core_init);
This page took 0.071549 seconds and 6 git commands to generate.