Merge back earlier cpufreq material for v4.8.
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19
20 #include "cpufreq_ondemand.h"
21
22 /* On-demand governor macros */
23 #define DEF_FREQUENCY_UP_THRESHOLD (80)
24 #define DEF_SAMPLING_DOWN_FACTOR (1)
25 #define MAX_SAMPLING_DOWN_FACTOR (100000)
26 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
27 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 static struct od_ops od_ops;
32
33 static unsigned int default_powersave_bias;
34
35 /*
36 * Not all CPUs want IO time to be accounted as busy; this depends on how
37 * efficient idling at a higher frequency/voltage is.
38 * Pavel Machek says this is not so for various generations of AMD and old
39 * Intel systems.
40 * Mike Chan (android.com) claims this is also not true for ARM.
41 * Because of this, whitelist specific known (series) of CPUs by default, and
42 * leave all others up to the user.
43 */
44 static int should_io_be_busy(void)
45 {
46 #if defined(CONFIG_X86)
47 /*
48 * For Intel, Core 2 (model 15) and later have an efficient idle.
49 */
50 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
51 boot_cpu_data.x86 == 6 &&
52 boot_cpu_data.x86_model >= 15)
53 return 1;
54 #endif
55 return 0;
56 }
57
58 /*
59 * Find right freq to be set now with powersave_bias on.
60 * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
61 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
62 */
63 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
64 unsigned int freq_next, unsigned int relation)
65 {
66 unsigned int freq_req, freq_reduc, freq_avg;
67 unsigned int freq_hi, freq_lo;
68 unsigned int index;
69 unsigned int delay_hi_us;
70 struct policy_dbs_info *policy_dbs = policy->governor_data;
71 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
72 struct dbs_data *dbs_data = policy_dbs->dbs_data;
73 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
74 struct cpufreq_frequency_table *freq_table = policy->freq_table;
75
76 if (!freq_table) {
77 dbs_info->freq_lo = 0;
78 dbs_info->freq_lo_delay_us = 0;
79 return freq_next;
80 }
81
82 index = cpufreq_frequency_table_target(policy, freq_next, relation);
83 freq_req = freq_table[index].frequency;
84 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
85 freq_avg = freq_req - freq_reduc;
86
87 /* Find freq bounds for freq_avg in freq_table */
88 index = cpufreq_frequency_table_target(policy, freq_avg,
89 CPUFREQ_RELATION_H);
90 freq_lo = freq_table[index].frequency;
91 index = cpufreq_frequency_table_target(policy, freq_avg,
92 CPUFREQ_RELATION_L);
93 freq_hi = freq_table[index].frequency;
94
95 /* Find out how long we have to be in hi and lo freqs */
96 if (freq_hi == freq_lo) {
97 dbs_info->freq_lo = 0;
98 dbs_info->freq_lo_delay_us = 0;
99 return freq_lo;
100 }
101 delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
102 delay_hi_us += (freq_hi - freq_lo) / 2;
103 delay_hi_us /= freq_hi - freq_lo;
104 dbs_info->freq_hi_delay_us = delay_hi_us;
105 dbs_info->freq_lo = freq_lo;
106 dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
107 return freq_hi;
108 }
109
110 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
111 {
112 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
113
114 dbs_info->freq_lo = 0;
115 }
116
117 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
118 {
119 struct policy_dbs_info *policy_dbs = policy->governor_data;
120 struct dbs_data *dbs_data = policy_dbs->dbs_data;
121 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
122
123 if (od_tuners->powersave_bias)
124 freq = od_ops.powersave_bias_target(policy, freq,
125 CPUFREQ_RELATION_H);
126 else if (policy->cur == policy->max)
127 return;
128
129 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
130 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
131 }
132
133 /*
134 * Every sampling_rate, we check, if current idle time is less than 20%
135 * (default), then we try to increase frequency. Else, we adjust the frequency
136 * proportional to load.
137 */
138 static void od_update(struct cpufreq_policy *policy)
139 {
140 struct policy_dbs_info *policy_dbs = policy->governor_data;
141 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
142 struct dbs_data *dbs_data = policy_dbs->dbs_data;
143 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
144 unsigned int load = dbs_update(policy);
145
146 dbs_info->freq_lo = 0;
147
148 /* Check for frequency increase */
149 if (load > dbs_data->up_threshold) {
150 /* If switching to max speed, apply sampling_down_factor */
151 if (policy->cur < policy->max)
152 policy_dbs->rate_mult = dbs_data->sampling_down_factor;
153 dbs_freq_increase(policy, policy->max);
154 } else {
155 /* Calculate the next frequency proportional to load */
156 unsigned int freq_next, min_f, max_f;
157
158 min_f = policy->cpuinfo.min_freq;
159 max_f = policy->cpuinfo.max_freq;
160 freq_next = min_f + load * (max_f - min_f) / 100;
161
162 /* No longer fully busy, reset rate_mult */
163 policy_dbs->rate_mult = 1;
164
165 if (od_tuners->powersave_bias)
166 freq_next = od_ops.powersave_bias_target(policy,
167 freq_next,
168 CPUFREQ_RELATION_L);
169
170 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
171 }
172 }
173
174 static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
175 {
176 struct policy_dbs_info *policy_dbs = policy->governor_data;
177 struct dbs_data *dbs_data = policy_dbs->dbs_data;
178 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
179 int sample_type = dbs_info->sample_type;
180
181 /* Common NORMAL_SAMPLE setup */
182 dbs_info->sample_type = OD_NORMAL_SAMPLE;
183 /*
184 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
185 * it then.
186 */
187 if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
188 __cpufreq_driver_target(policy, dbs_info->freq_lo,
189 CPUFREQ_RELATION_H);
190 return dbs_info->freq_lo_delay_us;
191 }
192
193 od_update(policy);
194
195 if (dbs_info->freq_lo) {
196 /* Setup timer for SUB_SAMPLE */
197 dbs_info->sample_type = OD_SUB_SAMPLE;
198 return dbs_info->freq_hi_delay_us;
199 }
200
201 return dbs_data->sampling_rate * policy_dbs->rate_mult;
202 }
203
204 /************************** sysfs interface ************************/
205 static struct dbs_governor od_dbs_gov;
206
207 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
208 size_t count)
209 {
210 struct dbs_data *dbs_data = to_dbs_data(attr_set);
211 unsigned int input;
212 int ret;
213
214 ret = sscanf(buf, "%u", &input);
215 if (ret != 1)
216 return -EINVAL;
217 dbs_data->io_is_busy = !!input;
218
219 /* we need to re-evaluate prev_cpu_idle */
220 gov_update_cpu_data(dbs_data);
221
222 return count;
223 }
224
225 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
226 const char *buf, size_t count)
227 {
228 struct dbs_data *dbs_data = to_dbs_data(attr_set);
229 unsigned int input;
230 int ret;
231 ret = sscanf(buf, "%u", &input);
232
233 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
234 input < MIN_FREQUENCY_UP_THRESHOLD) {
235 return -EINVAL;
236 }
237
238 dbs_data->up_threshold = input;
239 return count;
240 }
241
242 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
243 const char *buf, size_t count)
244 {
245 struct dbs_data *dbs_data = to_dbs_data(attr_set);
246 struct policy_dbs_info *policy_dbs;
247 unsigned int input;
248 int ret;
249 ret = sscanf(buf, "%u", &input);
250
251 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
252 return -EINVAL;
253
254 dbs_data->sampling_down_factor = input;
255
256 /* Reset down sampling multiplier in case it was active */
257 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
258 /*
259 * Doing this without locking might lead to using different
260 * rate_mult values in od_update() and od_dbs_timer().
261 */
262 mutex_lock(&policy_dbs->timer_mutex);
263 policy_dbs->rate_mult = 1;
264 mutex_unlock(&policy_dbs->timer_mutex);
265 }
266
267 return count;
268 }
269
270 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
271 const char *buf, size_t count)
272 {
273 struct dbs_data *dbs_data = to_dbs_data(attr_set);
274 unsigned int input;
275 int ret;
276
277 ret = sscanf(buf, "%u", &input);
278 if (ret != 1)
279 return -EINVAL;
280
281 if (input > 1)
282 input = 1;
283
284 if (input == dbs_data->ignore_nice_load) { /* nothing to do */
285 return count;
286 }
287 dbs_data->ignore_nice_load = input;
288
289 /* we need to re-evaluate prev_cpu_idle */
290 gov_update_cpu_data(dbs_data);
291
292 return count;
293 }
294
295 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
296 const char *buf, size_t count)
297 {
298 struct dbs_data *dbs_data = to_dbs_data(attr_set);
299 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
300 struct policy_dbs_info *policy_dbs;
301 unsigned int input;
302 int ret;
303 ret = sscanf(buf, "%u", &input);
304
305 if (ret != 1)
306 return -EINVAL;
307
308 if (input > 1000)
309 input = 1000;
310
311 od_tuners->powersave_bias = input;
312
313 list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
314 ondemand_powersave_bias_init(policy_dbs->policy);
315
316 return count;
317 }
318
319 gov_show_one_common(sampling_rate);
320 gov_show_one_common(up_threshold);
321 gov_show_one_common(sampling_down_factor);
322 gov_show_one_common(ignore_nice_load);
323 gov_show_one_common(min_sampling_rate);
324 gov_show_one_common(io_is_busy);
325 gov_show_one(od, powersave_bias);
326
327 gov_attr_rw(sampling_rate);
328 gov_attr_rw(io_is_busy);
329 gov_attr_rw(up_threshold);
330 gov_attr_rw(sampling_down_factor);
331 gov_attr_rw(ignore_nice_load);
332 gov_attr_rw(powersave_bias);
333 gov_attr_ro(min_sampling_rate);
334
335 static struct attribute *od_attributes[] = {
336 &min_sampling_rate.attr,
337 &sampling_rate.attr,
338 &up_threshold.attr,
339 &sampling_down_factor.attr,
340 &ignore_nice_load.attr,
341 &powersave_bias.attr,
342 &io_is_busy.attr,
343 NULL
344 };
345
346 /************************** sysfs end ************************/
347
348 static struct policy_dbs_info *od_alloc(void)
349 {
350 struct od_policy_dbs_info *dbs_info;
351
352 dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
353 return dbs_info ? &dbs_info->policy_dbs : NULL;
354 }
355
356 static void od_free(struct policy_dbs_info *policy_dbs)
357 {
358 kfree(to_dbs_info(policy_dbs));
359 }
360
361 static int od_init(struct dbs_data *dbs_data)
362 {
363 struct od_dbs_tuners *tuners;
364 u64 idle_time;
365 int cpu;
366
367 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
368 if (!tuners)
369 return -ENOMEM;
370
371 cpu = get_cpu();
372 idle_time = get_cpu_idle_time_us(cpu, NULL);
373 put_cpu();
374 if (idle_time != -1ULL) {
375 /* Idle micro accounting is supported. Use finer thresholds */
376 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
377 /*
378 * In nohz/micro accounting case we set the minimum frequency
379 * not depending on HZ, but fixed (very low). The deferred
380 * timer might skip some samples if idle/sleeping as needed.
381 */
382 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
383 } else {
384 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
385
386 /* For correct statistics, we need 10 ticks for each measure */
387 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
388 jiffies_to_usecs(10);
389 }
390
391 dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
392 dbs_data->ignore_nice_load = 0;
393 tuners->powersave_bias = default_powersave_bias;
394 dbs_data->io_is_busy = should_io_be_busy();
395
396 dbs_data->tuners = tuners;
397 return 0;
398 }
399
400 static void od_exit(struct dbs_data *dbs_data)
401 {
402 kfree(dbs_data->tuners);
403 }
404
405 static void od_start(struct cpufreq_policy *policy)
406 {
407 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
408
409 dbs_info->sample_type = OD_NORMAL_SAMPLE;
410 ondemand_powersave_bias_init(policy);
411 }
412
413 static struct od_ops od_ops = {
414 .powersave_bias_target = generic_powersave_bias_target,
415 };
416
417 static struct dbs_governor od_dbs_gov = {
418 .gov = CPUFREQ_DBS_GOVERNOR_INITIALIZER("ondemand"),
419 .kobj_type = { .default_attrs = od_attributes },
420 .gov_dbs_timer = od_dbs_timer,
421 .alloc = od_alloc,
422 .free = od_free,
423 .init = od_init,
424 .exit = od_exit,
425 .start = od_start,
426 };
427
428 #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov)
429
430 static void od_set_powersave_bias(unsigned int powersave_bias)
431 {
432 unsigned int cpu;
433 cpumask_t done;
434
435 default_powersave_bias = powersave_bias;
436 cpumask_clear(&done);
437
438 get_online_cpus();
439 for_each_online_cpu(cpu) {
440 struct cpufreq_policy *policy;
441 struct policy_dbs_info *policy_dbs;
442 struct dbs_data *dbs_data;
443 struct od_dbs_tuners *od_tuners;
444
445 if (cpumask_test_cpu(cpu, &done))
446 continue;
447
448 policy = cpufreq_cpu_get_raw(cpu);
449 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
450 continue;
451
452 policy_dbs = policy->governor_data;
453 if (!policy_dbs)
454 continue;
455
456 cpumask_or(&done, &done, policy->cpus);
457
458 dbs_data = policy_dbs->dbs_data;
459 od_tuners = dbs_data->tuners;
460 od_tuners->powersave_bias = default_powersave_bias;
461 }
462 put_online_cpus();
463 }
464
465 void od_register_powersave_bias_handler(unsigned int (*f)
466 (struct cpufreq_policy *, unsigned int, unsigned int),
467 unsigned int powersave_bias)
468 {
469 od_ops.powersave_bias_target = f;
470 od_set_powersave_bias(powersave_bias);
471 }
472 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
473
474 void od_unregister_powersave_bias_handler(void)
475 {
476 od_ops.powersave_bias_target = generic_powersave_bias_target;
477 od_set_powersave_bias(0);
478 }
479 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
480
481 static int __init cpufreq_gov_dbs_init(void)
482 {
483 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
484 }
485
486 static void __exit cpufreq_gov_dbs_exit(void)
487 {
488 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
489 }
490
491 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
492 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
493 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
494 "Low Latency Frequency Transition capable processors");
495 MODULE_LICENSE("GPL");
496
497 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
498 struct cpufreq_governor *cpufreq_default_governor(void)
499 {
500 return CPU_FREQ_GOV_ONDEMAND;
501 }
502
503 fs_initcall(cpufreq_gov_dbs_init);
504 #else
505 module_init(cpufreq_gov_dbs_init);
506 #endif
507 module_exit(cpufreq_gov_dbs_exit);
This page took 0.052079 seconds and 6 git commands to generate.