Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-arm
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/smp.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ctype.h>
19 #include <linux/cpufreq.h>
20 #include <linux/sysctl.h>
21 #include <linux/types.h>
22 #include <linux/fs.h>
23 #include <linux/sysfs.h>
24 #include <linux/sched.h>
25 #include <linux/kmod.h>
26 #include <linux/workqueue.h>
27 #include <linux/jiffies.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/percpu.h>
30 #include <linux/mutex.h>
31
32 /*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define MIN_FREQUENCY_UP_THRESHOLD (11)
39 #define MAX_FREQUENCY_UP_THRESHOLD (100)
40
41 /*
42 * The polling frequency of this governor depends on the capability of
43 * the processor. Default polling frequency is 1000 times the transition
44 * latency of the processor. The governor will work on any processor with
45 * transition latency <= 10mS, using appropriate sampling
46 * rate.
47 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
48 * this governor will not work.
49 * All times here are in uS.
50 */
51 static unsigned int def_sampling_rate;
52 #define MIN_SAMPLING_RATE_RATIO (2)
53 /* for correct statistics, we need at least 10 ticks between each measure */
54 #define MIN_STAT_SAMPLING_RATE (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
56 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
57 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
58 #define DEF_SAMPLING_DOWN_FACTOR (1)
59 #define MAX_SAMPLING_DOWN_FACTOR (10)
60 #define TRANSITION_LATENCY_LIMIT (10 * 1000)
61
62 static void do_dbs_timer(void *data);
63
64 struct cpu_dbs_info_s {
65 struct cpufreq_policy *cur_policy;
66 unsigned int prev_cpu_idle_up;
67 unsigned int prev_cpu_idle_down;
68 unsigned int enable;
69 };
70 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
71
72 static unsigned int dbs_enable; /* number of CPUs using this policy */
73
74 /*
75 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
76 * lock and dbs_mutex. cpu_hotplug lock should always be held before
77 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
78 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
79 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
80 * is recursive for the same process. -Venki
81 */
82 static DEFINE_MUTEX (dbs_mutex);
83 static DECLARE_WORK (dbs_work, do_dbs_timer, NULL);
84
85 static struct workqueue_struct *dbs_workq;
86
87 struct dbs_tuners {
88 unsigned int sampling_rate;
89 unsigned int sampling_down_factor;
90 unsigned int up_threshold;
91 unsigned int ignore_nice;
92 };
93
94 static struct dbs_tuners dbs_tuners_ins = {
95 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
96 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
97 .ignore_nice = 0,
98 };
99
100 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
101 {
102 return kstat_cpu(cpu).cpustat.idle +
103 kstat_cpu(cpu).cpustat.iowait +
104 ( dbs_tuners_ins.ignore_nice ?
105 kstat_cpu(cpu).cpustat.nice :
106 0);
107 }
108
109 /************************** sysfs interface ************************/
110 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
111 {
112 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
113 }
114
115 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
116 {
117 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
118 }
119
120 #define define_one_ro(_name) \
121 static struct freq_attr _name = \
122 __ATTR(_name, 0444, show_##_name, NULL)
123
124 define_one_ro(sampling_rate_max);
125 define_one_ro(sampling_rate_min);
126
127 /* cpufreq_ondemand Governor Tunables */
128 #define show_one(file_name, object) \
129 static ssize_t show_##file_name \
130 (struct cpufreq_policy *unused, char *buf) \
131 { \
132 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
133 }
134 show_one(sampling_rate, sampling_rate);
135 show_one(sampling_down_factor, sampling_down_factor);
136 show_one(up_threshold, up_threshold);
137 show_one(ignore_nice_load, ignore_nice);
138
139 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
140 const char *buf, size_t count)
141 {
142 unsigned int input;
143 int ret;
144 ret = sscanf (buf, "%u", &input);
145 if (ret != 1 )
146 return -EINVAL;
147
148 if (input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
149 return -EINVAL;
150
151 mutex_lock(&dbs_mutex);
152 dbs_tuners_ins.sampling_down_factor = input;
153 mutex_unlock(&dbs_mutex);
154
155 return count;
156 }
157
158 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
159 const char *buf, size_t count)
160 {
161 unsigned int input;
162 int ret;
163 ret = sscanf (buf, "%u", &input);
164
165 mutex_lock(&dbs_mutex);
166 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
167 mutex_unlock(&dbs_mutex);
168 return -EINVAL;
169 }
170
171 dbs_tuners_ins.sampling_rate = input;
172 mutex_unlock(&dbs_mutex);
173
174 return count;
175 }
176
177 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
178 const char *buf, size_t count)
179 {
180 unsigned int input;
181 int ret;
182 ret = sscanf (buf, "%u", &input);
183
184 mutex_lock(&dbs_mutex);
185 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
186 input < MIN_FREQUENCY_UP_THRESHOLD) {
187 mutex_unlock(&dbs_mutex);
188 return -EINVAL;
189 }
190
191 dbs_tuners_ins.up_threshold = input;
192 mutex_unlock(&dbs_mutex);
193
194 return count;
195 }
196
197 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
198 const char *buf, size_t count)
199 {
200 unsigned int input;
201 int ret;
202
203 unsigned int j;
204
205 ret = sscanf (buf, "%u", &input);
206 if ( ret != 1 )
207 return -EINVAL;
208
209 if ( input > 1 )
210 input = 1;
211
212 mutex_lock(&dbs_mutex);
213 if ( input == dbs_tuners_ins.ignore_nice ) { /* nothing to do */
214 mutex_unlock(&dbs_mutex);
215 return count;
216 }
217 dbs_tuners_ins.ignore_nice = input;
218
219 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
220 for_each_online_cpu(j) {
221 struct cpu_dbs_info_s *j_dbs_info;
222 j_dbs_info = &per_cpu(cpu_dbs_info, j);
223 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
224 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
225 }
226 mutex_unlock(&dbs_mutex);
227
228 return count;
229 }
230
231 #define define_one_rw(_name) \
232 static struct freq_attr _name = \
233 __ATTR(_name, 0644, show_##_name, store_##_name)
234
235 define_one_rw(sampling_rate);
236 define_one_rw(sampling_down_factor);
237 define_one_rw(up_threshold);
238 define_one_rw(ignore_nice_load);
239
240 static struct attribute * dbs_attributes[] = {
241 &sampling_rate_max.attr,
242 &sampling_rate_min.attr,
243 &sampling_rate.attr,
244 &sampling_down_factor.attr,
245 &up_threshold.attr,
246 &ignore_nice_load.attr,
247 NULL
248 };
249
250 static struct attribute_group dbs_attr_group = {
251 .attrs = dbs_attributes,
252 .name = "ondemand",
253 };
254
255 /************************** sysfs end ************************/
256
257 static void dbs_check_cpu(int cpu)
258 {
259 unsigned int idle_ticks, up_idle_ticks, total_ticks;
260 unsigned int freq_next;
261 unsigned int freq_down_sampling_rate;
262 static int down_skip[NR_CPUS];
263 struct cpu_dbs_info_s *this_dbs_info;
264
265 struct cpufreq_policy *policy;
266 unsigned int j;
267
268 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
269 if (!this_dbs_info->enable)
270 return;
271
272 policy = this_dbs_info->cur_policy;
273 /*
274 * Every sampling_rate, we check, if current idle time is less
275 * than 20% (default), then we try to increase frequency
276 * Every sampling_rate*sampling_down_factor, we look for a the lowest
277 * frequency which can sustain the load while keeping idle time over
278 * 30%. If such a frequency exist, we try to decrease to this frequency.
279 *
280 * Any frequency increase takes it to the maximum frequency.
281 * Frequency reduction happens at minimum steps of
282 * 5% (default) of current frequency
283 */
284
285 /* Check for frequency increase */
286 idle_ticks = UINT_MAX;
287 for_each_cpu_mask(j, policy->cpus) {
288 unsigned int tmp_idle_ticks, total_idle_ticks;
289 struct cpu_dbs_info_s *j_dbs_info;
290
291 j_dbs_info = &per_cpu(cpu_dbs_info, j);
292 total_idle_ticks = get_cpu_idle_time(j);
293 tmp_idle_ticks = total_idle_ticks -
294 j_dbs_info->prev_cpu_idle_up;
295 j_dbs_info->prev_cpu_idle_up = total_idle_ticks;
296
297 if (tmp_idle_ticks < idle_ticks)
298 idle_ticks = tmp_idle_ticks;
299 }
300
301 /* Scale idle ticks by 100 and compare with up and down ticks */
302 idle_ticks *= 100;
303 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
304 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
305
306 if (idle_ticks < up_idle_ticks) {
307 down_skip[cpu] = 0;
308 for_each_cpu_mask(j, policy->cpus) {
309 struct cpu_dbs_info_s *j_dbs_info;
310
311 j_dbs_info = &per_cpu(cpu_dbs_info, j);
312 j_dbs_info->prev_cpu_idle_down =
313 j_dbs_info->prev_cpu_idle_up;
314 }
315 /* if we are already at full speed then break out early */
316 if (policy->cur == policy->max)
317 return;
318
319 __cpufreq_driver_target(policy, policy->max,
320 CPUFREQ_RELATION_H);
321 return;
322 }
323
324 /* Check for frequency decrease */
325 down_skip[cpu]++;
326 if (down_skip[cpu] < dbs_tuners_ins.sampling_down_factor)
327 return;
328
329 idle_ticks = UINT_MAX;
330 for_each_cpu_mask(j, policy->cpus) {
331 unsigned int tmp_idle_ticks, total_idle_ticks;
332 struct cpu_dbs_info_s *j_dbs_info;
333
334 j_dbs_info = &per_cpu(cpu_dbs_info, j);
335 /* Check for frequency decrease */
336 total_idle_ticks = j_dbs_info->prev_cpu_idle_up;
337 tmp_idle_ticks = total_idle_ticks -
338 j_dbs_info->prev_cpu_idle_down;
339 j_dbs_info->prev_cpu_idle_down = total_idle_ticks;
340
341 if (tmp_idle_ticks < idle_ticks)
342 idle_ticks = tmp_idle_ticks;
343 }
344
345 down_skip[cpu] = 0;
346 /* if we cannot reduce the frequency anymore, break out early */
347 if (policy->cur == policy->min)
348 return;
349
350 /* Compute how many ticks there are between two measurements */
351 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
352 dbs_tuners_ins.sampling_down_factor;
353 total_ticks = usecs_to_jiffies(freq_down_sampling_rate);
354
355 /*
356 * The optimal frequency is the frequency that is the lowest that
357 * can support the current CPU usage without triggering the up
358 * policy. To be safe, we focus 10 points under the threshold.
359 */
360 freq_next = ((total_ticks - idle_ticks) * 100) / total_ticks;
361 freq_next = (freq_next * policy->cur) /
362 (dbs_tuners_ins.up_threshold - 10);
363
364 if (freq_next < policy->min)
365 freq_next = policy->min;
366
367 if (freq_next <= ((policy->cur * 95) / 100))
368 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
369 }
370
371 static void do_dbs_timer(void *data)
372 {
373 int i;
374 lock_cpu_hotplug();
375 mutex_lock(&dbs_mutex);
376 for_each_online_cpu(i)
377 dbs_check_cpu(i);
378 queue_delayed_work(dbs_workq, &dbs_work,
379 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
380 mutex_unlock(&dbs_mutex);
381 unlock_cpu_hotplug();
382 }
383
384 static inline void dbs_timer_init(void)
385 {
386 INIT_WORK(&dbs_work, do_dbs_timer, NULL);
387 if (!dbs_workq)
388 dbs_workq = create_singlethread_workqueue("ondemand");
389 if (!dbs_workq) {
390 printk(KERN_ERR "ondemand: Cannot initialize kernel thread\n");
391 return;
392 }
393 queue_delayed_work(dbs_workq, &dbs_work,
394 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
395 return;
396 }
397
398 static inline void dbs_timer_exit(void)
399 {
400 if (dbs_workq)
401 cancel_rearming_delayed_workqueue(dbs_workq, &dbs_work);
402 }
403
404 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
405 unsigned int event)
406 {
407 unsigned int cpu = policy->cpu;
408 struct cpu_dbs_info_s *this_dbs_info;
409 unsigned int j;
410
411 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
412
413 switch (event) {
414 case CPUFREQ_GOV_START:
415 if ((!cpu_online(cpu)) ||
416 (!policy->cur))
417 return -EINVAL;
418
419 if (policy->cpuinfo.transition_latency >
420 (TRANSITION_LATENCY_LIMIT * 1000)) {
421 printk(KERN_WARNING "ondemand governor failed to load "
422 "due to too long transition latency\n");
423 return -EINVAL;
424 }
425 if (this_dbs_info->enable) /* Already enabled */
426 break;
427
428 mutex_lock(&dbs_mutex);
429 for_each_cpu_mask(j, policy->cpus) {
430 struct cpu_dbs_info_s *j_dbs_info;
431 j_dbs_info = &per_cpu(cpu_dbs_info, j);
432 j_dbs_info->cur_policy = policy;
433
434 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
435 j_dbs_info->prev_cpu_idle_down
436 = j_dbs_info->prev_cpu_idle_up;
437 }
438 this_dbs_info->enable = 1;
439 sysfs_create_group(&policy->kobj, &dbs_attr_group);
440 dbs_enable++;
441 /*
442 * Start the timerschedule work, when this governor
443 * is used for first time
444 */
445 if (dbs_enable == 1) {
446 unsigned int latency;
447 /* policy latency is in nS. Convert it to uS first */
448 latency = policy->cpuinfo.transition_latency / 1000;
449 if (latency == 0)
450 latency = 1;
451
452 def_sampling_rate = latency *
453 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
454
455 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
456 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
457
458 dbs_tuners_ins.sampling_rate = def_sampling_rate;
459 dbs_timer_init();
460 }
461
462 mutex_unlock(&dbs_mutex);
463 break;
464
465 case CPUFREQ_GOV_STOP:
466 mutex_lock(&dbs_mutex);
467 this_dbs_info->enable = 0;
468 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
469 dbs_enable--;
470 /*
471 * Stop the timerschedule work, when this governor
472 * is used for first time
473 */
474 if (dbs_enable == 0)
475 dbs_timer_exit();
476
477 mutex_unlock(&dbs_mutex);
478
479 break;
480
481 case CPUFREQ_GOV_LIMITS:
482 lock_cpu_hotplug();
483 mutex_lock(&dbs_mutex);
484 if (policy->max < this_dbs_info->cur_policy->cur)
485 __cpufreq_driver_target(
486 this_dbs_info->cur_policy,
487 policy->max, CPUFREQ_RELATION_H);
488 else if (policy->min > this_dbs_info->cur_policy->cur)
489 __cpufreq_driver_target(
490 this_dbs_info->cur_policy,
491 policy->min, CPUFREQ_RELATION_L);
492 mutex_unlock(&dbs_mutex);
493 unlock_cpu_hotplug();
494 break;
495 }
496 return 0;
497 }
498
499 static struct cpufreq_governor cpufreq_gov_dbs = {
500 .name = "ondemand",
501 .governor = cpufreq_governor_dbs,
502 .owner = THIS_MODULE,
503 };
504
505 static int __init cpufreq_gov_dbs_init(void)
506 {
507 return cpufreq_register_governor(&cpufreq_gov_dbs);
508 }
509
510 static void __exit cpufreq_gov_dbs_exit(void)
511 {
512 /* Make sure that the scheduled work is indeed not running.
513 Assumes the timer has been cancelled first. */
514 if (dbs_workq) {
515 flush_workqueue(dbs_workq);
516 destroy_workqueue(dbs_workq);
517 }
518
519 cpufreq_unregister_governor(&cpufreq_gov_dbs);
520 }
521
522
523 MODULE_AUTHOR ("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
524 MODULE_DESCRIPTION ("'cpufreq_ondemand' - A dynamic cpufreq governor for "
525 "Low Latency Frequency Transition capable processors");
526 MODULE_LICENSE ("GPL");
527
528 module_init(cpufreq_gov_dbs_init);
529 module_exit(cpufreq_gov_dbs_exit);
This page took 0.041117 seconds and 6 git commands to generate.