Merge ../linus
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/init.h>
16 #include <linux/cpufreq.h>
17 #include <linux/cpu.h>
18 #include <linux/jiffies.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mutex.h>
21
22 /*
23 * dbs is used in this file as a shortform for demandbased switching
24 * It helps to keep variable names smaller, simpler
25 */
26
27 #define DEF_FREQUENCY_UP_THRESHOLD (80)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 /*
32 * The polling frequency of this governor depends on the capability of
33 * the processor. Default polling frequency is 1000 times the transition
34 * latency of the processor. The governor will work on any processor with
35 * transition latency <= 10mS, using appropriate sampling
36 * rate.
37 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
38 * this governor will not work.
39 * All times here are in uS.
40 */
41 static unsigned int def_sampling_rate;
42 #define MIN_SAMPLING_RATE_RATIO (2)
43 /* for correct statistics, we need at least 10 ticks between each measure */
44 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
45 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
46 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
47 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
48 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
49
50 static void do_dbs_timer(void *data);
51
52 struct cpu_dbs_info_s {
53 cputime64_t prev_cpu_idle;
54 cputime64_t prev_cpu_wall;
55 struct cpufreq_policy *cur_policy;
56 struct work_struct work;
57 unsigned int enable;
58 struct cpufreq_frequency_table *freq_table;
59 unsigned int freq_lo;
60 unsigned int freq_lo_jiffies;
61 unsigned int freq_hi_jiffies;
62 };
63 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
64
65 static unsigned int dbs_enable; /* number of CPUs using this policy */
66
67 /*
68 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
69 * lock and dbs_mutex. cpu_hotplug lock should always be held before
70 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
71 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
72 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
73 * is recursive for the same process. -Venki
74 */
75 static DEFINE_MUTEX(dbs_mutex);
76
77 static struct workqueue_struct *kondemand_wq;
78
79 static struct dbs_tuners {
80 unsigned int sampling_rate;
81 unsigned int up_threshold;
82 unsigned int ignore_nice;
83 unsigned int powersave_bias;
84 } dbs_tuners_ins = {
85 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
86 .ignore_nice = 0,
87 .powersave_bias = 0,
88 };
89
90 static inline cputime64_t get_cpu_idle_time(unsigned int cpu)
91 {
92 cputime64_t retval;
93
94 retval = cputime64_add(kstat_cpu(cpu).cpustat.idle,
95 kstat_cpu(cpu).cpustat.iowait);
96
97 if (dbs_tuners_ins.ignore_nice)
98 retval = cputime64_add(retval, kstat_cpu(cpu).cpustat.nice);
99
100 return retval;
101 }
102
103 /*
104 * Find right freq to be set now with powersave_bias on.
105 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
106 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
107 */
108 static unsigned int powersave_bias_target(struct cpufreq_policy *policy,
109 unsigned int freq_next,
110 unsigned int relation)
111 {
112 unsigned int freq_req, freq_reduc, freq_avg;
113 unsigned int freq_hi, freq_lo;
114 unsigned int index = 0;
115 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
116 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, policy->cpu);
117
118 if (!dbs_info->freq_table) {
119 dbs_info->freq_lo = 0;
120 dbs_info->freq_lo_jiffies = 0;
121 return freq_next;
122 }
123
124 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
125 relation, &index);
126 freq_req = dbs_info->freq_table[index].frequency;
127 freq_reduc = freq_req * dbs_tuners_ins.powersave_bias / 1000;
128 freq_avg = freq_req - freq_reduc;
129
130 /* Find freq bounds for freq_avg in freq_table */
131 index = 0;
132 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
133 CPUFREQ_RELATION_H, &index);
134 freq_lo = dbs_info->freq_table[index].frequency;
135 index = 0;
136 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
137 CPUFREQ_RELATION_L, &index);
138 freq_hi = dbs_info->freq_table[index].frequency;
139
140 /* Find out how long we have to be in hi and lo freqs */
141 if (freq_hi == freq_lo) {
142 dbs_info->freq_lo = 0;
143 dbs_info->freq_lo_jiffies = 0;
144 return freq_lo;
145 }
146 jiffies_total = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
147 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
148 jiffies_hi += ((freq_hi - freq_lo) / 2);
149 jiffies_hi /= (freq_hi - freq_lo);
150 jiffies_lo = jiffies_total - jiffies_hi;
151 dbs_info->freq_lo = freq_lo;
152 dbs_info->freq_lo_jiffies = jiffies_lo;
153 dbs_info->freq_hi_jiffies = jiffies_hi;
154 return freq_hi;
155 }
156
157 static void ondemand_powersave_bias_init(void)
158 {
159 int i;
160 for_each_online_cpu(i) {
161 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, i);
162 dbs_info->freq_table = cpufreq_frequency_get_table(i);
163 dbs_info->freq_lo = 0;
164 }
165 }
166
167 /************************** sysfs interface ************************/
168 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
169 {
170 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
171 }
172
173 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
174 {
175 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
176 }
177
178 #define define_one_ro(_name) \
179 static struct freq_attr _name = \
180 __ATTR(_name, 0444, show_##_name, NULL)
181
182 define_one_ro(sampling_rate_max);
183 define_one_ro(sampling_rate_min);
184
185 /* cpufreq_ondemand Governor Tunables */
186 #define show_one(file_name, object) \
187 static ssize_t show_##file_name \
188 (struct cpufreq_policy *unused, char *buf) \
189 { \
190 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
191 }
192 show_one(sampling_rate, sampling_rate);
193 show_one(up_threshold, up_threshold);
194 show_one(ignore_nice_load, ignore_nice);
195 show_one(powersave_bias, powersave_bias);
196
197 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
198 const char *buf, size_t count)
199 {
200 unsigned int input;
201 int ret;
202 ret = sscanf(buf, "%u", &input);
203
204 mutex_lock(&dbs_mutex);
205 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
206 mutex_unlock(&dbs_mutex);
207 return -EINVAL;
208 }
209
210 dbs_tuners_ins.sampling_rate = input;
211 mutex_unlock(&dbs_mutex);
212
213 return count;
214 }
215
216 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
217 const char *buf, size_t count)
218 {
219 unsigned int input;
220 int ret;
221 ret = sscanf(buf, "%u", &input);
222
223 mutex_lock(&dbs_mutex);
224 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
225 input < MIN_FREQUENCY_UP_THRESHOLD) {
226 mutex_unlock(&dbs_mutex);
227 return -EINVAL;
228 }
229
230 dbs_tuners_ins.up_threshold = input;
231 mutex_unlock(&dbs_mutex);
232
233 return count;
234 }
235
236 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
237 const char *buf, size_t count)
238 {
239 unsigned int input;
240 int ret;
241
242 unsigned int j;
243
244 ret = sscanf(buf, "%u", &input);
245 if ( ret != 1 )
246 return -EINVAL;
247
248 if ( input > 1 )
249 input = 1;
250
251 mutex_lock(&dbs_mutex);
252 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
253 mutex_unlock(&dbs_mutex);
254 return count;
255 }
256 dbs_tuners_ins.ignore_nice = input;
257
258 /* we need to re-evaluate prev_cpu_idle */
259 for_each_online_cpu(j) {
260 struct cpu_dbs_info_s *dbs_info;
261 dbs_info = &per_cpu(cpu_dbs_info, j);
262 dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
263 dbs_info->prev_cpu_wall = get_jiffies_64();
264 }
265 mutex_unlock(&dbs_mutex);
266
267 return count;
268 }
269
270 static ssize_t store_powersave_bias(struct cpufreq_policy *unused,
271 const char *buf, size_t count)
272 {
273 unsigned int input;
274 int ret;
275 ret = sscanf(buf, "%u", &input);
276
277 if (ret != 1)
278 return -EINVAL;
279
280 if (input > 1000)
281 input = 1000;
282
283 mutex_lock(&dbs_mutex);
284 dbs_tuners_ins.powersave_bias = input;
285 ondemand_powersave_bias_init();
286 mutex_unlock(&dbs_mutex);
287
288 return count;
289 }
290
291 #define define_one_rw(_name) \
292 static struct freq_attr _name = \
293 __ATTR(_name, 0644, show_##_name, store_##_name)
294
295 define_one_rw(sampling_rate);
296 define_one_rw(up_threshold);
297 define_one_rw(ignore_nice_load);
298 define_one_rw(powersave_bias);
299
300 static struct attribute * dbs_attributes[] = {
301 &sampling_rate_max.attr,
302 &sampling_rate_min.attr,
303 &sampling_rate.attr,
304 &up_threshold.attr,
305 &ignore_nice_load.attr,
306 &powersave_bias.attr,
307 NULL
308 };
309
310 static struct attribute_group dbs_attr_group = {
311 .attrs = dbs_attributes,
312 .name = "ondemand",
313 };
314
315 /************************** sysfs end ************************/
316
317 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
318 {
319 unsigned int idle_ticks, total_ticks;
320 unsigned int load;
321 cputime64_t cur_jiffies;
322
323 struct cpufreq_policy *policy;
324 unsigned int j;
325
326 if (!this_dbs_info->enable)
327 return;
328
329 this_dbs_info->freq_lo = 0;
330 policy = this_dbs_info->cur_policy;
331 cur_jiffies = jiffies64_to_cputime64(get_jiffies_64());
332 total_ticks = (unsigned int) cputime64_sub(cur_jiffies,
333 this_dbs_info->prev_cpu_wall);
334 this_dbs_info->prev_cpu_wall = cur_jiffies;
335 if (!total_ticks)
336 return;
337 /*
338 * Every sampling_rate, we check, if current idle time is less
339 * than 20% (default), then we try to increase frequency
340 * Every sampling_rate, we look for a the lowest
341 * frequency which can sustain the load while keeping idle time over
342 * 30%. If such a frequency exist, we try to decrease to this frequency.
343 *
344 * Any frequency increase takes it to the maximum frequency.
345 * Frequency reduction happens at minimum steps of
346 * 5% (default) of current frequency
347 */
348
349 /* Get Idle Time */
350 idle_ticks = UINT_MAX;
351 for_each_cpu_mask(j, policy->cpus) {
352 cputime64_t total_idle_ticks;
353 unsigned int tmp_idle_ticks;
354 struct cpu_dbs_info_s *j_dbs_info;
355
356 j_dbs_info = &per_cpu(cpu_dbs_info, j);
357 total_idle_ticks = get_cpu_idle_time(j);
358 tmp_idle_ticks = (unsigned int) cputime64_sub(total_idle_ticks,
359 j_dbs_info->prev_cpu_idle);
360 j_dbs_info->prev_cpu_idle = total_idle_ticks;
361
362 if (tmp_idle_ticks < idle_ticks)
363 idle_ticks = tmp_idle_ticks;
364 }
365 load = (100 * (total_ticks - idle_ticks)) / total_ticks;
366
367 /* Check for frequency increase */
368 if (load > dbs_tuners_ins.up_threshold) {
369 /* if we are already at full speed then break out early */
370 if (!dbs_tuners_ins.powersave_bias) {
371 if (policy->cur == policy->max)
372 return;
373
374 __cpufreq_driver_target(policy, policy->max,
375 CPUFREQ_RELATION_H);
376 } else {
377 int freq = powersave_bias_target(policy, policy->max,
378 CPUFREQ_RELATION_H);
379 __cpufreq_driver_target(policy, freq,
380 CPUFREQ_RELATION_L);
381 }
382 return;
383 }
384
385 /* Check for frequency decrease */
386 /* if we cannot reduce the frequency anymore, break out early */
387 if (policy->cur == policy->min)
388 return;
389
390 /*
391 * The optimal frequency is the frequency that is the lowest that
392 * can support the current CPU usage without triggering the up
393 * policy. To be safe, we focus 10 points under the threshold.
394 */
395 if (load < (dbs_tuners_ins.up_threshold - 10)) {
396 unsigned int freq_next = (policy->cur * load) /
397 (dbs_tuners_ins.up_threshold - 10);
398 if (!dbs_tuners_ins.powersave_bias) {
399 __cpufreq_driver_target(policy, freq_next,
400 CPUFREQ_RELATION_L);
401 } else {
402 int freq = powersave_bias_target(policy, freq_next,
403 CPUFREQ_RELATION_L);
404 __cpufreq_driver_target(policy, freq,
405 CPUFREQ_RELATION_L);
406 }
407 }
408 }
409
410 /* Sampling types */
411 enum {DBS_NORMAL_SAMPLE, DBS_SUB_SAMPLE};
412
413 static void do_dbs_timer(void *data)
414 {
415 unsigned int cpu = smp_processor_id();
416 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
417 /* We want all CPUs to do sampling nearly on same jiffy */
418 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
419 delay -= jiffies % delay;
420
421 if (!dbs_info->enable)
422 return;
423 /* Common NORMAL_SAMPLE setup */
424 INIT_WORK(&dbs_info->work, do_dbs_timer, (void *)DBS_NORMAL_SAMPLE);
425 if (!dbs_tuners_ins.powersave_bias ||
426 (unsigned long) data == DBS_NORMAL_SAMPLE) {
427 lock_cpu_hotplug();
428 dbs_check_cpu(dbs_info);
429 unlock_cpu_hotplug();
430 if (dbs_info->freq_lo) {
431 /* Setup timer for SUB_SAMPLE */
432 INIT_WORK(&dbs_info->work, do_dbs_timer,
433 (void *)DBS_SUB_SAMPLE);
434 delay = dbs_info->freq_hi_jiffies;
435 }
436 } else {
437 __cpufreq_driver_target(dbs_info->cur_policy,
438 dbs_info->freq_lo,
439 CPUFREQ_RELATION_H);
440 }
441 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
442 }
443
444 static inline void dbs_timer_init(unsigned int cpu)
445 {
446 struct cpu_dbs_info_s *dbs_info = &per_cpu(cpu_dbs_info, cpu);
447 /* We want all CPUs to do sampling nearly on same jiffy */
448 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
449 delay -= jiffies % delay;
450
451 ondemand_powersave_bias_init();
452 INIT_WORK(&dbs_info->work, do_dbs_timer, NULL);
453 queue_delayed_work_on(cpu, kondemand_wq, &dbs_info->work, delay);
454 }
455
456 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
457 {
458 dbs_info->enable = 0;
459 cancel_delayed_work(&dbs_info->work);
460 flush_workqueue(kondemand_wq);
461 }
462
463 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
464 unsigned int event)
465 {
466 unsigned int cpu = policy->cpu;
467 struct cpu_dbs_info_s *this_dbs_info;
468 unsigned int j;
469
470 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
471
472 switch (event) {
473 case CPUFREQ_GOV_START:
474 if ((!cpu_online(cpu)) || (!policy->cur))
475 return -EINVAL;
476
477 if (policy->cpuinfo.transition_latency >
478 (TRANSITION_LATENCY_LIMIT * 1000)) {
479 printk(KERN_WARNING "ondemand governor failed to load "
480 "due to too long transition latency\n");
481 return -EINVAL;
482 }
483 if (this_dbs_info->enable) /* Already enabled */
484 break;
485
486 mutex_lock(&dbs_mutex);
487 dbs_enable++;
488 if (dbs_enable == 1) {
489 kondemand_wq = create_workqueue("kondemand");
490 if (!kondemand_wq) {
491 printk(KERN_ERR "Creation of kondemand failed\n");
492 dbs_enable--;
493 mutex_unlock(&dbs_mutex);
494 return -ENOSPC;
495 }
496 }
497 for_each_cpu_mask(j, policy->cpus) {
498 struct cpu_dbs_info_s *j_dbs_info;
499 j_dbs_info = &per_cpu(cpu_dbs_info, j);
500 j_dbs_info->cur_policy = policy;
501
502 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j);
503 j_dbs_info->prev_cpu_wall = get_jiffies_64();
504 }
505 this_dbs_info->enable = 1;
506 sysfs_create_group(&policy->kobj, &dbs_attr_group);
507 /*
508 * Start the timerschedule work, when this governor
509 * is used for first time
510 */
511 if (dbs_enable == 1) {
512 unsigned int latency;
513 /* policy latency is in nS. Convert it to uS first */
514 latency = policy->cpuinfo.transition_latency / 1000;
515 if (latency == 0)
516 latency = 1;
517
518 def_sampling_rate = latency *
519 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
520
521 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
522 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
523
524 dbs_tuners_ins.sampling_rate = def_sampling_rate;
525 }
526 dbs_timer_init(policy->cpu);
527
528 mutex_unlock(&dbs_mutex);
529 break;
530
531 case CPUFREQ_GOV_STOP:
532 mutex_lock(&dbs_mutex);
533 dbs_timer_exit(this_dbs_info);
534 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
535 dbs_enable--;
536 if (dbs_enable == 0)
537 destroy_workqueue(kondemand_wq);
538
539 mutex_unlock(&dbs_mutex);
540
541 break;
542
543 case CPUFREQ_GOV_LIMITS:
544 mutex_lock(&dbs_mutex);
545 if (policy->max < this_dbs_info->cur_policy->cur)
546 __cpufreq_driver_target(this_dbs_info->cur_policy,
547 policy->max,
548 CPUFREQ_RELATION_H);
549 else if (policy->min > this_dbs_info->cur_policy->cur)
550 __cpufreq_driver_target(this_dbs_info->cur_policy,
551 policy->min,
552 CPUFREQ_RELATION_L);
553 mutex_unlock(&dbs_mutex);
554 break;
555 }
556 return 0;
557 }
558
559 static struct cpufreq_governor cpufreq_gov_dbs = {
560 .name = "ondemand",
561 .governor = cpufreq_governor_dbs,
562 .owner = THIS_MODULE,
563 };
564
565 static int __init cpufreq_gov_dbs_init(void)
566 {
567 return cpufreq_register_governor(&cpufreq_gov_dbs);
568 }
569
570 static void __exit cpufreq_gov_dbs_exit(void)
571 {
572 cpufreq_unregister_governor(&cpufreq_gov_dbs);
573 }
574
575
576 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
577 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
578 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
579 "Low Latency Frequency Transition capable processors");
580 MODULE_LICENSE("GPL");
581
582 module_init(cpufreq_gov_dbs_init);
583 module_exit(cpufreq_gov_dbs_exit);
This page took 0.041636 seconds and 6 git commands to generate.