[CPUFREQ][2/2] ondemand: updated add powersave_bias tunable
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21
22 /*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 /*
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
46 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
47 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
48 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
49
50 static void do_dbs_timer(void *data);
51
52 struct cpu_dbs_info_s {
53 cputime64_t prev_cpu_idle;
54 cputime64_t prev_cpu_wall;
55 struct cpufreq_policy *cur_policy;
56 struct work_struct work;
57 unsigned int enable;
58 struct cpufreq_frequency_table *freq_table;
59 unsigned int freq_lo;
60 unsigned int freq_lo_jiffies;
61 unsigned int freq_hi_jiffies;
62 };
63 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
64
65 static unsigned int dbs_enable; /* number of CPUs using this policy */
66
67 /*
68 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
69 * lock and dbs_mutex. cpu_hotplug lock should always be held before
70 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
71 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
72 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
73 * is recursive for the same process. -Venki
74 */
75 static DEFINE_MUTEX(dbs_mutex);
76
77 static struct workqueue_struct *kondemand_wq;
78
79 static struct dbs_tuners {
80 unsigned int sampling_rate;
81 unsigned int up_threshold;
82 unsigned int ignore_nice;
83 unsigned int powersave_bias;
84 } dbs_tuners_ins = {
85 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86 .ignore_nice = 0,
87 .powersave_bias = 0,
88 };
89
90 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
91 {
92 cputime64_t retval;
93
94 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
95 kstat_cpu(cpu).cpustat.iowait);
96
97 if (dbs_tuners_ins.ignore_nice)
98 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
99
100 return retval;
101 }
102
103 /*
104 * Find right freq to be set now with powersave_bias on.
105 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
106 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
107 */
108 unsigned int powersave_bias_target(struct cpufreq_policy *policy,
109 unsigned int freq_next, unsigned int relation)
110 {
111 unsigned int freq_req, freq_reduc, freq_avg;
112 unsigned int freq_hi, freq_lo;
113 unsigned int index = 0;
114 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
115 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
116
117 if (!dbs_info->freq_table) {
118 dbs_info->freq_lo = 0;
119 dbs_info->freq_lo_jiffies = 0;
120 return freq_next;
121 }
122
123 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
124 relation, &index);
125 freq_req = dbs_info->freq_table[index].frequency;
126 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
127 freq_avg = freq_req - freq_reduc;
128
129 /* Find freq bounds for freq_avg in freq_table */
130 index = 0;
131 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
132 CPUFREQ_RELATION_H, &index);
133 freq_lo = dbs_info->freq_table[index].frequency;
134 index = 0;
135 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
136 CPUFREQ_RELATION_L, &index);
137 freq_hi = dbs_info->freq_table[index].frequency;
138
139 /* Find out how long we have to be in hi and lo freqs */
140 if (freq_hi == freq_lo) {
141 dbs_info->freq_lo = 0;
142 dbs_info->freq_lo_jiffies = 0;
143 return freq_lo;
144 }
145 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
146 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
147 jiffies_hi += ((freq_hi - freq_lo) / 2);
148 jiffies_hi /= (freq_hi - freq_lo);
149 jiffies_lo = jiffies_total - jiffies_hi;
150 dbs_info->freq_lo = freq_lo;
151 dbs_info->freq_lo_jiffies = jiffies_lo;
152 dbs_info->freq_hi_jiffies = jiffies_hi;
153 return freq_hi;
154 }
155
156 static void ondemand_powersave_bias_init(void)
157 {
158 int i;
159 for_each_online_cpu(i) {
160 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
161 dbs_info->freq_table = cpufreq_frequency_get_table(i);
162 dbs_info->freq_lo = 0;
163 }
164 }
165
166 /************************** sysfs interface ************************/
167 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
168 {
169 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
170 }
171
172 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
173 {
174 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
175 }
176
177 #define define_one_ro(_name) \
178 static struct freq_attr _name = \
179 __ATTR(_name, 0444, show_##_name, NULL)
180
181 define_one_ro(sampling_rate_max);
182 define_one_ro(sampling_rate_min);
183
184 /* cpufreq_ondemand Governor Tunables */
185 #define show_one(file_name, object) \
186 static ssize_t show_##file_name \
187 (struct cpufreq_policy *unused, char *buf) \
188 { \
189 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
190 }
191 show_one(sampling_rate, sampling_rate);
192 show_one(up_threshold, up_threshold);
193 show_one(ignore_nice_load, ignore_nice);
194 show_one(powersave_bias, powersave_bias);
195
196 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
197 const char *buf, size_t count)
198 {
199 unsigned int input;
200 int ret;
201 ret = sscanf(buf, "%u", &input);
202
203 mutex_lock(&dbs_mutex);
204 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
205 mutex_unlock(&dbs_mutex);
206 return -EINVAL;
207 }
208
209 dbs_tuners_ins.sampling_rate = input;
210 mutex_unlock(&dbs_mutex);
211
212 return count;
213 }
214
215 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
216 const char *buf, size_t count)
217 {
218 unsigned int input;
219 int ret;
220 ret = sscanf(buf, "%u", &input);
221
222 mutex_lock(&dbs_mutex);
223 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
224 input < MIN_FREQUENCY_UP_THRESHOLD) {
225 mutex_unlock(&dbs_mutex);
226 return -EINVAL;
227 }
228
229 dbs_tuners_ins.up_threshold = input;
230 mutex_unlock(&dbs_mutex);
231
232 return count;
233 }
234
235 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
236 const char *buf, size_t count)
237 {
238 unsigned int input;
239 int ret;
240
241 unsigned int j;
242
243 ret = sscanf(buf, "%u", &input);
244 if ( ret != 1 )
245 return -EINVAL;
246
247 if ( input > 1 )
248 input = 1;
249
250 mutex_lock(&dbs_mutex);
251 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
252 mutex_unlock(&dbs_mutex);
253 return count;
254 }
255 dbs_tuners_ins.ignore_nice = input;
256
257 /* we need to re-evaluate prev_cpu_idle */
258 for_each_online_cpu(j) {
259 struct cpu_dbs_info_s *dbs_info;
260 dbs_info = &per_cpu(cpu_dbs_info, j);
261 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
262 dbs_info->prev_cpu_wall = get_jiffies_64();
263 }
264 mutex_unlock(&dbs_mutex);
265
266 return count;
267 }
268
269 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
270 const char *buf, size_t count)
271 {
272 unsigned int input;
273 int ret;
274 ret = sscanf(buf, "%u", &input);
275
276 if (ret != 1)
277 return -EINVAL;
278
279 if (input > 1000)
280 input = 1000;
281
282 mutex_lock(&dbs_mutex);
283 dbs_tuners_ins.powersave_bias = input;
284 ondemand_powersave_bias_init();
285 mutex_unlock(&dbs_mutex);
286
287 return count;
288 }
289
290 #define define_one_rw(_name) \
291 static struct freq_attr _name = \
292 __ATTR(_name, 0644, show_##_name, store_##_name)
293
294 define_one_rw(sampling_rate);
295 define_one_rw(up_threshold);
296 define_one_rw(ignore_nice_load);
297 define_one_rw(powersave_bias);
298
299 static struct attribute * dbs_attributes[] = {
300 &sampling_rate_max.attr,
301 &sampling_rate_min.attr,
302 &sampling_rate.attr,
303 &up_threshold.attr,
304 &ignore_nice_load.attr,
305 &powersave_bias.attr,
306 NULL
307 };
308
309 static struct attribute_group dbs_attr_group = {
310 .attrs = dbs_attributes,
311 .name = "ondemand",
312 };
313
314 /************************** sysfs end ************************/
315
316 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
317 {
318 unsigned int idle_ticks, total_ticks;
319 unsigned int load;
320 cputime64_t cur_jiffies;
321
322 struct cpufreq_policy *policy;
323 unsigned int j;
324
325 if (!this_dbs_info->enable)
326 return;
327
328 this_dbs_info->freq_lo = 0;
329 policy = this_dbs_info->cur_policy;
330 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
331 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
332 this_dbs_info->prev_cpu_wall);
333 this_dbs_info->prev_cpu_wall = cur_jiffies;
334 if (!total_ticks)
335 return;
336 /*
337 * Every sampling_rate, we check, if current idle time is less
338 * than 20% (default), then we try to increase frequency
339 * Every sampling_rate, we look for a the lowest
340 * frequency which can sustain the load while keeping idle time over
341 * 30%. If such a frequency exist, we try to decrease to this frequency.
342 *
343 * Any frequency increase takes it to the maximum frequency.
344 * Frequency reduction happens at minimum steps of
345 * 5% (default) of current frequency
346 */
347
348 /* Get Idle Time */
349 idle_ticks = UINT_MAX;
350 for_each_cpu_mask(j, policy->cpus) {
351 cputime64_t total_idle_ticks;
352 unsigned int tmp_idle_ticks;
353 struct cpu_dbs_info_s *j_dbs_info;
354
355 j_dbs_info = &per_cpu(cpu_dbs_info, j);
356 total_idle_ticks = get_cpu_idle_time(j);
357 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
358 j_dbs_info->prev_cpu_idle);
359 j_dbs_info->prev_cpu_idle = total_idle_ticks;
360
361 if (tmp_idle_ticks < idle_ticks)
362 idle_ticks = tmp_idle_ticks;
363 }
364 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
365
366 /* Check for frequency increase */
367 if (load > dbs_tuners_ins.up_threshold) {
368 /* if we are already at full speed then break out early */
369 if (!dbs_tuners_ins.powersave_bias) {
370 if (policy->cur == policy->max)
371 return;
372
373 __cpufreq_driver_target(policy, policy->max,
374 CPUFREQ_RELATION_H);
375 } else {
376 int freq = powersave_bias_target(policy, policy->max,
377 CPUFREQ_RELATION_H);
378 __cpufreq_driver_target(policy, freq,
379 CPUFREQ_RELATION_L);
380 }
381 return;
382 }
383
384 /* Check for frequency decrease */
385 /* if we cannot reduce the frequency anymore, break out early */
386 if (policy->cur == policy->min)
387 return;
388
389 /*
390 * The optimal frequency is the frequency that is the lowest that
391 * can support the current CPU usage without triggering the up
392 * policy. To be safe, we focus 10 points under the threshold.
393 */
394 if (load < (dbs_tuners_ins.up_threshold - 10)) {
395 unsigned int freq_next = (policy->cur * load) /
396 (dbs_tuners_ins.up_threshold - 10);
397 if (!dbs_tuners_ins.powersave_bias) {
398 __cpufreq_driver_target(policy, freq_next,
399 CPUFREQ_RELATION_L);
400 } else {
401 int freq = powersave_bias_target(policy, freq_next,
402 CPUFREQ_RELATION_L);
403 __cpufreq_driver_target(policy, freq,
404 CPUFREQ_RELATION_L);
405 }
406 }
407 }
408
409 /* Sampling types */
410 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
411
412 static void do_dbs_timer(void *data)
413 {
414 unsigned int cpu = smp_processor_id();
415 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
416 /* We want all CPUs to do sampling nearly on same jiffy */
417 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
418 delay -= jiffies % delay;
419
420 if (!dbs_info->enable)
421 return;
422 /* Common NORMAL_SAMPLE setup */
423 INIT_WORK(&dbs_info->work, do_dbs_timer, (void *)DBS_NORMAL_SAMPLE);
424 if (!dbs_tuners_ins.powersave_bias ||
425 (unsigned long) data == DBS_NORMAL_SAMPLE) {
426 lock_cpu_hotplug();
427 dbs_check_cpu(dbs_info);
428 unlock_cpu_hotplug();
429 if (dbs_info->freq_lo) {
430 /* Setup timer for SUB_SAMPLE */
431 INIT_WORK(&dbs_info->work, do_dbs_timer,
432 (void *)DBS_SUB_SAMPLE);
433 delay = dbs_info->freq_hi_jiffies;
434 }
435 } else {
436 __cpufreq_driver_target(dbs_info->cur_policy,
437 dbs_info->freq_lo,
438 CPUFREQ_RELATION_H);
439 }
440 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
441 }
442
443 static inline void dbs_timer_init(unsigned int cpu)
444 {
445 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
446 /* We want all CPUs to do sampling nearly on same jiffy */
447 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
448 delay -= jiffies % delay;
449
450 ondemand_powersave_bias_init();
451 INIT_WORK(&dbs_info->work, do_dbs_timer, 0);
452 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
453 }
454
455 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
456 {
457 dbs_info->enable = 0;
458 cancel_delayed_work(&dbs_info->work);
459 flush_workqueue(kondemand_wq);
460 }
461
462 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
463 unsigned int event)
464 {
465 unsigned int cpu = policy->cpu;
466 struct cpu_dbs_info_s *this_dbs_info;
467 unsigned int j;
468
469 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
470
471 switch (event) {
472 case CPUFREQ_GOV_START:
473 if ((!cpu_online(cpu)) || (!policy->cur))
474 return -EINVAL;
475
476 if (policy->cpuinfo.transition_latency >
477 (TRANSITION_LATENCY_LIMIT * 1000)) {
478 printk(KERN_WARNING "ondemand governor failed to load "
479 "due to too long transition latency\n");
480 return -EINVAL;
481 }
482 if (this_dbs_info->enable) /* Already enabled */
483 break;
484
485 mutex_lock(&dbs_mutex);
486 dbs_enable++;
487 if (dbs_enable == 1) {
488 kondemand_wq = create_workqueue("kondemand");
489 if (!kondemand_wq) {
490 printk(KERN_ERR "Creation of kondemand failed\n");
491 dbs_enable--;
492 mutex_unlock(&dbs_mutex);
493 return -ENOSPC;
494 }
495 }
496 for_each_cpu_mask(j, policy->cpus) {
497 struct cpu_dbs_info_s *j_dbs_info;
498 j_dbs_info = &per_cpu(cpu_dbs_info, j);
499 j_dbs_info->cur_policy = policy;
500
501 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
502 j_dbs_info->prev_cpu_wall = get_jiffies_64();
503 }
504 this_dbs_info->enable = 1;
505 sysfs_create_group(&policy->kobj, &dbs_attr_group);
506 /*
507 * Start the timerschedule work, when this governor
508 * is used for first time
509 */
510 if (dbs_enable == 1) {
511 unsigned int latency;
512 /* policy latency is in nS. Convert it to uS first */
513 latency = policy->cpuinfo.transition_latency / 1000;
514 if (latency == 0)
515 latency = 1;
516
517 def_sampling_rate = latency *
518 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
519
520 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
521 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
522
523 dbs_tuners_ins.sampling_rate = def_sampling_rate;
524 }
525 dbs_timer_init(policy->cpu);
526
527 mutex_unlock(&dbs_mutex);
528 break;
529
530 case CPUFREQ_GOV_STOP:
531 mutex_lock(&dbs_mutex);
532 dbs_timer_exit(this_dbs_info);
533 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
534 dbs_enable--;
535 if (dbs_enable == 0)
536 destroy_workqueue(kondemand_wq);
537
538 mutex_unlock(&dbs_mutex);
539
540 break;
541
542 case CPUFREQ_GOV_LIMITS:
543 mutex_lock(&dbs_mutex);
544 if (policy->max < this_dbs_info->cur_policy->cur)
545 __cpufreq_driver_target(this_dbs_info->cur_policy,
546 policy->max,
547 CPUFREQ_RELATION_H);
548 else if (policy->min > this_dbs_info->cur_policy->cur)
549 __cpufreq_driver_target(this_dbs_info->cur_policy,
550 policy->min,
551 CPUFREQ_RELATION_L);
552 mutex_unlock(&dbs_mutex);
553 break;
554 }
555 return 0;
556 }
557
558 static struct cpufreq_governor cpufreq_gov_dbs = {
559 .name = "ondemand",
560 .governor = cpufreq_governor_dbs,
561 .owner = THIS_MODULE,
562 };
563
564 static int __init cpufreq_gov_dbs_init(void)
565 {
566 return cpufreq_register_governor(&cpufreq_gov_dbs);
567 }
568
569 static void __exit cpufreq_gov_dbs_exit(void)
570 {
571 cpufreq_unregister_governor(&cpufreq_gov_dbs);
572 }
573
574
575 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
576 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
577 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
578 "Low Latency Frequency Transition capable processors");
579 MODULE_LICENSE("GPL");
580
581 module_init(cpufreq_gov_dbs_init);
582 module_exit(cpufreq_gov_dbs_exit);
This page took 0.043659 seconds and 6 git commands to generate.