Merge git://git.kernel.org/pub/scm/linux/kernel/git/sam/kbuild
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpu.h>
25 #include <linux/sched.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32
33 /*
34 * dbs is used in this file as a shortform for demandbased switching
35 * It helps to keep variable names smaller, simpler
36 */
37
38 #define DEF_FREQUENCY_UP_THRESHOLD (80)
39 #define MIN_FREQUENCY_UP_THRESHOLD (11)
40 #define MAX_FREQUENCY_UP_THRESHOLD (100)
41
42 /*
43 * The polling frequency of this governor depends on the capability of
44 * the processor. Default polling frequency is 1000 times the transition
45 * latency of the processor. The governor will work on any processor with
46 * transition latency <= 10mS, using appropriate sampling
47 * rate.
48 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
49 * this governor will not work.
50 * All times here are in uS.
51 */
52 static unsigned int def_sampling_rate;
53 #define MIN_SAMPLING_RATE_RATIO (2)
54 /* for correct statistics, we need at least 10 ticks between each measure */
55 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
56 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
59 #define DEF_SAMPLING_DOWN_FACTOR (1)
60 #define MAX_SAMPLING_DOWN_FACTOR (10)
61 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
62
63 static void do_dbs_timer(void *data);
64
65 struct cpu_dbs_info_s {
66 struct cpufreq_policy *cur_policy;
67 unsigned int prev_cpu_idle_up;
68 unsigned int prev_cpu_idle_down;
69 unsigned int enable;
70 };
71 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
72
73 static unsigned int dbs_enable; /* number of CPUs using this policy */
74
75 /*
76 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
77 * lock and dbs_mutex. cpu_hotplug lock should always be held before
78 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
79 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
80 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
81 * is recursive for the same process. -Venki
82 */
83 static DEFINE_MUTEX (dbs_mutex);
84 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
85
86 static struct workqueue_struct *dbs_workq;
87
88 struct dbs_tuners {
89 unsigned int sampling_rate;
90 unsigned int sampling_down_factor;
91 unsigned int up_threshold;
92 unsigned int ignore_nice;
93 };
94
95 static struct dbs_tuners dbs_tuners_ins = {
96 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
97 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
98 .ignore_nice = 0,
99 };
100
101 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
102 {
103 return kstat_cpu(cpu).cpustat.idle +
104 kstat_cpu(cpu).cpustat.iowait +
105 ( dbs_tuners_ins.ignore_nice ?
106 kstat_cpu(cpu).cpustat.nice :
107 0);
108 }
109
110 /************************** sysfs interface ************************/
111 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
112 {
113 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
114 }
115
116 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
117 {
118 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
119 }
120
121 #define define_one_ro(_name) \
122 static struct freq_attr _name = \
123 __ATTR(_name, 0444, show_##_name, NULL)
124
125 define_one_ro(sampling_rate_max);
126 define_one_ro(sampling_rate_min);
127
128 /* cpufreq_ondemand Governor Tunables */
129 #define show_one(file_name, object) \
130 static ssize_t show_##file_name \
131 (struct cpufreq_policy *unused, char *buf) \
132 { \
133 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
134 }
135 show_one(sampling_rate, sampling_rate);
136 show_one(sampling_down_factor, sampling_down_factor);
137 show_one(up_threshold, up_threshold);
138 show_one(ignore_nice_load, ignore_nice);
139
140 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
141 const char *buf, size_t count)
142 {
143 unsigned int input;
144 int ret;
145 ret = sscanf (buf, "%u", &input);
146 if (ret != 1 )
147 return -EINVAL;
148
149 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
150 return -EINVAL;
151
152 mutex_lock(&dbs_mutex);
153 dbs_tuners_ins.sampling_down_factor = input;
154 mutex_unlock(&dbs_mutex);
155
156 return count;
157 }
158
159 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
160 const char *buf, size_t count)
161 {
162 unsigned int input;
163 int ret;
164 ret = sscanf (buf, "%u", &input);
165
166 mutex_lock(&dbs_mutex);
167 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
168 mutex_unlock(&dbs_mutex);
169 return -EINVAL;
170 }
171
172 dbs_tuners_ins.sampling_rate = input;
173 mutex_unlock(&dbs_mutex);
174
175 return count;
176 }
177
178 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
179 const char *buf, size_t count)
180 {
181 unsigned int input;
182 int ret;
183 ret = sscanf (buf, "%u", &input);
184
185 mutex_lock(&dbs_mutex);
186 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
187 input < MIN_FREQUENCY_UP_THRESHOLD) {
188 mutex_unlock(&dbs_mutex);
189 return -EINVAL;
190 }
191
192 dbs_tuners_ins.up_threshold = input;
193 mutex_unlock(&dbs_mutex);
194
195 return count;
196 }
197
198 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
199 const char *buf, size_t count)
200 {
201 unsigned int input;
202 int ret;
203
204 unsigned int j;
205
206 ret = sscanf (buf, "%u", &input);
207 if ( ret != 1 )
208 return -EINVAL;
209
210 if ( input > 1 )
211 input = 1;
212
213 mutex_lock(&dbs_mutex);
214 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
215 mutex_unlock(&dbs_mutex);
216 return count;
217 }
218 dbs_tuners_ins.ignore_nice = input;
219
220 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
221 for_each_online_cpu(j) {
222 struct cpu_dbs_info_s *j_dbs_info;
223 j_dbs_info = &per_cpu(cpu_dbs_info, j);
224 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
225 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
226 }
227 mutex_unlock(&dbs_mutex);
228
229 return count;
230 }
231
232 #define define_one_rw(_name) \
233 static struct freq_attr _name = \
234 __ATTR(_name, 0644, show_##_name, store_##_name)
235
236 define_one_rw(sampling_rate);
237 define_one_rw(sampling_down_factor);
238 define_one_rw(up_threshold);
239 define_one_rw(ignore_nice_load);
240
241 static struct attribute * dbs_attributes[] = {
242 &sampling_rate_max.attr,
243 &sampling_rate_min.attr,
244 &sampling_rate.attr,
245 &sampling_down_factor.attr,
246 &up_threshold.attr,
247 &ignore_nice_load.attr,
248 NULL
249 };
250
251 static struct attribute_group dbs_attr_group = {
252 .attrs = dbs_attributes,
253 .name = "ondemand",
254 };
255
256 /************************** sysfs end ************************/
257
258 static void dbs_check_cpu(int cpu)
259 {
260 unsigned int idle_ticks, up_idle_ticks, total_ticks;
261 unsigned int freq_next;
262 unsigned int freq_down_sampling_rate;
263 static int down_skip[NR_CPUS];
264 struct cpu_dbs_info_s *this_dbs_info;
265
266 struct cpufreq_policy *policy;
267 unsigned int j;
268
269 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
270 if (!this_dbs_info->enable)
271 return;
272
273 policy = this_dbs_info->cur_policy;
274 /*
275 * Every sampling_rate, we check, if current idle time is less
276 * than 20% (default), then we try to increase frequency
277 * Every sampling_rate*sampling_down_factor, we look for a the lowest
278 * frequency which can sustain the load while keeping idle time over
279 * 30%. If such a frequency exist, we try to decrease to this frequency.
280 *
281 * Any frequency increase takes it to the maximum frequency.
282 * Frequency reduction happens at minimum steps of
283 * 5% (default) of current frequency
284 */
285
286 /* Check for frequency increase */
287 idle_ticks = UINT_MAX;
288 for_each_cpu_mask(j, policy->cpus) {
289 unsigned int tmp_idle_ticks, total_idle_ticks;
290 struct cpu_dbs_info_s *j_dbs_info;
291
292 j_dbs_info = &per_cpu(cpu_dbs_info, j);
293 total_idle_ticks = get_cpu_idle_time(j);
294 tmp_idle_ticks = total_idle_ticks -
295 j_dbs_info->prev_cpu_idle_up;
296 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
297
298 if (tmp_idle_ticks < idle_ticks)
299 idle_ticks = tmp_idle_ticks;
300 }
301
302 /* Scale idle ticks by 100 and compare with up and down ticks */
303 idle_ticks *= 100;
304 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
305 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
306
307 if (idle_ticks < up_idle_ticks) {
308 down_skip[cpu] = 0;
309 for_each_cpu_mask(j, policy->cpus) {
310 struct cpu_dbs_info_s *j_dbs_info;
311
312 j_dbs_info = &per_cpu(cpu_dbs_info, j);
313 j_dbs_info->prev_cpu_idle_down =
314 j_dbs_info->prev_cpu_idle_up;
315 }
316 /* if we are already at full speed then break out early */
317 if (policy->cur == policy->max)
318 return;
319
320 __cpufreq_driver_target(policy, policy->max,
321 CPUFREQ_RELATION_H);
322 return;
323 }
324
325 /* Check for frequency decrease */
326 down_skip[cpu]++;
327 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
328 return;
329
330 idle_ticks = UINT_MAX;
331 for_each_cpu_mask(j, policy->cpus) {
332 unsigned int tmp_idle_ticks, total_idle_ticks;
333 struct cpu_dbs_info_s *j_dbs_info;
334
335 j_dbs_info = &per_cpu(cpu_dbs_info, j);
336 /* Check for frequency decrease */
337 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
338 tmp_idle_ticks = total_idle_ticks -
339 j_dbs_info->prev_cpu_idle_down;
340 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
341
342 if (tmp_idle_ticks < idle_ticks)
343 idle_ticks = tmp_idle_ticks;
344 }
345
346 down_skip[cpu] = 0;
347 /* if we cannot reduce the frequency anymore, break out early */
348 if (policy->cur == policy->min)
349 return;
350
351 /* Compute how many ticks there are between two measurements */
352 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
353 dbs_tuners_ins.sampling_down_factor;
354 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
355
356 /*
357 * The optimal frequency is the frequency that is the lowest that
358 * can support the current CPU usage without triggering the up
359 * policy. To be safe, we focus 10 points under the threshold.
360 */
361 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
362 freq_next = (freq_next * policy->cur) /
363 (dbs_tuners_ins.up_threshold - 10);
364
365 if (freq_next < policy->min)
366 freq_next = policy->min;
367
368 if (freq_next <= ((policy->cur * 95) / 100))
369 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
370 }
371
372 static void do_dbs_timer(void *data)
373 {
374 int i;
375 lock_cpu_hotplug();
376 mutex_lock(&dbs_mutex);
377 for_each_online_cpu(i)
378 dbs_check_cpu(i);
379 queue_delayed_work(dbs_workq, &dbs_work,
380 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
381 mutex_unlock(&dbs_mutex);
382 unlock_cpu_hotplug();
383 }
384
385 static inline void dbs_timer_init(void)
386 {
387 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
388 if (!dbs_workq)
389 dbs_workq = create_singlethread_workqueue("ondemand");
390 if (!dbs_workq) {
391 printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n");
392 return;
393 }
394 queue_delayed_work(dbs_workq, &dbs_work,
395 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
396 return;
397 }
398
399 static inline void dbs_timer_exit(void)
400 {
401 if (dbs_workq)
402 cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work);
403 }
404
405 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
406 unsigned int event)
407 {
408 unsigned int cpu = policy->cpu;
409 struct cpu_dbs_info_s *this_dbs_info;
410 unsigned int j;
411
412 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
413
414 switch (event) {
415 case CPUFREQ_GOV_START:
416 if ((!cpu_online(cpu)) ||
417 (!policy->cur))
418 return -EINVAL;
419
420 if (policy->cpuinfo.transition_latency >
421 (TRANSITION_LATENCY_LIMIT * 1000)) {
422 printk(KERN_WARNING "ondemand governor failed to load "
423 "due to too long transition latency\n");
424 return -EINVAL;
425 }
426 if (this_dbs_info->enable) /* Already enabled */
427 break;
428
429 mutex_lock(&dbs_mutex);
430 for_each_cpu_mask(j, policy->cpus) {
431 struct cpu_dbs_info_s *j_dbs_info;
432 j_dbs_info = &per_cpu(cpu_dbs_info, j);
433 j_dbs_info->cur_policy = policy;
434
435 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
436 j_dbs_info->prev_cpu_idle_down
437 = j_dbs_info->prev_cpu_idle_up;
438 }
439 this_dbs_info->enable = 1;
440 sysfs_create_group(&policy->kobj, &dbs_attr_group);
441 dbs_enable++;
442 /*
443 * Start the timerschedule work, when this governor
444 * is used for first time
445 */
446 if (dbs_enable == 1) {
447 unsigned int latency;
448 /* policy latency is in nS. Convert it to uS first */
449 latency = policy->cpuinfo.transition_latency / 1000;
450 if (latency == 0)
451 latency = 1;
452
453 def_sampling_rate = latency *
454 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
455
456 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
457 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
458
459 dbs_tuners_ins.sampling_rate = def_sampling_rate;
460 dbs_timer_init();
461 }
462
463 mutex_unlock(&dbs_mutex);
464 break;
465
466 case CPUFREQ_GOV_STOP:
467 mutex_lock(&dbs_mutex);
468 this_dbs_info->enable = 0;
469 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
470 dbs_enable--;
471 /*
472 * Stop the timerschedule work, when this governor
473 * is used for first time
474 */
475 if (dbs_enable == 0)
476 dbs_timer_exit();
477
478 mutex_unlock(&dbs_mutex);
479
480 break;
481
482 case CPUFREQ_GOV_LIMITS:
483 lock_cpu_hotplug();
484 mutex_lock(&dbs_mutex);
485 if (policy->max < this_dbs_info->cur_policy->cur)
486 __cpufreq_driver_target(
487 this_dbs_info->cur_policy,
488 policy->max, CPUFREQ_RELATION_H);
489 else if (policy->min > this_dbs_info->cur_policy->cur)
490 __cpufreq_driver_target(
491 this_dbs_info->cur_policy,
492 policy->min, CPUFREQ_RELATION_L);
493 mutex_unlock(&dbs_mutex);
494 unlock_cpu_hotplug();
495 break;
496 }
497 return 0;
498 }
499
500 static struct cpufreq_governor cpufreq_gov_dbs = {
501 .name = "ondemand",
502 .governor = cpufreq_governor_dbs,
503 .owner = THIS_MODULE,
504 };
505
506 static int __init cpufreq_gov_dbs_init(void)
507 {
508 return cpufreq_register_governor(&cpufreq_gov_dbs);
509 }
510
511 static void __exit cpufreq_gov_dbs_exit(void)
512 {
513 /* Make sure that the scheduled work is indeed not running.
514 Assumes the timer has been cancelled first. */
515 if (dbs_workq) {
516 flush_workqueue(dbs_workq);
517 destroy_workqueue(dbs_workq);
518 }
519
520 cpufreq_unregister_governor(&cpufreq_gov_dbs);
521 }
522
523
524 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
525 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
526 "Low Latency Frequency Transition capable processors");
527 MODULE_LICENSE ("GPL");
528
529 module_init(cpufreq_gov_dbs_init);
530 module_exit(cpufreq_gov_dbs_exit);
This page took 0.04127 seconds and 6 git commands to generate.