6a565e248ad3c300f7d04c556bd34d6c54253e0c
[deliverable/linux.git] / drivers / cpufreq / cpufreq_governor.c
1 /*
2 * drivers/cpufreq/cpufreq_governor.c
3 *
4 * CPUFREQ governors common code
5 *
6 * Copyright (C) 2001 Russell King
7 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
8 * (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
9 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
10 * (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18
19 #include <linux/export.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23
24 #include "cpufreq_governor.h"
25
26 static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
27
28 static DEFINE_MUTEX(gov_dbs_data_mutex);
29
30 /* Common sysfs tunables */
31 /**
32 * store_sampling_rate - update sampling rate effective immediately if needed.
33 *
34 * If new rate is smaller than the old, simply updating
35 * dbs.sampling_rate might not be appropriate. For example, if the
36 * original sampling_rate was 1 second and the requested new sampling rate is 10
37 * ms because the user needs immediate reaction from ondemand governor, but not
38 * sure if higher frequency will be required or not, then, the governor may
39 * change the sampling rate too late; up to 1 second later. Thus, if we are
40 * reducing the sampling rate, we need to make the new value effective
41 * immediately.
42 *
43 * This must be called with dbs_data->mutex held, otherwise traversing
44 * policy_dbs_list isn't safe.
45 */
46 ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
47 size_t count)
48 {
49 struct dbs_data *dbs_data = to_dbs_data(attr_set);
50 struct policy_dbs_info *policy_dbs;
51 unsigned int rate;
52 int ret;
53 ret = sscanf(buf, "%u", &rate);
54 if (ret != 1)
55 return -EINVAL;
56
57 dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
58
59 /*
60 * We are operating under dbs_data->mutex and so the list and its
61 * entries can't be freed concurrently.
62 */
63 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
64 mutex_lock(&policy_dbs->timer_mutex);
65 /*
66 * On 32-bit architectures this may race with the
67 * sample_delay_ns read in dbs_update_util_handler(), but that
68 * really doesn't matter. If the read returns a value that's
69 * too big, the sample will be skipped, but the next invocation
70 * of dbs_update_util_handler() (when the update has been
71 * completed) will take a sample.
72 *
73 * If this runs in parallel with dbs_work_handler(), we may end
74 * up overwriting the sample_delay_ns value that it has just
75 * written, but it will be corrected next time a sample is
76 * taken, so it shouldn't be significant.
77 */
78 gov_update_sample_delay(policy_dbs, 0);
79 mutex_unlock(&policy_dbs->timer_mutex);
80 }
81
82 return count;
83 }
84 EXPORT_SYMBOL_GPL(store_sampling_rate);
85
86 /**
87 * gov_update_cpu_data - Update CPU load data.
88 * @dbs_data: Top-level governor data pointer.
89 *
90 * Update CPU load data for all CPUs in the domain governed by @dbs_data
91 * (that may be a single policy or a bunch of them if governor tunables are
92 * system-wide).
93 *
94 * Call under the @dbs_data mutex.
95 */
96 void gov_update_cpu_data(struct dbs_data *dbs_data)
97 {
98 struct policy_dbs_info *policy_dbs;
99
100 list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
101 unsigned int j;
102
103 for_each_cpu(j, policy_dbs->policy->cpus) {
104 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
105
106 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall,
107 dbs_data->io_is_busy);
108 if (dbs_data->ignore_nice_load)
109 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
110 }
111 }
112 }
113 EXPORT_SYMBOL_GPL(gov_update_cpu_data);
114
115 static inline struct gov_attr_set *to_gov_attr_set(struct kobject *kobj)
116 {
117 return container_of(kobj, struct gov_attr_set, kobj);
118 }
119
120 static inline struct governor_attr *to_gov_attr(struct attribute *attr)
121 {
122 return container_of(attr, struct governor_attr, attr);
123 }
124
125 static ssize_t governor_show(struct kobject *kobj, struct attribute *attr,
126 char *buf)
127 {
128 struct governor_attr *gattr = to_gov_attr(attr);
129
130 return gattr->show(to_gov_attr_set(kobj), buf);
131 }
132
133 static ssize_t governor_store(struct kobject *kobj, struct attribute *attr,
134 const char *buf, size_t count)
135 {
136 struct gov_attr_set *attr_set = to_gov_attr_set(kobj);
137 struct governor_attr *gattr = to_gov_attr(attr);
138 int ret = -EBUSY;
139
140 mutex_lock(&attr_set->update_lock);
141
142 if (attr_set->usage_count)
143 ret = gattr->store(attr_set, buf, count);
144
145 mutex_unlock(&attr_set->update_lock);
146
147 return ret;
148 }
149
150 /*
151 * Sysfs Ops for accessing governor attributes.
152 *
153 * All show/store invocations for governor specific sysfs attributes, will first
154 * call the below show/store callbacks and the attribute specific callback will
155 * be called from within it.
156 */
157 static const struct sysfs_ops governor_sysfs_ops = {
158 .show = governor_show,
159 .store = governor_store,
160 };
161
162 unsigned int dbs_update(struct cpufreq_policy *policy)
163 {
164 struct policy_dbs_info *policy_dbs = policy->governor_data;
165 struct dbs_data *dbs_data = policy_dbs->dbs_data;
166 unsigned int ignore_nice = dbs_data->ignore_nice_load;
167 unsigned int max_load = 0;
168 unsigned int sampling_rate, io_busy, j;
169
170 /*
171 * Sometimes governors may use an additional multiplier to increase
172 * sample delays temporarily. Apply that multiplier to sampling_rate
173 * so as to keep the wake-up-from-idle detection logic a bit
174 * conservative.
175 */
176 sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
177 /*
178 * For the purpose of ondemand, waiting for disk IO is an indication
179 * that you're performance critical, and not that the system is actually
180 * idle, so do not add the iowait time to the CPU idle time then.
181 */
182 io_busy = dbs_data->io_is_busy;
183
184 /* Get Absolute Load */
185 for_each_cpu(j, policy->cpus) {
186 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
187 u64 cur_wall_time, cur_idle_time;
188 unsigned int idle_time, wall_time;
189 unsigned int load;
190
191 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time, io_busy);
192
193 wall_time = cur_wall_time - j_cdbs->prev_cpu_wall;
194 j_cdbs->prev_cpu_wall = cur_wall_time;
195
196 if (cur_idle_time <= j_cdbs->prev_cpu_idle) {
197 idle_time = 0;
198 } else {
199 idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
200 j_cdbs->prev_cpu_idle = cur_idle_time;
201 }
202
203 if (ignore_nice) {
204 u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
205
206 idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
207 j_cdbs->prev_cpu_nice = cur_nice;
208 }
209
210 if (unlikely(!wall_time || wall_time < idle_time))
211 continue;
212
213 /*
214 * If the CPU had gone completely idle, and a task just woke up
215 * on this CPU now, it would be unfair to calculate 'load' the
216 * usual way for this elapsed time-window, because it will show
217 * near-zero load, irrespective of how CPU intensive that task
218 * actually is. This is undesirable for latency-sensitive bursty
219 * workloads.
220 *
221 * To avoid this, we reuse the 'load' from the previous
222 * time-window and give this task a chance to start with a
223 * reasonably high CPU frequency. (However, we shouldn't over-do
224 * this copy, lest we get stuck at a high load (high frequency)
225 * for too long, even when the current system load has actually
226 * dropped down. So we perform the copy only once, upon the
227 * first wake-up from idle.)
228 *
229 * Detecting this situation is easy: the governor's utilization
230 * update handler would not have run during CPU-idle periods.
231 * Hence, an unusually large 'wall_time' (as compared to the
232 * sampling rate) indicates this scenario.
233 *
234 * prev_load can be zero in two cases and we must recalculate it
235 * for both cases:
236 * - during long idle intervals
237 * - explicitly set to zero
238 */
239 if (unlikely(wall_time > (2 * sampling_rate) &&
240 j_cdbs->prev_load)) {
241 load = j_cdbs->prev_load;
242
243 /*
244 * Perform a destructive copy, to ensure that we copy
245 * the previous load only once, upon the first wake-up
246 * from idle.
247 */
248 j_cdbs->prev_load = 0;
249 } else {
250 load = 100 * (wall_time - idle_time) / wall_time;
251 j_cdbs->prev_load = load;
252 }
253
254 if (load > max_load)
255 max_load = load;
256 }
257 return max_load;
258 }
259 EXPORT_SYMBOL_GPL(dbs_update);
260
261 static void dbs_work_handler(struct work_struct *work)
262 {
263 struct policy_dbs_info *policy_dbs;
264 struct cpufreq_policy *policy;
265 struct dbs_governor *gov;
266
267 policy_dbs = container_of(work, struct policy_dbs_info, work);
268 policy = policy_dbs->policy;
269 gov = dbs_governor_of(policy);
270
271 /*
272 * Make sure cpufreq_governor_limits() isn't evaluating load or the
273 * ondemand governor isn't updating the sampling rate in parallel.
274 */
275 mutex_lock(&policy_dbs->timer_mutex);
276 gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
277 mutex_unlock(&policy_dbs->timer_mutex);
278
279 /* Allow the utilization update handler to queue up more work. */
280 atomic_set(&policy_dbs->work_count, 0);
281 /*
282 * If the update below is reordered with respect to the sample delay
283 * modification, the utilization update handler may end up using a stale
284 * sample delay value.
285 */
286 smp_wmb();
287 policy_dbs->work_in_progress = false;
288 }
289
290 static void dbs_irq_work(struct irq_work *irq_work)
291 {
292 struct policy_dbs_info *policy_dbs;
293
294 policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
295 schedule_work_on(smp_processor_id(), &policy_dbs->work);
296 }
297
298 static void dbs_update_util_handler(struct update_util_data *data, u64 time,
299 unsigned long util, unsigned long max)
300 {
301 struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
302 struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
303 u64 delta_ns, lst;
304
305 /*
306 * The work may not be allowed to be queued up right now.
307 * Possible reasons:
308 * - Work has already been queued up or is in progress.
309 * - It is too early (too little time from the previous sample).
310 */
311 if (policy_dbs->work_in_progress)
312 return;
313
314 /*
315 * If the reads below are reordered before the check above, the value
316 * of sample_delay_ns used in the computation may be stale.
317 */
318 smp_rmb();
319 lst = READ_ONCE(policy_dbs->last_sample_time);
320 delta_ns = time - lst;
321 if ((s64)delta_ns < policy_dbs->sample_delay_ns)
322 return;
323
324 /*
325 * If the policy is not shared, the irq_work may be queued up right away
326 * at this point. Otherwise, we need to ensure that only one of the
327 * CPUs sharing the policy will do that.
328 */
329 if (policy_dbs->is_shared) {
330 if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
331 return;
332
333 /*
334 * If another CPU updated last_sample_time in the meantime, we
335 * shouldn't be here, so clear the work counter and bail out.
336 */
337 if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
338 atomic_set(&policy_dbs->work_count, 0);
339 return;
340 }
341 }
342
343 policy_dbs->last_sample_time = time;
344 policy_dbs->work_in_progress = true;
345 irq_work_queue(&policy_dbs->irq_work);
346 }
347
348 static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
349 unsigned int delay_us)
350 {
351 struct cpufreq_policy *policy = policy_dbs->policy;
352 int cpu;
353
354 gov_update_sample_delay(policy_dbs, delay_us);
355 policy_dbs->last_sample_time = 0;
356
357 for_each_cpu(cpu, policy->cpus) {
358 struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
359
360 cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
361 dbs_update_util_handler);
362 }
363 }
364
365 static inline void gov_clear_update_util(struct cpufreq_policy *policy)
366 {
367 int i;
368
369 for_each_cpu(i, policy->cpus)
370 cpufreq_remove_update_util_hook(i);
371
372 synchronize_sched();
373 }
374
375 static void gov_cancel_work(struct cpufreq_policy *policy)
376 {
377 struct policy_dbs_info *policy_dbs = policy->governor_data;
378
379 gov_clear_update_util(policy_dbs->policy);
380 irq_work_sync(&policy_dbs->irq_work);
381 cancel_work_sync(&policy_dbs->work);
382 atomic_set(&policy_dbs->work_count, 0);
383 policy_dbs->work_in_progress = false;
384 }
385
386 static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
387 struct dbs_governor *gov)
388 {
389 struct policy_dbs_info *policy_dbs;
390 int j;
391
392 /* Allocate memory for per-policy governor data. */
393 policy_dbs = gov->alloc();
394 if (!policy_dbs)
395 return NULL;
396
397 policy_dbs->policy = policy;
398 mutex_init(&policy_dbs->timer_mutex);
399 atomic_set(&policy_dbs->work_count, 0);
400 init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
401 INIT_WORK(&policy_dbs->work, dbs_work_handler);
402
403 /* Set policy_dbs for all CPUs, online+offline */
404 for_each_cpu(j, policy->related_cpus) {
405 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
406
407 j_cdbs->policy_dbs = policy_dbs;
408 }
409 return policy_dbs;
410 }
411
412 static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
413 struct dbs_governor *gov)
414 {
415 int j;
416
417 mutex_destroy(&policy_dbs->timer_mutex);
418
419 for_each_cpu(j, policy_dbs->policy->related_cpus) {
420 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
421
422 j_cdbs->policy_dbs = NULL;
423 j_cdbs->update_util.func = NULL;
424 }
425 gov->free(policy_dbs);
426 }
427
428 static void gov_attr_set_init(struct gov_attr_set *attr_set,
429 struct list_head *list_node)
430 {
431 INIT_LIST_HEAD(&attr_set->policy_list);
432 mutex_init(&attr_set->update_lock);
433 attr_set->usage_count = 1;
434 list_add(list_node, &attr_set->policy_list);
435 }
436
437 static void gov_attr_set_get(struct gov_attr_set *attr_set,
438 struct list_head *list_node)
439 {
440 mutex_lock(&attr_set->update_lock);
441 attr_set->usage_count++;
442 list_add(list_node, &attr_set->policy_list);
443 mutex_unlock(&attr_set->update_lock);
444 }
445
446 static unsigned int gov_attr_set_put(struct gov_attr_set *attr_set,
447 struct list_head *list_node)
448 {
449 unsigned int count;
450
451 mutex_lock(&attr_set->update_lock);
452 list_del(list_node);
453 count = --attr_set->usage_count;
454 mutex_unlock(&attr_set->update_lock);
455 if (count)
456 return count;
457
458 kobject_put(&attr_set->kobj);
459 mutex_destroy(&attr_set->update_lock);
460 return 0;
461 }
462
463 static int cpufreq_governor_init(struct cpufreq_policy *policy)
464 {
465 struct dbs_governor *gov = dbs_governor_of(policy);
466 struct dbs_data *dbs_data;
467 struct policy_dbs_info *policy_dbs;
468 unsigned int latency;
469 int ret = 0;
470
471 /* State should be equivalent to EXIT */
472 if (policy->governor_data)
473 return -EBUSY;
474
475 policy_dbs = alloc_policy_dbs_info(policy, gov);
476 if (!policy_dbs)
477 return -ENOMEM;
478
479 /* Protect gov->gdbs_data against concurrent updates. */
480 mutex_lock(&gov_dbs_data_mutex);
481
482 dbs_data = gov->gdbs_data;
483 if (dbs_data) {
484 if (WARN_ON(have_governor_per_policy())) {
485 ret = -EINVAL;
486 goto free_policy_dbs_info;
487 }
488 policy_dbs->dbs_data = dbs_data;
489 policy->governor_data = policy_dbs;
490
491 gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
492 goto out;
493 }
494
495 dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
496 if (!dbs_data) {
497 ret = -ENOMEM;
498 goto free_policy_dbs_info;
499 }
500
501 gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
502
503 ret = gov->init(dbs_data, !policy->governor->initialized);
504 if (ret)
505 goto free_policy_dbs_info;
506
507 /* policy latency is in ns. Convert it to us first */
508 latency = policy->cpuinfo.transition_latency / 1000;
509 if (latency == 0)
510 latency = 1;
511
512 /* Bring kernel and HW constraints together */
513 dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
514 MIN_LATENCY_MULTIPLIER * latency);
515 dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
516 LATENCY_MULTIPLIER * latency);
517
518 if (!have_governor_per_policy())
519 gov->gdbs_data = dbs_data;
520
521 policy_dbs->dbs_data = dbs_data;
522 policy->governor_data = policy_dbs;
523
524 gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
525 ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
526 get_governor_parent_kobj(policy),
527 "%s", gov->gov.name);
528 if (!ret)
529 goto out;
530
531 /* Failure, so roll back. */
532 pr_err("cpufreq: Governor initialization failed (dbs_data kobject init error %d)\n", ret);
533
534 policy->governor_data = NULL;
535
536 if (!have_governor_per_policy())
537 gov->gdbs_data = NULL;
538 gov->exit(dbs_data, !policy->governor->initialized);
539 kfree(dbs_data);
540
541 free_policy_dbs_info:
542 free_policy_dbs_info(policy_dbs, gov);
543
544 out:
545 mutex_unlock(&gov_dbs_data_mutex);
546 return ret;
547 }
548
549 static int cpufreq_governor_exit(struct cpufreq_policy *policy)
550 {
551 struct dbs_governor *gov = dbs_governor_of(policy);
552 struct policy_dbs_info *policy_dbs = policy->governor_data;
553 struct dbs_data *dbs_data = policy_dbs->dbs_data;
554 unsigned int count;
555
556 /* Protect gov->gdbs_data against concurrent updates. */
557 mutex_lock(&gov_dbs_data_mutex);
558
559 count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
560
561 policy->governor_data = NULL;
562
563 if (!count) {
564 if (!have_governor_per_policy())
565 gov->gdbs_data = NULL;
566
567 gov->exit(dbs_data, policy->governor->initialized == 1);
568 kfree(dbs_data);
569 }
570
571 free_policy_dbs_info(policy_dbs, gov);
572
573 mutex_unlock(&gov_dbs_data_mutex);
574 return 0;
575 }
576
577 static int cpufreq_governor_start(struct cpufreq_policy *policy)
578 {
579 struct dbs_governor *gov = dbs_governor_of(policy);
580 struct policy_dbs_info *policy_dbs = policy->governor_data;
581 struct dbs_data *dbs_data = policy_dbs->dbs_data;
582 unsigned int sampling_rate, ignore_nice, j;
583 unsigned int io_busy;
584
585 if (!policy->cur)
586 return -EINVAL;
587
588 policy_dbs->is_shared = policy_is_shared(policy);
589 policy_dbs->rate_mult = 1;
590
591 sampling_rate = dbs_data->sampling_rate;
592 ignore_nice = dbs_data->ignore_nice_load;
593 io_busy = dbs_data->io_is_busy;
594
595 for_each_cpu(j, policy->cpus) {
596 struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
597 unsigned int prev_load;
598
599 j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_cpu_wall, io_busy);
600
601 prev_load = j_cdbs->prev_cpu_wall - j_cdbs->prev_cpu_idle;
602 j_cdbs->prev_load = 100 * prev_load / (unsigned int)j_cdbs->prev_cpu_wall;
603
604 if (ignore_nice)
605 j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
606 }
607
608 gov->start(policy);
609
610 gov_set_update_util(policy_dbs, sampling_rate);
611 return 0;
612 }
613
614 static int cpufreq_governor_stop(struct cpufreq_policy *policy)
615 {
616 gov_cancel_work(policy);
617 return 0;
618 }
619
620 static int cpufreq_governor_limits(struct cpufreq_policy *policy)
621 {
622 struct policy_dbs_info *policy_dbs = policy->governor_data;
623
624 mutex_lock(&policy_dbs->timer_mutex);
625
626 if (policy->max < policy->cur)
627 __cpufreq_driver_target(policy, policy->max, CPUFREQ_RELATION_H);
628 else if (policy->min > policy->cur)
629 __cpufreq_driver_target(policy, policy->min, CPUFREQ_RELATION_L);
630
631 gov_update_sample_delay(policy_dbs, 0);
632
633 mutex_unlock(&policy_dbs->timer_mutex);
634
635 return 0;
636 }
637
638 int cpufreq_governor_dbs(struct cpufreq_policy *policy, unsigned int event)
639 {
640 if (event == CPUFREQ_GOV_POLICY_INIT) {
641 return cpufreq_governor_init(policy);
642 } else if (policy->governor_data) {
643 switch (event) {
644 case CPUFREQ_GOV_POLICY_EXIT:
645 return cpufreq_governor_exit(policy);
646 case CPUFREQ_GOV_START:
647 return cpufreq_governor_start(policy);
648 case CPUFREQ_GOV_STOP:
649 return cpufreq_governor_stop(policy);
650 case CPUFREQ_GOV_LIMITS:
651 return cpufreq_governor_limits(policy);
652 }
653 }
654 return -EINVAL;
655 }
656 EXPORT_SYMBOL_GPL(cpufreq_governor_dbs);
This page took 0.046272 seconds and 4 git commands to generate.