Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpu.h>
16 #include <linux/percpu-defs.h>
17 #include <linux/slab.h>
18 #include <linux/tick.h>
19
20 #include "cpufreq_ondemand.h"
21
22 /* On-demand governor macros */
23 #define DEF_FREQUENCY_UP_THRESHOLD (80)
24 #define DEF_SAMPLING_DOWN_FACTOR (1)
25 #define MAX_SAMPLING_DOWN_FACTOR (100000)
26 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
27 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
28 #define MIN_FREQUENCY_UP_THRESHOLD (11)
29 #define MAX_FREQUENCY_UP_THRESHOLD (100)
30
31 static struct od_ops od_ops;
32
33 static unsigned int default_powersave_bias;
34
35 /*
36 * Not all CPUs want IO time to be accounted as busy; this depends on how
37 * efficient idling at a higher frequency/voltage is.
38 * Pavel Machek says this is not so for various generations of AMD and old
39 * Intel systems.
40 * Mike Chan (android.com) claims this is also not true for ARM.
41 * Because of this, whitelist specific known (series) of CPUs by default, and
42 * leave all others up to the user.
43 */
44 static int should_io_be_busy(void)
45 {
46 #if defined(CONFIG_X86)
47 /*
48 * For Intel, Core 2 (model 15) and later have an efficient idle.
49 */
50 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
51 boot_cpu_data.x86 == 6 &&
52 boot_cpu_data.x86_model >= 15)
53 return 1;
54 #endif
55 return 0;
56 }
57
58 /*
59 * Find right freq to be set now with powersave_bias on.
60 * Returns the freq_hi to be used right now and will set freq_hi_delay_us,
61 * freq_lo, and freq_lo_delay_us in percpu area for averaging freqs.
62 */
63 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
64 unsigned int freq_next, unsigned int relation)
65 {
66 unsigned int freq_req, freq_reduc, freq_avg;
67 unsigned int freq_hi, freq_lo;
68 unsigned int index = 0;
69 unsigned int delay_hi_us;
70 struct policy_dbs_info *policy_dbs = policy->governor_data;
71 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
72 struct dbs_data *dbs_data = policy_dbs->dbs_data;
73 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
74
75 if (!dbs_info->freq_table) {
76 dbs_info->freq_lo = 0;
77 dbs_info->freq_lo_delay_us = 0;
78 return freq_next;
79 }
80
81 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
82 relation, &index);
83 freq_req = dbs_info->freq_table[index].frequency;
84 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
85 freq_avg = freq_req - freq_reduc;
86
87 /* Find freq bounds for freq_avg in freq_table */
88 index = 0;
89 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
90 CPUFREQ_RELATION_H, &index);
91 freq_lo = dbs_info->freq_table[index].frequency;
92 index = 0;
93 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
94 CPUFREQ_RELATION_L, &index);
95 freq_hi = dbs_info->freq_table[index].frequency;
96
97 /* Find out how long we have to be in hi and lo freqs */
98 if (freq_hi == freq_lo) {
99 dbs_info->freq_lo = 0;
100 dbs_info->freq_lo_delay_us = 0;
101 return freq_lo;
102 }
103 delay_hi_us = (freq_avg - freq_lo) * dbs_data->sampling_rate;
104 delay_hi_us += (freq_hi - freq_lo) / 2;
105 delay_hi_us /= freq_hi - freq_lo;
106 dbs_info->freq_hi_delay_us = delay_hi_us;
107 dbs_info->freq_lo = freq_lo;
108 dbs_info->freq_lo_delay_us = dbs_data->sampling_rate - delay_hi_us;
109 return freq_hi;
110 }
111
112 static void ondemand_powersave_bias_init(struct cpufreq_policy *policy)
113 {
114 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
115
116 dbs_info->freq_table = cpufreq_frequency_get_table(policy->cpu);
117 dbs_info->freq_lo = 0;
118 }
119
120 static void dbs_freq_increase(struct cpufreq_policy *policy, unsigned int freq)
121 {
122 struct policy_dbs_info *policy_dbs = policy->governor_data;
123 struct dbs_data *dbs_data = policy_dbs->dbs_data;
124 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
125
126 if (od_tuners->powersave_bias)
127 freq = od_ops.powersave_bias_target(policy, freq,
128 CPUFREQ_RELATION_H);
129 else if (policy->cur == policy->max)
130 return;
131
132 __cpufreq_driver_target(policy, freq, od_tuners->powersave_bias ?
133 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
134 }
135
136 /*
137 * Every sampling_rate, we check, if current idle time is less than 20%
138 * (default), then we try to increase frequency. Else, we adjust the frequency
139 * proportional to load.
140 */
141 static void od_update(struct cpufreq_policy *policy)
142 {
143 struct policy_dbs_info *policy_dbs = policy->governor_data;
144 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
145 struct dbs_data *dbs_data = policy_dbs->dbs_data;
146 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
147 unsigned int load = dbs_update(policy);
148
149 dbs_info->freq_lo = 0;
150
151 /* Check for frequency increase */
152 if (load > dbs_data->up_threshold) {
153 /* If switching to max speed, apply sampling_down_factor */
154 if (policy->cur < policy->max)
155 policy_dbs->rate_mult = dbs_data->sampling_down_factor;
156 dbs_freq_increase(policy, policy->max);
157 } else {
158 /* Calculate the next frequency proportional to load */
159 unsigned int freq_next, min_f, max_f;
160
161 min_f = policy->cpuinfo.min_freq;
162 max_f = policy->cpuinfo.max_freq;
163 freq_next = min_f + load * (max_f - min_f) / 100;
164
165 /* No longer fully busy, reset rate_mult */
166 policy_dbs->rate_mult = 1;
167
168 if (od_tuners->powersave_bias)
169 freq_next = od_ops.powersave_bias_target(policy,
170 freq_next,
171 CPUFREQ_RELATION_L);
172
173 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_C);
174 }
175 }
176
177 static unsigned int od_dbs_timer(struct cpufreq_policy *policy)
178 {
179 struct policy_dbs_info *policy_dbs = policy->governor_data;
180 struct dbs_data *dbs_data = policy_dbs->dbs_data;
181 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy_dbs);
182 int sample_type = dbs_info->sample_type;
183
184 /* Common NORMAL_SAMPLE setup */
185 dbs_info->sample_type = OD_NORMAL_SAMPLE;
186 /*
187 * OD_SUB_SAMPLE doesn't make sense if sample_delay_ns is 0, so ignore
188 * it then.
189 */
190 if (sample_type == OD_SUB_SAMPLE && policy_dbs->sample_delay_ns > 0) {
191 __cpufreq_driver_target(policy, dbs_info->freq_lo,
192 CPUFREQ_RELATION_H);
193 return dbs_info->freq_lo_delay_us;
194 }
195
196 od_update(policy);
197
198 if (dbs_info->freq_lo) {
199 /* Setup timer for SUB_SAMPLE */
200 dbs_info->sample_type = OD_SUB_SAMPLE;
201 return dbs_info->freq_hi_delay_us;
202 }
203
204 return dbs_data->sampling_rate * policy_dbs->rate_mult;
205 }
206
207 /************************** sysfs interface ************************/
208 static struct dbs_governor od_dbs_gov;
209
210 static ssize_t store_io_is_busy(struct gov_attr_set *attr_set, const char *buf,
211 size_t count)
212 {
213 struct dbs_data *dbs_data = to_dbs_data(attr_set);
214 unsigned int input;
215 int ret;
216
217 ret = sscanf(buf, "%u", &input);
218 if (ret != 1)
219 return -EINVAL;
220 dbs_data->io_is_busy = !!input;
221
222 /* we need to re-evaluate prev_cpu_idle */
223 gov_update_cpu_data(dbs_data);
224
225 return count;
226 }
227
228 static ssize_t store_up_threshold(struct gov_attr_set *attr_set,
229 const char *buf, size_t count)
230 {
231 struct dbs_data *dbs_data = to_dbs_data(attr_set);
232 unsigned int input;
233 int ret;
234 ret = sscanf(buf, "%u", &input);
235
236 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
237 input < MIN_FREQUENCY_UP_THRESHOLD) {
238 return -EINVAL;
239 }
240
241 dbs_data->up_threshold = input;
242 return count;
243 }
244
245 static ssize_t store_sampling_down_factor(struct gov_attr_set *attr_set,
246 const char *buf, size_t count)
247 {
248 struct dbs_data *dbs_data = to_dbs_data(attr_set);
249 struct policy_dbs_info *policy_dbs;
250 unsigned int input;
251 int ret;
252 ret = sscanf(buf, "%u", &input);
253
254 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
255 return -EINVAL;
256
257 dbs_data->sampling_down_factor = input;
258
259 /* Reset down sampling multiplier in case it was active */
260 list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
261 /*
262 * Doing this without locking might lead to using different
263 * rate_mult values in od_update() and od_dbs_timer().
264 */
265 mutex_lock(&policy_dbs->timer_mutex);
266 policy_dbs->rate_mult = 1;
267 mutex_unlock(&policy_dbs->timer_mutex);
268 }
269
270 return count;
271 }
272
273 static ssize_t store_ignore_nice_load(struct gov_attr_set *attr_set,
274 const char *buf, size_t count)
275 {
276 struct dbs_data *dbs_data = to_dbs_data(attr_set);
277 unsigned int input;
278 int ret;
279
280 ret = sscanf(buf, "%u", &input);
281 if (ret != 1)
282 return -EINVAL;
283
284 if (input > 1)
285 input = 1;
286
287 if (input == dbs_data->ignore_nice_load) { /* nothing to do */
288 return count;
289 }
290 dbs_data->ignore_nice_load = input;
291
292 /* we need to re-evaluate prev_cpu_idle */
293 gov_update_cpu_data(dbs_data);
294
295 return count;
296 }
297
298 static ssize_t store_powersave_bias(struct gov_attr_set *attr_set,
299 const char *buf, size_t count)
300 {
301 struct dbs_data *dbs_data = to_dbs_data(attr_set);
302 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
303 struct policy_dbs_info *policy_dbs;
304 unsigned int input;
305 int ret;
306 ret = sscanf(buf, "%u", &input);
307
308 if (ret != 1)
309 return -EINVAL;
310
311 if (input > 1000)
312 input = 1000;
313
314 od_tuners->powersave_bias = input;
315
316 list_for_each_entry(policy_dbs, &attr_set->policy_list, list)
317 ondemand_powersave_bias_init(policy_dbs->policy);
318
319 return count;
320 }
321
322 gov_show_one_common(sampling_rate);
323 gov_show_one_common(up_threshold);
324 gov_show_one_common(sampling_down_factor);
325 gov_show_one_common(ignore_nice_load);
326 gov_show_one_common(min_sampling_rate);
327 gov_show_one_common(io_is_busy);
328 gov_show_one(od, powersave_bias);
329
330 gov_attr_rw(sampling_rate);
331 gov_attr_rw(io_is_busy);
332 gov_attr_rw(up_threshold);
333 gov_attr_rw(sampling_down_factor);
334 gov_attr_rw(ignore_nice_load);
335 gov_attr_rw(powersave_bias);
336 gov_attr_ro(min_sampling_rate);
337
338 static struct attribute *od_attributes[] = {
339 &min_sampling_rate.attr,
340 &sampling_rate.attr,
341 &up_threshold.attr,
342 &sampling_down_factor.attr,
343 &ignore_nice_load.attr,
344 &powersave_bias.attr,
345 &io_is_busy.attr,
346 NULL
347 };
348
349 /************************** sysfs end ************************/
350
351 static struct policy_dbs_info *od_alloc(void)
352 {
353 struct od_policy_dbs_info *dbs_info;
354
355 dbs_info = kzalloc(sizeof(*dbs_info), GFP_KERNEL);
356 return dbs_info ? &dbs_info->policy_dbs : NULL;
357 }
358
359 static void od_free(struct policy_dbs_info *policy_dbs)
360 {
361 kfree(to_dbs_info(policy_dbs));
362 }
363
364 static int od_init(struct dbs_data *dbs_data, bool notify)
365 {
366 struct od_dbs_tuners *tuners;
367 u64 idle_time;
368 int cpu;
369
370 tuners = kzalloc(sizeof(*tuners), GFP_KERNEL);
371 if (!tuners) {
372 pr_err("%s: kzalloc failed\n", __func__);
373 return -ENOMEM;
374 }
375
376 cpu = get_cpu();
377 idle_time = get_cpu_idle_time_us(cpu, NULL);
378 put_cpu();
379 if (idle_time != -1ULL) {
380 /* Idle micro accounting is supported. Use finer thresholds */
381 dbs_data->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
382 /*
383 * In nohz/micro accounting case we set the minimum frequency
384 * not depending on HZ, but fixed (very low). The deferred
385 * timer might skip some samples if idle/sleeping as needed.
386 */
387 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
388 } else {
389 dbs_data->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
390
391 /* For correct statistics, we need 10 ticks for each measure */
392 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
393 jiffies_to_usecs(10);
394 }
395
396 dbs_data->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
397 dbs_data->ignore_nice_load = 0;
398 tuners->powersave_bias = default_powersave_bias;
399 dbs_data->io_is_busy = should_io_be_busy();
400
401 dbs_data->tuners = tuners;
402 return 0;
403 }
404
405 static void od_exit(struct dbs_data *dbs_data, bool notify)
406 {
407 kfree(dbs_data->tuners);
408 }
409
410 static void od_start(struct cpufreq_policy *policy)
411 {
412 struct od_policy_dbs_info *dbs_info = to_dbs_info(policy->governor_data);
413
414 dbs_info->sample_type = OD_NORMAL_SAMPLE;
415 ondemand_powersave_bias_init(policy);
416 }
417
418 static struct od_ops od_ops = {
419 .powersave_bias_target = generic_powersave_bias_target,
420 };
421
422 static struct dbs_governor od_dbs_gov = {
423 .gov = {
424 .name = "ondemand",
425 .governor = cpufreq_governor_dbs,
426 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
427 .owner = THIS_MODULE,
428 },
429 .kobj_type = { .default_attrs = od_attributes },
430 .gov_dbs_timer = od_dbs_timer,
431 .alloc = od_alloc,
432 .free = od_free,
433 .init = od_init,
434 .exit = od_exit,
435 .start = od_start,
436 };
437
438 #define CPU_FREQ_GOV_ONDEMAND (&od_dbs_gov.gov)
439
440 static void od_set_powersave_bias(unsigned int powersave_bias)
441 {
442 unsigned int cpu;
443 cpumask_t done;
444
445 default_powersave_bias = powersave_bias;
446 cpumask_clear(&done);
447
448 get_online_cpus();
449 for_each_online_cpu(cpu) {
450 struct cpufreq_policy *policy;
451 struct policy_dbs_info *policy_dbs;
452 struct dbs_data *dbs_data;
453 struct od_dbs_tuners *od_tuners;
454
455 if (cpumask_test_cpu(cpu, &done))
456 continue;
457
458 policy = cpufreq_cpu_get_raw(cpu);
459 if (!policy || policy->governor != CPU_FREQ_GOV_ONDEMAND)
460 continue;
461
462 policy_dbs = policy->governor_data;
463 if (!policy_dbs)
464 continue;
465
466 cpumask_or(&done, &done, policy->cpus);
467
468 dbs_data = policy_dbs->dbs_data;
469 od_tuners = dbs_data->tuners;
470 od_tuners->powersave_bias = default_powersave_bias;
471 }
472 put_online_cpus();
473 }
474
475 void od_register_powersave_bias_handler(unsigned int (*f)
476 (struct cpufreq_policy *, unsigned int, unsigned int),
477 unsigned int powersave_bias)
478 {
479 od_ops.powersave_bias_target = f;
480 od_set_powersave_bias(powersave_bias);
481 }
482 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
483
484 void od_unregister_powersave_bias_handler(void)
485 {
486 od_ops.powersave_bias_target = generic_powersave_bias_target;
487 od_set_powersave_bias(0);
488 }
489 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
490
491 static int __init cpufreq_gov_dbs_init(void)
492 {
493 return cpufreq_register_governor(CPU_FREQ_GOV_ONDEMAND);
494 }
495
496 static void __exit cpufreq_gov_dbs_exit(void)
497 {
498 cpufreq_unregister_governor(CPU_FREQ_GOV_ONDEMAND);
499 }
500
501 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
502 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
503 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
504 "Low Latency Frequency Transition capable processors");
505 MODULE_LICENSE("GPL");
506
507 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
508 struct cpufreq_governor *cpufreq_default_governor(void)
509 {
510 return CPU_FREQ_GOV_ONDEMAND;
511 }
512
513 fs_initcall(cpufreq_gov_dbs_init);
514 #else
515 module_init(cpufreq_gov_dbs_init);
516 #endif
517 module_exit(cpufreq_gov_dbs_exit);
This page took 0.093702 seconds and 6 git commands to generate.