WorkStruct: make allyesconfig
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21
22 /*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 /*
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
46 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
47 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
48 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
49
50 static void do_dbs_timer(struct work_struct *work);
51
52 /* Sampling types */
53 enum dbs_sample {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
54
55 struct cpu_dbs_info_s {
56 cputime64_t prev_cpu_idle;
57 cputime64_t prev_cpu_wall;
58 struct cpufreq_policy *cur_policy;
59 struct delayed_work work;
60 enum dbs_sample sample_type;
61 unsigned int enable;
62 struct cpufreq_frequency_table *freq_table;
63 unsigned int freq_lo;
64 unsigned int freq_lo_jiffies;
65 unsigned int freq_hi_jiffies;
66 };
67 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
68
69 static unsigned int dbs_enable; /* number of CPUs using this policy */
70
71 /*
72 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
73 * lock and dbs_mutex. cpu_hotplug lock should always be held before
74 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
75 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
76 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
77 * is recursive for the same process. -Venki
78 */
79 static DEFINE_MUTEX(dbs_mutex);
80
81 static struct workqueue_struct *kondemand_wq;
82
83 static struct dbs_tuners {
84 unsigned int sampling_rate;
85 unsigned int up_threshold;
86 unsigned int ignore_nice;
87 unsigned int powersave_bias;
88 } dbs_tuners_ins = {
89 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
90 .ignore_nice = 0,
91 .powersave_bias = 0,
92 };
93
94 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
95 {
96 cputime64_t retval;
97
98 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
99 kstat_cpu(cpu).cpustat.iowait);
100
101 if (dbs_tuners_ins.ignore_nice)
102 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
103
104 return retval;
105 }
106
107 /*
108 * Find right freq to be set now with powersave_bias on.
109 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
110 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
111 */
112 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
113 unsigned int freq_next,
114 unsigned int relation)
115 {
116 unsigned int freq_req, freq_reduc, freq_avg;
117 unsigned int freq_hi, freq_lo;
118 unsigned int index = 0;
119 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
120 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
121
122 if (!dbs_info->freq_table) {
123 dbs_info->freq_lo = 0;
124 dbs_info->freq_lo_jiffies = 0;
125 return freq_next;
126 }
127
128 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
129 relation, &index);
130 freq_req = dbs_info->freq_table[index].frequency;
131 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
132 freq_avg = freq_req - freq_reduc;
133
134 /* Find freq bounds for freq_avg in freq_table */
135 index = 0;
136 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
137 CPUFREQ_RELATION_H, &index);
138 freq_lo = dbs_info->freq_table[index].frequency;
139 index = 0;
140 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
141 CPUFREQ_RELATION_L, &index);
142 freq_hi = dbs_info->freq_table[index].frequency;
143
144 /* Find out how long we have to be in hi and lo freqs */
145 if (freq_hi == freq_lo) {
146 dbs_info->freq_lo = 0;
147 dbs_info->freq_lo_jiffies = 0;
148 return freq_lo;
149 }
150 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
151 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
152 jiffies_hi += ((freq_hi - freq_lo) / 2);
153 jiffies_hi /= (freq_hi - freq_lo);
154 jiffies_lo = jiffies_total - jiffies_hi;
155 dbs_info->freq_lo = freq_lo;
156 dbs_info->freq_lo_jiffies = jiffies_lo;
157 dbs_info->freq_hi_jiffies = jiffies_hi;
158 return freq_hi;
159 }
160
161 static void ondemand_powersave_bias_init(void)
162 {
163 int i;
164 for_each_online_cpu(i) {
165 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
166 dbs_info->freq_table = cpufreq_frequency_get_table(i);
167 dbs_info->freq_lo = 0;
168 }
169 }
170
171 /************************** sysfs interface ************************/
172 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
173 {
174 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
175 }
176
177 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
178 {
179 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
180 }
181
182 #define define_one_ro(_name) \
183 static struct freq_attr _name = \
184 __ATTR(_name, 0444, show_##_name, NULL)
185
186 define_one_ro(sampling_rate_max);
187 define_one_ro(sampling_rate_min);
188
189 /* cpufreq_ondemand Governor Tunables */
190 #define show_one(file_name, object) \
191 static ssize_t show_##file_name \
192 (struct cpufreq_policy *unused, char *buf) \
193 { \
194 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
195 }
196 show_one(sampling_rate, sampling_rate);
197 show_one(up_threshold, up_threshold);
198 show_one(ignore_nice_load, ignore_nice);
199 show_one(powersave_bias, powersave_bias);
200
201 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
202 const char *buf, size_t count)
203 {
204 unsigned int input;
205 int ret;
206 ret = sscanf(buf, "%u", &input);
207
208 mutex_lock(&dbs_mutex);
209 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
210 mutex_unlock(&dbs_mutex);
211 return -EINVAL;
212 }
213
214 dbs_tuners_ins.sampling_rate = input;
215 mutex_unlock(&dbs_mutex);
216
217 return count;
218 }
219
220 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
221 const char *buf, size_t count)
222 {
223 unsigned int input;
224 int ret;
225 ret = sscanf(buf, "%u", &input);
226
227 mutex_lock(&dbs_mutex);
228 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
229 input < MIN_FREQUENCY_UP_THRESHOLD) {
230 mutex_unlock(&dbs_mutex);
231 return -EINVAL;
232 }
233
234 dbs_tuners_ins.up_threshold = input;
235 mutex_unlock(&dbs_mutex);
236
237 return count;
238 }
239
240 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
241 const char *buf, size_t count)
242 {
243 unsigned int input;
244 int ret;
245
246 unsigned int j;
247
248 ret = sscanf(buf, "%u", &input);
249 if ( ret != 1 )
250 return -EINVAL;
251
252 if ( input > 1 )
253 input = 1;
254
255 mutex_lock(&dbs_mutex);
256 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
257 mutex_unlock(&dbs_mutex);
258 return count;
259 }
260 dbs_tuners_ins.ignore_nice = input;
261
262 /* we need to re-evaluate prev_cpu_idle */
263 for_each_online_cpu(j) {
264 struct cpu_dbs_info_s *dbs_info;
265 dbs_info = &per_cpu(cpu_dbs_info, j);
266 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
267 dbs_info->prev_cpu_wall = get_jiffies_64();
268 }
269 mutex_unlock(&dbs_mutex);
270
271 return count;
272 }
273
274 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
275 const char *buf, size_t count)
276 {
277 unsigned int input;
278 int ret;
279 ret = sscanf(buf, "%u", &input);
280
281 if (ret != 1)
282 return -EINVAL;
283
284 if (input > 1000)
285 input = 1000;
286
287 mutex_lock(&dbs_mutex);
288 dbs_tuners_ins.powersave_bias = input;
289 ondemand_powersave_bias_init();
290 mutex_unlock(&dbs_mutex);
291
292 return count;
293 }
294
295 #define define_one_rw(_name) \
296 static struct freq_attr _name = \
297 __ATTR(_name, 0644, show_##_name, store_##_name)
298
299 define_one_rw(sampling_rate);
300 define_one_rw(up_threshold);
301 define_one_rw(ignore_nice_load);
302 define_one_rw(powersave_bias);
303
304 static struct attribute * dbs_attributes[] = {
305 &sampling_rate_max.attr,
306 &sampling_rate_min.attr,
307 &sampling_rate.attr,
308 &up_threshold.attr,
309 &ignore_nice_load.attr,
310 &powersave_bias.attr,
311 NULL
312 };
313
314 static struct attribute_group dbs_attr_group = {
315 .attrs = dbs_attributes,
316 .name = "ondemand",
317 };
318
319 /************************** sysfs end ************************/
320
321 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
322 {
323 unsigned int idle_ticks, total_ticks;
324 unsigned int load;
325 cputime64_t cur_jiffies;
326
327 struct cpufreq_policy *policy;
328 unsigned int j;
329
330 if (!this_dbs_info->enable)
331 return;
332
333 this_dbs_info->freq_lo = 0;
334 policy = this_dbs_info->cur_policy;
335 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
336 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
337 this_dbs_info->prev_cpu_wall);
338 this_dbs_info->prev_cpu_wall = cur_jiffies;
339 if (!total_ticks)
340 return;
341 /*
342 * Every sampling_rate, we check, if current idle time is less
343 * than 20% (default), then we try to increase frequency
344 * Every sampling_rate, we look for a the lowest
345 * frequency which can sustain the load while keeping idle time over
346 * 30%. If such a frequency exist, we try to decrease to this frequency.
347 *
348 * Any frequency increase takes it to the maximum frequency.
349 * Frequency reduction happens at minimum steps of
350 * 5% (default) of current frequency
351 */
352
353 /* Get Idle Time */
354 idle_ticks = UINT_MAX;
355 for_each_cpu_mask(j, policy->cpus) {
356 cputime64_t total_idle_ticks;
357 unsigned int tmp_idle_ticks;
358 struct cpu_dbs_info_s *j_dbs_info;
359
360 j_dbs_info = &per_cpu(cpu_dbs_info, j);
361 total_idle_ticks = get_cpu_idle_time(j);
362 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
363 j_dbs_info->prev_cpu_idle);
364 j_dbs_info->prev_cpu_idle = total_idle_ticks;
365
366 if (tmp_idle_ticks < idle_ticks)
367 idle_ticks = tmp_idle_ticks;
368 }
369 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
370
371 /* Check for frequency increase */
372 if (load > dbs_tuners_ins.up_threshold) {
373 /* if we are already at full speed then break out early */
374 if (!dbs_tuners_ins.powersave_bias) {
375 if (policy->cur == policy->max)
376 return;
377
378 __cpufreq_driver_target(policy, policy->max,
379 CPUFREQ_RELATION_H);
380 } else {
381 int freq = powersave_bias_target(policy, policy->max,
382 CPUFREQ_RELATION_H);
383 __cpufreq_driver_target(policy, freq,
384 CPUFREQ_RELATION_L);
385 }
386 return;
387 }
388
389 /* Check for frequency decrease */
390 /* if we cannot reduce the frequency anymore, break out early */
391 if (policy->cur == policy->min)
392 return;
393
394 /*
395 * The optimal frequency is the frequency that is the lowest that
396 * can support the current CPU usage without triggering the up
397 * policy. To be safe, we focus 10 points under the threshold.
398 */
399 if (load < (dbs_tuners_ins.up_threshold - 10)) {
400 unsigned int freq_next = (policy->cur * load) /
401 (dbs_tuners_ins.up_threshold - 10);
402 if (!dbs_tuners_ins.powersave_bias) {
403 __cpufreq_driver_target(policy, freq_next,
404 CPUFREQ_RELATION_L);
405 } else {
406 int freq = powersave_bias_target(policy, freq_next,
407 CPUFREQ_RELATION_L);
408 __cpufreq_driver_target(policy, freq,
409 CPUFREQ_RELATION_L);
410 }
411 }
412 }
413
414 static void do_dbs_timer(struct work_struct *work)
415 {
416 unsigned int cpu = smp_processor_id();
417 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
418 enum dbs_sample sample_type = dbs_info->sample_type;
419 /* We want all CPUs to do sampling nearly on same jiffy */
420 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
421
422 /* Permit rescheduling of this work item */
423 work_release(work);
424
425 delay -= jiffies % delay;
426
427 if (!dbs_info->enable)
428 return;
429 /* Common NORMAL_SAMPLE setup */
430 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
431 if (!dbs_tuners_ins.powersave_bias ||
432 sample_type == DBS_NORMAL_SAMPLE) {
433 lock_cpu_hotplug();
434 dbs_check_cpu(dbs_info);
435 unlock_cpu_hotplug();
436 if (dbs_info->freq_lo) {
437 /* Setup timer for SUB_SAMPLE */
438 dbs_info->sample_type = DBS_SUB_SAMPLE;
439 delay = dbs_info->freq_hi_jiffies;
440 }
441 } else {
442 __cpufreq_driver_target(dbs_info->cur_policy,
443 dbs_info->freq_lo,
444 CPUFREQ_RELATION_H);
445 }
446 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
447 }
448
449 static inline void dbs_timer_init(unsigned int cpu)
450 {
451 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
452 /* We want all CPUs to do sampling nearly on same jiffy */
453 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
454 delay -= jiffies % delay;
455
456 ondemand_powersave_bias_init();
457 INIT_DELAYED_WORK_NAR(&dbs_info->work, do_dbs_timer);
458 dbs_info->sample_type = DBS_NORMAL_SAMPLE;
459 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
460 }
461
462 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
463 {
464 dbs_info->enable = 0;
465 cancel_delayed_work(&dbs_info->work);
466 flush_workqueue(kondemand_wq);
467 }
468
469 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
470 unsigned int event)
471 {
472 unsigned int cpu = policy->cpu;
473 struct cpu_dbs_info_s *this_dbs_info;
474 unsigned int j;
475
476 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
477
478 switch (event) {
479 case CPUFREQ_GOV_START:
480 if ((!cpu_online(cpu)) || (!policy->cur))
481 return -EINVAL;
482
483 if (policy->cpuinfo.transition_latency >
484 (TRANSITION_LATENCY_LIMIT * 1000)) {
485 printk(KERN_WARNING "ondemand governor failed to load "
486 "due to too long transition latency\n");
487 return -EINVAL;
488 }
489 if (this_dbs_info->enable) /* Already enabled */
490 break;
491
492 mutex_lock(&dbs_mutex);
493 dbs_enable++;
494 if (dbs_enable == 1) {
495 kondemand_wq = create_workqueue("kondemand");
496 if (!kondemand_wq) {
497 printk(KERN_ERR "Creation of kondemand failed\n");
498 dbs_enable--;
499 mutex_unlock(&dbs_mutex);
500 return -ENOSPC;
501 }
502 }
503 for_each_cpu_mask(j, policy->cpus) {
504 struct cpu_dbs_info_s *j_dbs_info;
505 j_dbs_info = &per_cpu(cpu_dbs_info, j);
506 j_dbs_info->cur_policy = policy;
507
508 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
509 j_dbs_info->prev_cpu_wall = get_jiffies_64();
510 }
511 this_dbs_info->enable = 1;
512 sysfs_create_group(&policy->kobj, &dbs_attr_group);
513 /*
514 * Start the timerschedule work, when this governor
515 * is used for first time
516 */
517 if (dbs_enable == 1) {
518 unsigned int latency;
519 /* policy latency is in nS. Convert it to uS first */
520 latency = policy->cpuinfo.transition_latency / 1000;
521 if (latency == 0)
522 latency = 1;
523
524 def_sampling_rate = latency *
525 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
526
527 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
528 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
529
530 dbs_tuners_ins.sampling_rate = def_sampling_rate;
531 }
532 dbs_timer_init(policy->cpu);
533
534 mutex_unlock(&dbs_mutex);
535 break;
536
537 case CPUFREQ_GOV_STOP:
538 mutex_lock(&dbs_mutex);
539 dbs_timer_exit(this_dbs_info);
540 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
541 dbs_enable--;
542 if (dbs_enable == 0)
543 destroy_workqueue(kondemand_wq);
544
545 mutex_unlock(&dbs_mutex);
546
547 break;
548
549 case CPUFREQ_GOV_LIMITS:
550 mutex_lock(&dbs_mutex);
551 if (policy->max < this_dbs_info->cur_policy->cur)
552 __cpufreq_driver_target(this_dbs_info->cur_policy,
553 policy->max,
554 CPUFREQ_RELATION_H);
555 else if (policy->min > this_dbs_info->cur_policy->cur)
556 __cpufreq_driver_target(this_dbs_info->cur_policy,
557 policy->min,
558 CPUFREQ_RELATION_L);
559 mutex_unlock(&dbs_mutex);
560 break;
561 }
562 return 0;
563 }
564
565 static struct cpufreq_governor cpufreq_gov_dbs = {
566 .name = "ondemand",
567 .governor = cpufreq_governor_dbs,
568 .owner = THIS_MODULE,
569 };
570
571 static int __init cpufreq_gov_dbs_init(void)
572 {
573 return cpufreq_register_governor(&cpufreq_gov_dbs);
574 }
575
576 static void __exit cpufreq_gov_dbs_exit(void)
577 {
578 cpufreq_unregister_governor(&cpufreq_gov_dbs);
579 }
580
581
582 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
583 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
584 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
585 "Low Latency Frequency Transition capable processors");
586 MODULE_LICENSE("GPL");
587
588 module_init(cpufreq_gov_dbs_init);
589 module_exit(cpufreq_gov_dbs_exit);
This page took 0.04968 seconds and 5 git commands to generate.