brcmfmac: remove unnecessary EXPORT_SYMBOL() usage
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/slab.h>
15 #include "cpufreq_governor.h"
16
17 /* Conservative governor macros */
18 #define DEF_FREQUENCY_UP_THRESHOLD (80)
19 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
20 #define DEF_FREQUENCY_STEP (5)
21 #define DEF_SAMPLING_DOWN_FACTOR (1)
22 #define MAX_SAMPLING_DOWN_FACTOR (10)
23
24 static DEFINE_PER_CPU(struct cs_cpu_dbs_info_s, cs_cpu_dbs_info);
25
26 static inline unsigned int get_freq_target(struct cs_dbs_tuners *cs_tuners,
27 struct cpufreq_policy *policy)
28 {
29 unsigned int freq_target = (cs_tuners->freq_step * policy->max) / 100;
30
31 /* max freq cannot be less than 100. But who knows... */
32 if (unlikely(freq_target == 0))
33 freq_target = DEF_FREQUENCY_STEP;
34
35 return freq_target;
36 }
37
38 /*
39 * Every sampling_rate, we check, if current idle time is less than 20%
40 * (default), then we try to increase frequency. Every sampling_rate *
41 * sampling_down_factor, we check, if current idle time is more than 80%
42 * (default), then we try to decrease frequency
43 *
44 * Any frequency increase takes it to the maximum frequency. Frequency reduction
45 * happens at minimum steps of 5% (default) of maximum frequency
46 */
47 static void cs_check_cpu(int cpu, unsigned int load)
48 {
49 struct cs_cpu_dbs_info_s *dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
50 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
51 struct dbs_data *dbs_data = policy->governor_data;
52 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
53
54 /*
55 * break out if we 'cannot' reduce the speed as the user might
56 * want freq_step to be zero
57 */
58 if (cs_tuners->freq_step == 0)
59 return;
60
61 /* Check for frequency increase */
62 if (load > cs_tuners->up_threshold) {
63 dbs_info->down_skip = 0;
64
65 /* if we are already at full speed then break out early */
66 if (dbs_info->requested_freq == policy->max)
67 return;
68
69 dbs_info->requested_freq += get_freq_target(cs_tuners, policy);
70
71 __cpufreq_driver_target(policy, dbs_info->requested_freq,
72 CPUFREQ_RELATION_H);
73 return;
74 }
75
76 /* if sampling_down_factor is active break out early */
77 if (++dbs_info->down_skip < cs_tuners->sampling_down_factor)
78 return;
79 dbs_info->down_skip = 0;
80
81 /* Check for frequency decrease */
82 if (load < cs_tuners->down_threshold) {
83 unsigned int freq_target;
84 /*
85 * if we cannot reduce the frequency anymore, break out early
86 */
87 if (policy->cur == policy->min)
88 return;
89
90 freq_target = get_freq_target(cs_tuners, policy);
91 if (dbs_info->requested_freq > freq_target)
92 dbs_info->requested_freq -= freq_target;
93 else
94 dbs_info->requested_freq = policy->min;
95
96 __cpufreq_driver_target(policy, dbs_info->requested_freq,
97 CPUFREQ_RELATION_L);
98 return;
99 }
100 }
101
102 static void cs_dbs_timer(struct work_struct *work)
103 {
104 struct cs_cpu_dbs_info_s *dbs_info = container_of(work,
105 struct cs_cpu_dbs_info_s, cdbs.work.work);
106 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
107 struct cs_cpu_dbs_info_s *core_dbs_info = &per_cpu(cs_cpu_dbs_info,
108 cpu);
109 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
110 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
111 int delay = delay_for_sampling_rate(cs_tuners->sampling_rate);
112 bool modify_all = true;
113
114 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
115 if (!need_load_eval(&core_dbs_info->cdbs, cs_tuners->sampling_rate))
116 modify_all = false;
117 else
118 dbs_check_cpu(dbs_data, cpu);
119
120 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
121 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
122 }
123
124 static int dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
125 void *data)
126 {
127 struct cpufreq_freqs *freq = data;
128 struct cs_cpu_dbs_info_s *dbs_info =
129 &per_cpu(cs_cpu_dbs_info, freq->cpu);
130 struct cpufreq_policy *policy;
131
132 if (!dbs_info->enable)
133 return 0;
134
135 policy = dbs_info->cdbs.cur_policy;
136
137 /*
138 * we only care if our internally tracked freq moves outside the 'valid'
139 * ranges of frequency available to us otherwise we do not change it
140 */
141 if (dbs_info->requested_freq > policy->max
142 || dbs_info->requested_freq < policy->min)
143 dbs_info->requested_freq = freq->new;
144
145 return 0;
146 }
147
148 /************************** sysfs interface ************************/
149 static struct common_dbs_data cs_dbs_cdata;
150
151 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
152 const char *buf, size_t count)
153 {
154 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
155 unsigned int input;
156 int ret;
157 ret = sscanf(buf, "%u", &input);
158
159 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
160 return -EINVAL;
161
162 cs_tuners->sampling_down_factor = input;
163 return count;
164 }
165
166 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
167 size_t count)
168 {
169 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
170 unsigned int input;
171 int ret;
172 ret = sscanf(buf, "%u", &input);
173
174 if (ret != 1)
175 return -EINVAL;
176
177 cs_tuners->sampling_rate = max(input, dbs_data->min_sampling_rate);
178 return count;
179 }
180
181 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
182 size_t count)
183 {
184 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
185 unsigned int input;
186 int ret;
187 ret = sscanf(buf, "%u", &input);
188
189 if (ret != 1 || input > 100 || input <= cs_tuners->down_threshold)
190 return -EINVAL;
191
192 cs_tuners->up_threshold = input;
193 return count;
194 }
195
196 static ssize_t store_down_threshold(struct dbs_data *dbs_data, const char *buf,
197 size_t count)
198 {
199 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
200 unsigned int input;
201 int ret;
202 ret = sscanf(buf, "%u", &input);
203
204 /* cannot be lower than 11 otherwise freq will not fall */
205 if (ret != 1 || input < 11 || input > 100 ||
206 input >= cs_tuners->up_threshold)
207 return -EINVAL;
208
209 cs_tuners->down_threshold = input;
210 return count;
211 }
212
213 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
214 const char *buf, size_t count)
215 {
216 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
217 unsigned int input, j;
218 int ret;
219
220 ret = sscanf(buf, "%u", &input);
221 if (ret != 1)
222 return -EINVAL;
223
224 if (input > 1)
225 input = 1;
226
227 if (input == cs_tuners->ignore_nice_load) /* nothing to do */
228 return count;
229
230 cs_tuners->ignore_nice_load = input;
231
232 /* we need to re-evaluate prev_cpu_idle */
233 for_each_online_cpu(j) {
234 struct cs_cpu_dbs_info_s *dbs_info;
235 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
236 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
237 &dbs_info->cdbs.prev_cpu_wall, 0);
238 if (cs_tuners->ignore_nice_load)
239 dbs_info->cdbs.prev_cpu_nice =
240 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
241 }
242 return count;
243 }
244
245 static ssize_t store_freq_step(struct dbs_data *dbs_data, const char *buf,
246 size_t count)
247 {
248 struct cs_dbs_tuners *cs_tuners = dbs_data->tuners;
249 unsigned int input;
250 int ret;
251 ret = sscanf(buf, "%u", &input);
252
253 if (ret != 1)
254 return -EINVAL;
255
256 if (input > 100)
257 input = 100;
258
259 /*
260 * no need to test here if freq_step is zero as the user might actually
261 * want this, they would be crazy though :)
262 */
263 cs_tuners->freq_step = input;
264 return count;
265 }
266
267 show_store_one(cs, sampling_rate);
268 show_store_one(cs, sampling_down_factor);
269 show_store_one(cs, up_threshold);
270 show_store_one(cs, down_threshold);
271 show_store_one(cs, ignore_nice_load);
272 show_store_one(cs, freq_step);
273 declare_show_sampling_rate_min(cs);
274
275 gov_sys_pol_attr_rw(sampling_rate);
276 gov_sys_pol_attr_rw(sampling_down_factor);
277 gov_sys_pol_attr_rw(up_threshold);
278 gov_sys_pol_attr_rw(down_threshold);
279 gov_sys_pol_attr_rw(ignore_nice_load);
280 gov_sys_pol_attr_rw(freq_step);
281 gov_sys_pol_attr_ro(sampling_rate_min);
282
283 static struct attribute *dbs_attributes_gov_sys[] = {
284 &sampling_rate_min_gov_sys.attr,
285 &sampling_rate_gov_sys.attr,
286 &sampling_down_factor_gov_sys.attr,
287 &up_threshold_gov_sys.attr,
288 &down_threshold_gov_sys.attr,
289 &ignore_nice_load_gov_sys.attr,
290 &freq_step_gov_sys.attr,
291 NULL
292 };
293
294 static struct attribute_group cs_attr_group_gov_sys = {
295 .attrs = dbs_attributes_gov_sys,
296 .name = "conservative",
297 };
298
299 static struct attribute *dbs_attributes_gov_pol[] = {
300 &sampling_rate_min_gov_pol.attr,
301 &sampling_rate_gov_pol.attr,
302 &sampling_down_factor_gov_pol.attr,
303 &up_threshold_gov_pol.attr,
304 &down_threshold_gov_pol.attr,
305 &ignore_nice_load_gov_pol.attr,
306 &freq_step_gov_pol.attr,
307 NULL
308 };
309
310 static struct attribute_group cs_attr_group_gov_pol = {
311 .attrs = dbs_attributes_gov_pol,
312 .name = "conservative",
313 };
314
315 /************************** sysfs end ************************/
316
317 static int cs_init(struct dbs_data *dbs_data)
318 {
319 struct cs_dbs_tuners *tuners;
320
321 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
322 if (!tuners) {
323 pr_err("%s: kzalloc failed\n", __func__);
324 return -ENOMEM;
325 }
326
327 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
328 tuners->down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD;
329 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
330 tuners->ignore_nice_load = 0;
331 tuners->freq_step = DEF_FREQUENCY_STEP;
332
333 dbs_data->tuners = tuners;
334 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
335 jiffies_to_usecs(10);
336 mutex_init(&dbs_data->mutex);
337 return 0;
338 }
339
340 static void cs_exit(struct dbs_data *dbs_data)
341 {
342 kfree(dbs_data->tuners);
343 }
344
345 define_get_cpu_dbs_routines(cs_cpu_dbs_info);
346
347 static struct notifier_block cs_cpufreq_notifier_block = {
348 .notifier_call = dbs_cpufreq_notifier,
349 };
350
351 static struct cs_ops cs_ops = {
352 .notifier_block = &cs_cpufreq_notifier_block,
353 };
354
355 static struct common_dbs_data cs_dbs_cdata = {
356 .governor = GOV_CONSERVATIVE,
357 .attr_group_gov_sys = &cs_attr_group_gov_sys,
358 .attr_group_gov_pol = &cs_attr_group_gov_pol,
359 .get_cpu_cdbs = get_cpu_cdbs,
360 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
361 .gov_dbs_timer = cs_dbs_timer,
362 .gov_check_cpu = cs_check_cpu,
363 .gov_ops = &cs_ops,
364 .init = cs_init,
365 .exit = cs_exit,
366 };
367
368 static int cs_cpufreq_governor_dbs(struct cpufreq_policy *policy,
369 unsigned int event)
370 {
371 return cpufreq_governor_dbs(policy, &cs_dbs_cdata, event);
372 }
373
374 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
375 static
376 #endif
377 struct cpufreq_governor cpufreq_gov_conservative = {
378 .name = "conservative",
379 .governor = cs_cpufreq_governor_dbs,
380 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
381 .owner = THIS_MODULE,
382 };
383
384 static int __init cpufreq_gov_dbs_init(void)
385 {
386 return cpufreq_register_governor(&cpufreq_gov_conservative);
387 }
388
389 static void __exit cpufreq_gov_dbs_exit(void)
390 {
391 cpufreq_unregister_governor(&cpufreq_gov_conservative);
392 }
393
394 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
395 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
396 "Low Latency Frequency Transition capable processors "
397 "optimised for use in a battery environment");
398 MODULE_LICENSE("GPL");
399
400 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
401 fs_initcall(cpufreq_gov_dbs_init);
402 #else
403 module_init(cpufreq_gov_dbs_init);
404 #endif
405 module_exit(cpufreq_gov_dbs_exit);
This page took 0.041496 seconds and 5 git commands to generate.