[PATCH] cpufreq_conservative: make for_each_cpu() safe
[deliverable/linux.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
39
40 /*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
47 * this governor will not work.
48 * All times here are in uS.
49 */
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
54 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
55 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
56 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
57 #define DEF_SAMPLING_DOWN_FACTOR (1)
58 #define MAX_SAMPLING_DOWN_FACTOR (10)
59 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
60
61 static void do_dbs_timer(void *data);
62
63 struct cpu_dbs_info_s {
64 struct cpufreq_policy *cur_policy;
65 unsigned int prev_cpu_idle_up;
66 unsigned int prev_cpu_idle_down;
67 unsigned int enable;
68 };
69 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
70
71 static unsigned int dbs_enable; /* number of CPUs using this policy */
72
73 static DEFINE_MUTEX (dbs_mutex);
74 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
75
76 struct dbs_tuners {
77 unsigned int sampling_rate;
78 unsigned int sampling_down_factor;
79 unsigned int up_threshold;
80 unsigned int down_threshold;
81 unsigned int ignore_nice;
82 unsigned int freq_step;
83 };
84
85 static struct dbs_tuners dbs_tuners_ins = {
86 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
87 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
88 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
89 };
90
91 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
92 {
93 return kstat_cpu(cpu).cpustat.idle +
94 kstat_cpu(cpu).cpustat.iowait +
95 ( dbs_tuners_ins.ignore_nice ?
96 kstat_cpu(cpu).cpustat.nice :
97 0);
98 }
99
100 /************************** sysfs interface ************************/
101 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
102 {
103 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
104 }
105
106 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
107 {
108 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
109 }
110
111 #define define_one_ro(_name) \
112 static struct freq_attr _name = \
113 __ATTR(_name, 0444, show_##_name, NULL)
114
115 define_one_ro(sampling_rate_max);
116 define_one_ro(sampling_rate_min);
117
118 /* cpufreq_conservative Governor Tunables */
119 #define show_one(file_name, object) \
120 static ssize_t show_##file_name \
121 (struct cpufreq_policy *unused, char *buf) \
122 { \
123 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
124 }
125 show_one(sampling_rate, sampling_rate);
126 show_one(sampling_down_factor, sampling_down_factor);
127 show_one(up_threshold, up_threshold);
128 show_one(down_threshold, down_threshold);
129 show_one(ignore_nice_load, ignore_nice);
130 show_one(freq_step, freq_step);
131
132 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
133 const char *buf, size_t count)
134 {
135 unsigned int input;
136 int ret;
137 ret = sscanf (buf, "%u", &input);
138 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
139 return -EINVAL;
140
141 mutex_lock(&dbs_mutex);
142 dbs_tuners_ins.sampling_down_factor = input;
143 mutex_unlock(&dbs_mutex);
144
145 return count;
146 }
147
148 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
149 const char *buf, size_t count)
150 {
151 unsigned int input;
152 int ret;
153 ret = sscanf (buf, "%u", &input);
154
155 mutex_lock(&dbs_mutex);
156 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
157 mutex_unlock(&dbs_mutex);
158 return -EINVAL;
159 }
160
161 dbs_tuners_ins.sampling_rate = input;
162 mutex_unlock(&dbs_mutex);
163
164 return count;
165 }
166
167 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
168 const char *buf, size_t count)
169 {
170 unsigned int input;
171 int ret;
172 ret = sscanf (buf, "%u", &input);
173
174 mutex_lock(&dbs_mutex);
175 if (ret != 1 || input > 100 || input < 0 ||
176 input <= dbs_tuners_ins.down_threshold) {
177 mutex_unlock(&dbs_mutex);
178 return -EINVAL;
179 }
180
181 dbs_tuners_ins.up_threshold = input;
182 mutex_unlock(&dbs_mutex);
183
184 return count;
185 }
186
187 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
188 const char *buf, size_t count)
189 {
190 unsigned int input;
191 int ret;
192 ret = sscanf (buf, "%u", &input);
193
194 mutex_lock(&dbs_mutex);
195 if (ret != 1 || input > 100 || input < 0 ||
196 input >= dbs_tuners_ins.up_threshold) {
197 mutex_unlock(&dbs_mutex);
198 return -EINVAL;
199 }
200
201 dbs_tuners_ins.down_threshold = input;
202 mutex_unlock(&dbs_mutex);
203
204 return count;
205 }
206
207 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
208 const char *buf, size_t count)
209 {
210 unsigned int input;
211 int ret;
212
213 unsigned int j;
214
215 ret = sscanf (buf, "%u", &input);
216 if ( ret != 1 )
217 return -EINVAL;
218
219 if ( input > 1 )
220 input = 1;
221
222 mutex_lock(&dbs_mutex);
223 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
224 mutex_unlock(&dbs_mutex);
225 return count;
226 }
227 dbs_tuners_ins.ignore_nice = input;
228
229 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
230 for_each_online_cpu(j) {
231 struct cpu_dbs_info_s *j_dbs_info;
232 j_dbs_info = &per_cpu(cpu_dbs_info, j);
233 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
234 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
235 }
236 mutex_unlock(&dbs_mutex);
237
238 return count;
239 }
240
241 static ssize_t store_freq_step(struct cpufreq_policy *policy,
242 const char *buf, size_t count)
243 {
244 unsigned int input;
245 int ret;
246
247 ret = sscanf (buf, "%u", &input);
248
249 if ( ret != 1 )
250 return -EINVAL;
251
252 if ( input > 100 )
253 input = 100;
254
255 /* no need to test here if freq_step is zero as the user might actually
256 * want this, they would be crazy though :) */
257 mutex_lock(&dbs_mutex);
258 dbs_tuners_ins.freq_step = input;
259 mutex_unlock(&dbs_mutex);
260
261 return count;
262 }
263
264 #define define_one_rw(_name) \
265 static struct freq_attr _name = \
266 __ATTR(_name, 0644, show_##_name, store_##_name)
267
268 define_one_rw(sampling_rate);
269 define_one_rw(sampling_down_factor);
270 define_one_rw(up_threshold);
271 define_one_rw(down_threshold);
272 define_one_rw(ignore_nice_load);
273 define_one_rw(freq_step);
274
275 static struct attribute * dbs_attributes[] = {
276 &sampling_rate_max.attr,
277 &sampling_rate_min.attr,
278 &sampling_rate.attr,
279 &sampling_down_factor.attr,
280 &up_threshold.attr,
281 &down_threshold.attr,
282 &ignore_nice_load.attr,
283 &freq_step.attr,
284 NULL
285 };
286
287 static struct attribute_group dbs_attr_group = {
288 .attrs = dbs_attributes,
289 .name = "conservative",
290 };
291
292 /************************** sysfs end ************************/
293
294 static void dbs_check_cpu(int cpu)
295 {
296 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
297 unsigned int tmp_idle_ticks, total_idle_ticks;
298 unsigned int freq_step;
299 unsigned int freq_down_sampling_rate;
300 static unsigned short down_skip[NR_CPUS];
301 static unsigned int requested_freq[NR_CPUS];
302 static unsigned int init_flag = NR_CPUS;
303 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
304 struct cpufreq_policy *policy;
305
306 if (!this_dbs_info->enable)
307 return;
308
309 if ( init_flag != 0 ) {
310 for_each_cpu(init_flag) {
311 down_skip[init_flag] = 0;
312 /* I doubt a CPU exists with a freq of 0hz :) */
313 requested_freq[init_flag] = 0;
314 }
315 init_flag = 0;
316 }
317
318 /*
319 * If its a freshly initialised cpu we setup requested_freq. This
320 * check could be avoided if we did not care about a first time
321 * stunted increase in CPU speed when there is a load. I feel we
322 * should be initialising this to something. The removal of a CPU
323 * is not a problem, after a short time the CPU should settle down
324 * to a 'natural' frequency.
325 */
326 if (requested_freq[cpu] == 0)
327 requested_freq[cpu] = this_dbs_info->cur_policy->cur;
328
329 policy = this_dbs_info->cur_policy;
330
331 /*
332 * The default safe range is 20% to 80%
333 * Every sampling_rate, we check
334 * - If current idle time is less than 20%, then we try to
335 * increase frequency
336 * Every sampling_rate*sampling_down_factor, we check
337 * - If current idle time is more than 80%, then we try to
338 * decrease frequency
339 *
340 * Any frequency increase takes it to the maximum frequency.
341 * Frequency reduction happens at minimum steps of
342 * 5% (default) of max_frequency
343 */
344
345 /* Check for frequency increase */
346 idle_ticks = UINT_MAX;
347
348 /* Check for frequency increase */
349 total_idle_ticks = get_cpu_idle_time(cpu);
350 tmp_idle_ticks = total_idle_ticks -
351 this_dbs_info->prev_cpu_idle_up;
352 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
353
354 if (tmp_idle_ticks < idle_ticks)
355 idle_ticks = tmp_idle_ticks;
356
357 /* Scale idle ticks by 100 and compare with up and down ticks */
358 idle_ticks *= 100;
359 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
360 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
361
362 if (idle_ticks < up_idle_ticks) {
363 down_skip[cpu] = 0;
364 this_dbs_info->prev_cpu_idle_down =
365 this_dbs_info->prev_cpu_idle_up;
366
367 /* if we are already at full speed then break out early */
368 if (requested_freq[cpu] == policy->max)
369 return;
370
371 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
372
373 /* max freq cannot be less than 100. But who knows.... */
374 if (unlikely(freq_step == 0))
375 freq_step = 5;
376
377 requested_freq[cpu] += freq_step;
378 if (requested_freq[cpu] > policy->max)
379 requested_freq[cpu] = policy->max;
380
381 __cpufreq_driver_target(policy, requested_freq[cpu],
382 CPUFREQ_RELATION_H);
383 return;
384 }
385
386 /* Check for frequency decrease */
387 down_skip[cpu]++;
388 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
389 return;
390
391 /* Check for frequency decrease */
392 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
393 tmp_idle_ticks = total_idle_ticks -
394 this_dbs_info->prev_cpu_idle_down;
395 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
396
397 if (tmp_idle_ticks < idle_ticks)
398 idle_ticks = tmp_idle_ticks;
399
400 /* Scale idle ticks by 100 and compare with up and down ticks */
401 idle_ticks *= 100;
402 down_skip[cpu] = 0;
403
404 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
405 dbs_tuners_ins.sampling_down_factor;
406 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
407 usecs_to_jiffies(freq_down_sampling_rate);
408
409 if (idle_ticks > down_idle_ticks) {
410 /*
411 * if we are already at the lowest speed then break out early
412 * or if we 'cannot' reduce the speed as the user might want
413 * freq_step to be zero
414 */
415 if (requested_freq[cpu] == policy->min
416 || dbs_tuners_ins.freq_step == 0)
417 return;
418
419 freq_step = (dbs_tuners_ins.freq_step * policy->max) / 100;
420
421 /* max freq cannot be less than 100. But who knows.... */
422 if (unlikely(freq_step == 0))
423 freq_step = 5;
424
425 requested_freq[cpu] -= freq_step;
426 if (requested_freq[cpu] < policy->min)
427 requested_freq[cpu] = policy->min;
428
429 __cpufreq_driver_target(policy, requested_freq[cpu],
430 CPUFREQ_RELATION_H);
431 return;
432 }
433 }
434
435 static void do_dbs_timer(void *data)
436 {
437 int i;
438 mutex_lock(&dbs_mutex);
439 for_each_online_cpu(i)
440 dbs_check_cpu(i);
441 schedule_delayed_work(&dbs_work,
442 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
443 mutex_unlock(&dbs_mutex);
444 }
445
446 static inline void dbs_timer_init(void)
447 {
448 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
449 schedule_delayed_work(&dbs_work,
450 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
451 return;
452 }
453
454 static inline void dbs_timer_exit(void)
455 {
456 cancel_delayed_work(&dbs_work);
457 return;
458 }
459
460 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
461 unsigned int event)
462 {
463 unsigned int cpu = policy->cpu;
464 struct cpu_dbs_info_s *this_dbs_info;
465 unsigned int j;
466
467 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
468
469 switch (event) {
470 case CPUFREQ_GOV_START:
471 if ((!cpu_online(cpu)) ||
472 (!policy->cur))
473 return -EINVAL;
474
475 if (policy->cpuinfo.transition_latency >
476 (TRANSITION_LATENCY_LIMIT * 1000))
477 return -EINVAL;
478 if (this_dbs_info->enable) /* Already enabled */
479 break;
480
481 mutex_lock(&dbs_mutex);
482 for_each_cpu_mask(j, policy->cpus) {
483 struct cpu_dbs_info_s *j_dbs_info;
484 j_dbs_info = &per_cpu(cpu_dbs_info, j);
485 j_dbs_info->cur_policy = policy;
486
487 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
488 j_dbs_info->prev_cpu_idle_down
489 = j_dbs_info->prev_cpu_idle_up;
490 }
491 this_dbs_info->enable = 1;
492 sysfs_create_group(&policy->kobj, &dbs_attr_group);
493 dbs_enable++;
494 /*
495 * Start the timerschedule work, when this governor
496 * is used for first time
497 */
498 if (dbs_enable == 1) {
499 unsigned int latency;
500 /* policy latency is in nS. Convert it to uS first */
501 latency = policy->cpuinfo.transition_latency / 1000;
502 if (latency == 0)
503 latency = 1;
504
505 def_sampling_rate = 10 * latency *
506 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
507
508 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
509 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
510
511 dbs_tuners_ins.sampling_rate = def_sampling_rate;
512 dbs_tuners_ins.ignore_nice = 0;
513 dbs_tuners_ins.freq_step = 5;
514
515 dbs_timer_init();
516 }
517
518 mutex_unlock(&dbs_mutex);
519 break;
520
521 case CPUFREQ_GOV_STOP:
522 mutex_lock(&dbs_mutex);
523 this_dbs_info->enable = 0;
524 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
525 dbs_enable--;
526 /*
527 * Stop the timerschedule work, when this governor
528 * is used for first time
529 */
530 if (dbs_enable == 0)
531 dbs_timer_exit();
532
533 mutex_unlock(&dbs_mutex);
534
535 break;
536
537 case CPUFREQ_GOV_LIMITS:
538 mutex_lock(&dbs_mutex);
539 if (policy->max < this_dbs_info->cur_policy->cur)
540 __cpufreq_driver_target(
541 this_dbs_info->cur_policy,
542 policy->max, CPUFREQ_RELATION_H);
543 else if (policy->min > this_dbs_info->cur_policy->cur)
544 __cpufreq_driver_target(
545 this_dbs_info->cur_policy,
546 policy->min, CPUFREQ_RELATION_L);
547 mutex_unlock(&dbs_mutex);
548 break;
549 }
550 return 0;
551 }
552
553 static struct cpufreq_governor cpufreq_gov_dbs = {
554 .name = "conservative",
555 .governor = cpufreq_governor_dbs,
556 .owner = THIS_MODULE,
557 };
558
559 static int __init cpufreq_gov_dbs_init(void)
560 {
561 return cpufreq_register_governor(&cpufreq_gov_dbs);
562 }
563
564 static void __exit cpufreq_gov_dbs_exit(void)
565 {
566 /* Make sure that the scheduled work is indeed not running */
567 flush_scheduled_work();
568
569 cpufreq_unregister_governor(&cpufreq_gov_dbs);
570 }
571
572
573 MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
574 MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
575 "Low Latency Frequency Transition capable processors "
576 "optimised for use in a battery environment");
577 MODULE_LICENSE ("GPL");
578
579 module_init(cpufreq_gov_dbs_init);
580 module_exit(cpufreq_gov_dbs_exit);
This page took 0.042655 seconds and 6 git commands to generate.