Merge remote-tracking branches 'spi/topic/pxa2xx', 'spi/topic/qup', 'spi/topic/rockch...
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19
20 #include "cpufreq_ondemand.h"
21
22 /* On-demand governor macros */
23 #define DEF_FREQUENCY_UP_THRESHOLD (80)
24 #define DEF_SAMPLING_DOWN_FACTOR (1)
25 #define MAX_SAMPLING_DOWN_FACTOR (100000)
26 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
27 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 static struct od_ops od_ops;
32
33 static unsigned int default_powersave_bias;
34
35 /*
36 * Not all CPUs want IO time to be accounted as busy; this depends on how
37 * efficient idling at a higher frequency/voltage is.
38 * Pavel Machek says this is not so for various generations of AMD and old
39 * Intel systems.
40 * Mike Chan (android.com) claims this is also not true for ARM.
41 * Because of this, whitelist specific known (series) of CPUs by default, and
42 * leave all others up to the user.
43 */
44 static int should_io_be_busy(void)
45 {
46 #if defined(CONFIG_X86)
47 /*
48 * For Intel, Core 2 (model 15) and later have an efficient idle.
49 */
50 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
51 boot_cpu_data.x86 == 6 &&
52 boot_cpu_data.x86_model >= 15)
53 return 1;
54 #endif
55 return 0;
56 }
57
58 /*
59 * Find right freq to be set now with powersave_bias on.
60 * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
61 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
62 */
63 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
64 unsigned int freq_next, unsigned int relation)
65 {
66 unsigned int freq_req, freq_reduc, freq_avg;
67 unsigned int freq_hi, freq_lo;
68 unsigned int index = 0;
69 unsigned int delay_hi_us;
70 struct policy_dbs_info *policy_dbs = policy->governor_data;
71 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
72 struct dbs_data *dbs_data = policy_dbs->dbs_data;
73 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
74
75 if (!dbs_info->freq_table) {
76 dbs_info->freq_lo = 0;
77 dbs_info->freq_lo_delay_us = 0;
78 return freq_next;
79 }
80
81 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
82 relation, &index);
83 freq_req = dbs_info->freq_table[index].frequency;
84 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
85 freq_avg = freq_req - freq_reduc;
86
87 /* Find freq bounds for freq_avg in freq_table */
88 index = 0;
89 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
90 CPUFREQ_RELATION_H, &index);
91 freq_lo = dbs_info->freq_table[index].frequency;
92 index = 0;
93 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
94 CPUFREQ_RELATION_L, &index);
95 freq_hi = dbs_info->freq_table[index].frequency;
96
97 /* Find out how long we have to be in hi and lo freqs */
98 if (freq_hi == freq_lo) {
99 dbs_info->freq_lo = 0;
100 dbs_info->freq_lo_delay_us = 0;
101 return freq_lo;
102 }
103 delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
104 delay_hi_us += (freq_hi - freq_lo) / 2;
105 delay_hi_us /= freq_hi - freq_lo;
106 dbs_info->freq_hi_delay_us = delay_hi_us;
107 dbs_info->freq_lo = freq_lo;
108 dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
109 return freq_hi;
110 }
111
112 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
113 {
114 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
115
116 dbs_info->freq_table = cpufreq_frequency_get_table(policy->cpu);
117 dbs_info->freq_lo = 0;
118 }
119
120 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
121 {
122 struct policy_dbs_info *policy_dbs = policy->governor_data;
123 struct dbs_data *dbs_data = policy_dbs->dbs_data;
124 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
125
126 if (od_tuners->powersave_bias)
127 freq = od_ops.powersave_bias_target(policy, freq,
128 CPUFREQ_RELATION_H);
129 else if (policy->cur == policy->max)
130 return;
131
132 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
133 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
134 }
135
136 /*
137 * Every sampling_rate, we check, if current idle time is less than 20%
138 * (default), then we try to increase frequency. Else, we adjust the frequency
139 * proportional to load.
140 */
141 static void od_update(struct cpufreq_policy *policy)
142 {
143 struct policy_dbs_info *policy_dbs = policy->governor_data;
144 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
145 struct dbs_data *dbs_data = policy_dbs->dbs_data;
146 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
147 unsigned int load = dbs_update(policy);
148
149 dbs_info->freq_lo = 0;
150
151 /* Check for frequency increase */
152 if (load > dbs_data->up_threshold) {
153 /* If switching to max speed, apply sampling_down_factor */
154 if (policy->cur < policy->max)
155 policy_dbs->rate_mult = dbs_data->sampling_down_factor;
156 dbs_freq_increase(policy, policy->max);
157 } else {
158 /* Calculate the next frequency proportional to load */
159 unsigned int freq_next, min_f, max_f;
160
161 min_f = policy->cpuinfo.min_freq;
162 max_f = policy->cpuinfo.max_freq;
163 freq_next = min_f + load * (max_f - min_f) / 100;
164
165 /* No longer fully busy, reset rate_mult */
166 policy_dbs->rate_mult = 1;
167
168 if (od_tuners->powersave_bias)
169 freq_next = od_ops.powersave_bias_target(policy,
170 freq_next,
171 CPUFREQ_RELATION_L);
172
173 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
174 }
175 }
176
177 static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
178 {
179 struct policy_dbs_info *policy_dbs = policy->governor_data;
180 struct dbs_data *dbs_data = policy_dbs->dbs_data;
181 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
182 int sample_type = dbs_info->sample_type;
183
184 /* Common NORMAL_SAMPLE setup */
185 dbs_info->sample_type = OD_NORMAL_SAMPLE;
186 /*
187 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
188 * it then.
189 */
190 if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
191 __cpufreq_driver_target(policy, dbs_info->freq_lo,
192 CPUFREQ_RELATION_H);
193 return dbs_info->freq_lo_delay_us;
194 }
195
196 od_update(policy);
197
198 if (dbs_info->freq_lo) {
199 /* Setup timer for SUB_SAMPLE */
200 dbs_info->sample_type = OD_SUB_SAMPLE;
201 return dbs_info->freq_hi_delay_us;
202 }
203
204 return dbs_data->sampling_rate * policy_dbs->rate_mult;
205 }
206
207 /************************** sysfs interface ************************/
208 static struct dbs_governor od_dbs_gov;
209
210 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
211 size_t count)
212 {
213 unsigned int input;
214 int ret;
215
216 ret = sscanf(buf, "%u", &input);
217 if (ret != 1)
218 return -EINVAL;
219 dbs_data->io_is_busy = !!input;
220
221 /* we need to re-evaluate prev_cpu_idle */
222 gov_update_cpu_data(dbs_data);
223
224 return count;
225 }
226
227 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
228 size_t count)
229 {
230 unsigned int input;
231 int ret;
232 ret = sscanf(buf, "%u", &input);
233
234 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
235 input < MIN_FREQUENCY_UP_THRESHOLD) {
236 return -EINVAL;
237 }
238
239 dbs_data->up_threshold = input;
240 return count;
241 }
242
243 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
244 const char *buf, size_t count)
245 {
246 struct policy_dbs_info *policy_dbs;
247 unsigned int input;
248 int ret;
249 ret = sscanf(buf, "%u", &input);
250
251 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
252 return -EINVAL;
253
254 dbs_data->sampling_down_factor = input;
255
256 /* Reset down sampling multiplier in case it was active */
257 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list) {
258 /*
259 * Doing this without locking might lead to using different
260 * rate_mult values in od_update() and od_dbs_timer().
261 */
262 mutex_lock(&policy_dbs->timer_mutex);
263 policy_dbs->rate_mult = 1;
264 mutex_unlock(&policy_dbs->timer_mutex);
265 }
266
267 return count;
268 }
269
270 static ssize_t store_ignore_nice_load(struct dbs_data *dbs_data,
271 const char *buf, size_t count)
272 {
273 unsigned int input;
274 int ret;
275
276 ret = sscanf(buf, "%u", &input);
277 if (ret != 1)
278 return -EINVAL;
279
280 if (input > 1)
281 input = 1;
282
283 if (input == dbs_data->ignore_nice_load) { /* nothing to do */
284 return count;
285 }
286 dbs_data->ignore_nice_load = input;
287
288 /* we need to re-evaluate prev_cpu_idle */
289 gov_update_cpu_data(dbs_data);
290
291 return count;
292 }
293
294 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
295 size_t count)
296 {
297 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
298 struct policy_dbs_info *policy_dbs;
299 unsigned int input;
300 int ret;
301 ret = sscanf(buf, "%u", &input);
302
303 if (ret != 1)
304 return -EINVAL;
305
306 if (input > 1000)
307 input = 1000;
308
309 od_tuners->powersave_bias = input;
310
311 list_for_each_entry(policy_dbs, &dbs_data->policy_dbs_list, list)
312 ondemand_powersave_bias_init(policy_dbs->policy);
313
314 return count;
315 }
316
317 gov_show_one_common(sampling_rate);
318 gov_show_one_common(up_threshold);
319 gov_show_one_common(sampling_down_factor);
320 gov_show_one_common(ignore_nice_load);
321 gov_show_one_common(min_sampling_rate);
322 gov_show_one_common(io_is_busy);
323 gov_show_one(od, powersave_bias);
324
325 gov_attr_rw(sampling_rate);
326 gov_attr_rw(io_is_busy);
327 gov_attr_rw(up_threshold);
328 gov_attr_rw(sampling_down_factor);
329 gov_attr_rw(ignore_nice_load);
330 gov_attr_rw(powersave_bias);
331 gov_attr_ro(min_sampling_rate);
332
333 static struct attribute *od_attributes[] = {
334 &min_sampling_rate.attr,
335 &sampling_rate.attr,
336 &up_threshold.attr,
337 &sampling_down_factor.attr,
338 &ignore_nice_load.attr,
339 &powersave_bias.attr,
340 &io_is_busy.attr,
341 NULL
342 };
343
344 /************************** sysfs end ************************/
345
346 static struct policy_dbs_info *od_alloc(void)
347 {
348 struct od_policy_dbs_info *dbs_info;
349
350 dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
351 return dbs_info ? &dbs_info->policy_dbs : NULL;
352 }
353
354 static void od_free(struct policy_dbs_info *policy_dbs)
355 {
356 kfree(to_dbs_info(policy_dbs));
357 }
358
359 static int od_init(struct dbs_data *dbs_data, bool notify)
360 {
361 struct od_dbs_tuners *tuners;
362 u64 idle_time;
363 int cpu;
364
365 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
366 if (!tuners) {
367 pr_err("%s: kzalloc failed\n", __func__);
368 return -ENOMEM;
369 }
370
371 cpu = get_cpu();
372 idle_time = get_cpu_idle_time_us(cpu, NULL);
373 put_cpu();
374 if (idle_time != -1ULL) {
375 /* Idle micro accounting is supported. Use finer thresholds */
376 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
377 /*
378 * In nohz/micro accounting case we set the minimum frequency
379 * not depending on HZ, but fixed (very low). The deferred
380 * timer might skip some samples if idle/sleeping as needed.
381 */
382 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
383 } else {
384 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
385
386 /* For correct statistics, we need 10 ticks for each measure */
387 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
388 jiffies_to_usecs(10);
389 }
390
391 dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
392 dbs_data->ignore_nice_load = 0;
393 tuners->powersave_bias = default_powersave_bias;
394 dbs_data->io_is_busy = should_io_be_busy();
395
396 dbs_data->tuners = tuners;
397 return 0;
398 }
399
400 static void od_exit(struct dbs_data *dbs_data, bool notify)
401 {
402 kfree(dbs_data->tuners);
403 }
404
405 static void od_start(struct cpufreq_policy *policy)
406 {
407 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
408
409 dbs_info->sample_type = OD_NORMAL_SAMPLE;
410 ondemand_powersave_bias_init(policy);
411 }
412
413 static struct od_ops od_ops = {
414 .powersave_bias_target = generic_powersave_bias_target,
415 };
416
417 static struct dbs_governor od_dbs_gov = {
418 .gov = {
419 .name = "ondemand",
420 .governor = cpufreq_governor_dbs,
421 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
422 .owner = THIS_MODULE,
423 },
424 .kobj_type = { .default_attrs = od_attributes },
425 .gov_dbs_timer = od_dbs_timer,
426 .alloc = od_alloc,
427 .free = od_free,
428 .init = od_init,
429 .exit = od_exit,
430 .start = od_start,
431 };
432
433 #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov)
434
435 static void od_set_powersave_bias(unsigned int powersave_bias)
436 {
437 unsigned int cpu;
438 cpumask_t done;
439
440 default_powersave_bias = powersave_bias;
441 cpumask_clear(&done);
442
443 get_online_cpus();
444 for_each_online_cpu(cpu) {
445 struct cpufreq_policy *policy;
446 struct policy_dbs_info *policy_dbs;
447 struct dbs_data *dbs_data;
448 struct od_dbs_tuners *od_tuners;
449
450 if (cpumask_test_cpu(cpu, &done))
451 continue;
452
453 policy = cpufreq_cpu_get_raw(cpu);
454 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
455 continue;
456
457 policy_dbs = policy->governor_data;
458 if (!policy_dbs)
459 continue;
460
461 cpumask_or(&done, &done, policy->cpus);
462
463 dbs_data = policy_dbs->dbs_data;
464 od_tuners = dbs_data->tuners;
465 od_tuners->powersave_bias = default_powersave_bias;
466 }
467 put_online_cpus();
468 }
469
470 void od_register_powersave_bias_handler(unsigned int (*f)
471 (struct cpufreq_policy *, unsigned int, unsigned int),
472 unsigned int powersave_bias)
473 {
474 od_ops.powersave_bias_target = f;
475 od_set_powersave_bias(powersave_bias);
476 }
477 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
478
479 void od_unregister_powersave_bias_handler(void)
480 {
481 od_ops.powersave_bias_target = generic_powersave_bias_target;
482 od_set_powersave_bias(0);
483 }
484 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
485
486 static int __init cpufreq_gov_dbs_init(void)
487 {
488 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
489 }
490
491 static void __exit cpufreq_gov_dbs_exit(void)
492 {
493 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
494 }
495
496 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
497 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
498 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
499 "Low Latency Frequency Transition capable processors");
500 MODULE_LICENSE("GPL");
501
502 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
503 struct cpufreq_governor *cpufreq_default_governor(void)
504 {
505 return CPU_FREQ_GOV_ONDEMAND;
506 }
507
508 fs_initcall(cpufreq_gov_dbs_init);
509 #else
510 module_init(cpufreq_gov_dbs_init);
511 #endif
512 module_exit(cpufreq_gov_dbs_exit);
This page took 0.04344 seconds and 6 git commands to generate.