Merge tag 'nfs-for-3.13-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19 #include "cpufreq_governor.h"
20
21 /* On-demand governor macros */
22 #define DEF_FREQUENCY_UP_THRESHOLD (80)
23 #define DEF_SAMPLING_DOWN_FACTOR (1)
24 #define MAX_SAMPLING_DOWN_FACTOR (100000)
25 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
26 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
27 #define MIN_FREQUENCY_UP_THRESHOLD (11)
28 #define MAX_FREQUENCY_UP_THRESHOLD (100)
29
30 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
31
32 static struct od_ops od_ops;
33
34 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
35 static struct cpufreq_governor cpufreq_gov_ondemand;
36 #endif
37
38 static unsigned int default_powersave_bias;
39
40 static void ondemand_powersave_bias_init_cpu(int cpu)
41 {
42 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
43
44 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
45 dbs_info->freq_lo = 0;
46 }
47
48 /*
49 * Not all CPUs want IO time to be accounted as busy; this depends on how
50 * efficient idling at a higher frequency/voltage is.
51 * Pavel Machek says this is not so for various generations of AMD and old
52 * Intel systems.
53 * Mike Chan (android.com) claims this is also not true for ARM.
54 * Because of this, whitelist specific known (series) of CPUs by default, and
55 * leave all others up to the user.
56 */
57 static int should_io_be_busy(void)
58 {
59 #if defined(CONFIG_X86)
60 /*
61 * For Intel, Core 2 (model 15) and later have an efficient idle.
62 */
63 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
64 boot_cpu_data.x86 == 6 &&
65 boot_cpu_data.x86_model >= 15)
66 return 1;
67 #endif
68 return 0;
69 }
70
71 /*
72 * Find right freq to be set now with powersave_bias on.
73 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
74 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
75 */
76 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
77 unsigned int freq_next, unsigned int relation)
78 {
79 unsigned int freq_req, freq_reduc, freq_avg;
80 unsigned int freq_hi, freq_lo;
81 unsigned int index = 0;
82 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
83 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
84 policy->cpu);
85 struct dbs_data *dbs_data = policy->governor_data;
86 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
87
88 if (!dbs_info->freq_table) {
89 dbs_info->freq_lo = 0;
90 dbs_info->freq_lo_jiffies = 0;
91 return freq_next;
92 }
93
94 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
95 relation, &index);
96 freq_req = dbs_info->freq_table[index].frequency;
97 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
98 freq_avg = freq_req - freq_reduc;
99
100 /* Find freq bounds for freq_avg in freq_table */
101 index = 0;
102 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
103 CPUFREQ_RELATION_H, &index);
104 freq_lo = dbs_info->freq_table[index].frequency;
105 index = 0;
106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
107 CPUFREQ_RELATION_L, &index);
108 freq_hi = dbs_info->freq_table[index].frequency;
109
110 /* Find out how long we have to be in hi and lo freqs */
111 if (freq_hi == freq_lo) {
112 dbs_info->freq_lo = 0;
113 dbs_info->freq_lo_jiffies = 0;
114 return freq_lo;
115 }
116 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
117 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
118 jiffies_hi += ((freq_hi - freq_lo) / 2);
119 jiffies_hi /= (freq_hi - freq_lo);
120 jiffies_lo = jiffies_total - jiffies_hi;
121 dbs_info->freq_lo = freq_lo;
122 dbs_info->freq_lo_jiffies = jiffies_lo;
123 dbs_info->freq_hi_jiffies = jiffies_hi;
124 return freq_hi;
125 }
126
127 static void ondemand_powersave_bias_init(void)
128 {
129 int i;
130 for_each_online_cpu(i) {
131 ondemand_powersave_bias_init_cpu(i);
132 }
133 }
134
135 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
136 {
137 struct dbs_data *dbs_data = policy->governor_data;
138 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
139
140 if (od_tuners->powersave_bias)
141 freq = od_ops.powersave_bias_target(policy, freq,
142 CPUFREQ_RELATION_H);
143 else if (policy->cur == policy->max)
144 return;
145
146 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
147 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
148 }
149
150 /*
151 * Every sampling_rate, we check, if current idle time is less than 20%
152 * (default), then we try to increase frequency. Else, we adjust the frequency
153 * proportional to load.
154 */
155 static void od_check_cpu(int cpu, unsigned int load)
156 {
157 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
158 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
159 struct dbs_data *dbs_data = policy->governor_data;
160 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
161
162 dbs_info->freq_lo = 0;
163
164 /* Check for frequency increase */
165 if (load > od_tuners->up_threshold) {
166 /* If switching to max speed, apply sampling_down_factor */
167 if (policy->cur < policy->max)
168 dbs_info->rate_mult =
169 od_tuners->sampling_down_factor;
170 dbs_freq_increase(policy, policy->max);
171 return;
172 } else {
173 /* Calculate the next frequency proportional to load */
174 unsigned int freq_next;
175 freq_next = load * policy->cpuinfo.max_freq / 100;
176
177 /* No longer fully busy, reset rate_mult */
178 dbs_info->rate_mult = 1;
179
180 if (!od_tuners->powersave_bias) {
181 __cpufreq_driver_target(policy, freq_next,
182 CPUFREQ_RELATION_L);
183 return;
184 }
185
186 freq_next = od_ops.powersave_bias_target(policy, freq_next,
187 CPUFREQ_RELATION_L);
188 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
189 }
190 }
191
192 static void od_dbs_timer(struct work_struct *work)
193 {
194 struct od_cpu_dbs_info_s *dbs_info =
195 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
196 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
197 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
198 cpu);
199 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
200 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
201 int delay = 0, sample_type = core_dbs_info->sample_type;
202 bool modify_all = true;
203
204 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
205 if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
206 modify_all = false;
207 goto max_delay;
208 }
209
210 /* Common NORMAL_SAMPLE setup */
211 core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
212 if (sample_type == OD_SUB_SAMPLE) {
213 delay = core_dbs_info->freq_lo_jiffies;
214 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
215 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
216 } else {
217 dbs_check_cpu(dbs_data, cpu);
218 if (core_dbs_info->freq_lo) {
219 /* Setup timer for SUB_SAMPLE */
220 core_dbs_info->sample_type = OD_SUB_SAMPLE;
221 delay = core_dbs_info->freq_hi_jiffies;
222 }
223 }
224
225 max_delay:
226 if (!delay)
227 delay = delay_for_sampling_rate(od_tuners->sampling_rate
228 * core_dbs_info->rate_mult);
229
230 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
231 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
232 }
233
234 /************************** sysfs interface ************************/
235 static struct common_dbs_data od_dbs_cdata;
236
237 /**
238 * update_sampling_rate - update sampling rate effective immediately if needed.
239 * @new_rate: new sampling rate
240 *
241 * If new rate is smaller than the old, simply updating
242 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
243 * original sampling_rate was 1 second and the requested new sampling rate is 10
244 * ms because the user needs immediate reaction from ondemand governor, but not
245 * sure if higher frequency will be required or not, then, the governor may
246 * change the sampling rate too late; up to 1 second later. Thus, if we are
247 * reducing the sampling rate, we need to make the new value effective
248 * immediately.
249 */
250 static void update_sampling_rate(struct dbs_data *dbs_data,
251 unsigned int new_rate)
252 {
253 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
254 int cpu;
255
256 od_tuners->sampling_rate = new_rate = max(new_rate,
257 dbs_data->min_sampling_rate);
258
259 for_each_online_cpu(cpu) {
260 struct cpufreq_policy *policy;
261 struct od_cpu_dbs_info_s *dbs_info;
262 unsigned long next_sampling, appointed_at;
263
264 policy = cpufreq_cpu_get(cpu);
265 if (!policy)
266 continue;
267 if (policy->governor != &cpufreq_gov_ondemand) {
268 cpufreq_cpu_put(policy);
269 continue;
270 }
271 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
272 cpufreq_cpu_put(policy);
273
274 mutex_lock(&dbs_info->cdbs.timer_mutex);
275
276 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
277 mutex_unlock(&dbs_info->cdbs.timer_mutex);
278 continue;
279 }
280
281 next_sampling = jiffies + usecs_to_jiffies(new_rate);
282 appointed_at = dbs_info->cdbs.work.timer.expires;
283
284 if (time_before(next_sampling, appointed_at)) {
285
286 mutex_unlock(&dbs_info->cdbs.timer_mutex);
287 cancel_delayed_work_sync(&dbs_info->cdbs.work);
288 mutex_lock(&dbs_info->cdbs.timer_mutex);
289
290 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
291 usecs_to_jiffies(new_rate), true);
292
293 }
294 mutex_unlock(&dbs_info->cdbs.timer_mutex);
295 }
296 }
297
298 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
299 size_t count)
300 {
301 unsigned int input;
302 int ret;
303 ret = sscanf(buf, "%u", &input);
304 if (ret != 1)
305 return -EINVAL;
306
307 update_sampling_rate(dbs_data, input);
308 return count;
309 }
310
311 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
312 size_t count)
313 {
314 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
315 unsigned int input;
316 int ret;
317 unsigned int j;
318
319 ret = sscanf(buf, "%u", &input);
320 if (ret != 1)
321 return -EINVAL;
322 od_tuners->io_is_busy = !!input;
323
324 /* we need to re-evaluate prev_cpu_idle */
325 for_each_online_cpu(j) {
326 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
327 j);
328 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
329 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
330 }
331 return count;
332 }
333
334 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
335 size_t count)
336 {
337 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
338 unsigned int input;
339 int ret;
340 ret = sscanf(buf, "%u", &input);
341
342 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
343 input < MIN_FREQUENCY_UP_THRESHOLD) {
344 return -EINVAL;
345 }
346
347 od_tuners->up_threshold = input;
348 return count;
349 }
350
351 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
352 const char *buf, size_t count)
353 {
354 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
355 unsigned int input, j;
356 int ret;
357 ret = sscanf(buf, "%u", &input);
358
359 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
360 return -EINVAL;
361 od_tuners->sampling_down_factor = input;
362
363 /* Reset down sampling multiplier in case it was active */
364 for_each_online_cpu(j) {
365 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
366 j);
367 dbs_info->rate_mult = 1;
368 }
369 return count;
370 }
371
372 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
373 const char *buf, size_t count)
374 {
375 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
376 unsigned int input;
377 int ret;
378
379 unsigned int j;
380
381 ret = sscanf(buf, "%u", &input);
382 if (ret != 1)
383 return -EINVAL;
384
385 if (input > 1)
386 input = 1;
387
388 if (input == od_tuners->ignore_nice_load) { /* nothing to do */
389 return count;
390 }
391 od_tuners->ignore_nice_load = input;
392
393 /* we need to re-evaluate prev_cpu_idle */
394 for_each_online_cpu(j) {
395 struct od_cpu_dbs_info_s *dbs_info;
396 dbs_info = &per_cpu(od_cpu_dbs_info, j);
397 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
398 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
399 if (od_tuners->ignore_nice_load)
400 dbs_info->cdbs.prev_cpu_nice =
401 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
402
403 }
404 return count;
405 }
406
407 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
408 size_t count)
409 {
410 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
411 unsigned int input;
412 int ret;
413 ret = sscanf(buf, "%u", &input);
414
415 if (ret != 1)
416 return -EINVAL;
417
418 if (input > 1000)
419 input = 1000;
420
421 od_tuners->powersave_bias = input;
422 ondemand_powersave_bias_init();
423 return count;
424 }
425
426 show_store_one(od, sampling_rate);
427 show_store_one(od, io_is_busy);
428 show_store_one(od, up_threshold);
429 show_store_one(od, sampling_down_factor);
430 show_store_one(od, ignore_nice_load);
431 show_store_one(od, powersave_bias);
432 declare_show_sampling_rate_min(od);
433
434 gov_sys_pol_attr_rw(sampling_rate);
435 gov_sys_pol_attr_rw(io_is_busy);
436 gov_sys_pol_attr_rw(up_threshold);
437 gov_sys_pol_attr_rw(sampling_down_factor);
438 gov_sys_pol_attr_rw(ignore_nice_load);
439 gov_sys_pol_attr_rw(powersave_bias);
440 gov_sys_pol_attr_ro(sampling_rate_min);
441
442 static struct attribute *dbs_attributes_gov_sys[] = {
443 &sampling_rate_min_gov_sys.attr,
444 &sampling_rate_gov_sys.attr,
445 &up_threshold_gov_sys.attr,
446 &sampling_down_factor_gov_sys.attr,
447 &ignore_nice_load_gov_sys.attr,
448 &powersave_bias_gov_sys.attr,
449 &io_is_busy_gov_sys.attr,
450 NULL
451 };
452
453 static struct attribute_group od_attr_group_gov_sys = {
454 .attrs = dbs_attributes_gov_sys,
455 .name = "ondemand",
456 };
457
458 static struct attribute *dbs_attributes_gov_pol[] = {
459 &sampling_rate_min_gov_pol.attr,
460 &sampling_rate_gov_pol.attr,
461 &up_threshold_gov_pol.attr,
462 &sampling_down_factor_gov_pol.attr,
463 &ignore_nice_load_gov_pol.attr,
464 &powersave_bias_gov_pol.attr,
465 &io_is_busy_gov_pol.attr,
466 NULL
467 };
468
469 static struct attribute_group od_attr_group_gov_pol = {
470 .attrs = dbs_attributes_gov_pol,
471 .name = "ondemand",
472 };
473
474 /************************** sysfs end ************************/
475
476 static int od_init(struct dbs_data *dbs_data)
477 {
478 struct od_dbs_tuners *tuners;
479 u64 idle_time;
480 int cpu;
481
482 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
483 if (!tuners) {
484 pr_err("%s: kzalloc failed\n", __func__);
485 return -ENOMEM;
486 }
487
488 cpu = get_cpu();
489 idle_time = get_cpu_idle_time_us(cpu, NULL);
490 put_cpu();
491 if (idle_time != -1ULL) {
492 /* Idle micro accounting is supported. Use finer thresholds */
493 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
494 /*
495 * In nohz/micro accounting case we set the minimum frequency
496 * not depending on HZ, but fixed (very low). The deferred
497 * timer might skip some samples if idle/sleeping as needed.
498 */
499 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
500 } else {
501 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
502
503 /* For correct statistics, we need 10 ticks for each measure */
504 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
505 jiffies_to_usecs(10);
506 }
507
508 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
509 tuners->ignore_nice_load = 0;
510 tuners->powersave_bias = default_powersave_bias;
511 tuners->io_is_busy = should_io_be_busy();
512
513 dbs_data->tuners = tuners;
514 mutex_init(&dbs_data->mutex);
515 return 0;
516 }
517
518 static void od_exit(struct dbs_data *dbs_data)
519 {
520 kfree(dbs_data->tuners);
521 }
522
523 define_get_cpu_dbs_routines(od_cpu_dbs_info);
524
525 static struct od_ops od_ops = {
526 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
527 .powersave_bias_target = generic_powersave_bias_target,
528 .freq_increase = dbs_freq_increase,
529 };
530
531 static struct common_dbs_data od_dbs_cdata = {
532 .governor = GOV_ONDEMAND,
533 .attr_group_gov_sys = &od_attr_group_gov_sys,
534 .attr_group_gov_pol = &od_attr_group_gov_pol,
535 .get_cpu_cdbs = get_cpu_cdbs,
536 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
537 .gov_dbs_timer = od_dbs_timer,
538 .gov_check_cpu = od_check_cpu,
539 .gov_ops = &od_ops,
540 .init = od_init,
541 .exit = od_exit,
542 };
543
544 static void od_set_powersave_bias(unsigned int powersave_bias)
545 {
546 struct cpufreq_policy *policy;
547 struct dbs_data *dbs_data;
548 struct od_dbs_tuners *od_tuners;
549 unsigned int cpu;
550 cpumask_t done;
551
552 default_powersave_bias = powersave_bias;
553 cpumask_clear(&done);
554
555 get_online_cpus();
556 for_each_online_cpu(cpu) {
557 if (cpumask_test_cpu(cpu, &done))
558 continue;
559
560 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
561 if (!policy)
562 continue;
563
564 cpumask_or(&done, &done, policy->cpus);
565
566 if (policy->governor != &cpufreq_gov_ondemand)
567 continue;
568
569 dbs_data = policy->governor_data;
570 od_tuners = dbs_data->tuners;
571 od_tuners->powersave_bias = default_powersave_bias;
572 }
573 put_online_cpus();
574 }
575
576 void od_register_powersave_bias_handler(unsigned int (*f)
577 (struct cpufreq_policy *, unsigned int, unsigned int),
578 unsigned int powersave_bias)
579 {
580 od_ops.powersave_bias_target = f;
581 od_set_powersave_bias(powersave_bias);
582 }
583 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
584
585 void od_unregister_powersave_bias_handler(void)
586 {
587 od_ops.powersave_bias_target = generic_powersave_bias_target;
588 od_set_powersave_bias(0);
589 }
590 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
591
592 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
593 unsigned int event)
594 {
595 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
596 }
597
598 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
599 static
600 #endif
601 struct cpufreq_governor cpufreq_gov_ondemand = {
602 .name = "ondemand",
603 .governor = od_cpufreq_governor_dbs,
604 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
605 .owner = THIS_MODULE,
606 };
607
608 static int __init cpufreq_gov_dbs_init(void)
609 {
610 return cpufreq_register_governor(&cpufreq_gov_ondemand);
611 }
612
613 static void __exit cpufreq_gov_dbs_exit(void)
614 {
615 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
616 }
617
618 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
619 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
620 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
621 "Low Latency Frequency Transition capable processors");
622 MODULE_LICENSE("GPL");
623
624 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
625 fs_initcall(cpufreq_gov_dbs_init);
626 #else
627 module_init(cpufreq_gov_dbs_init);
628 #endif
629 module_exit(cpufreq_gov_dbs_exit);
This page took 0.057231 seconds and 5 git commands to generate.