cpufreq: Mark ARM drivers with CPUFREQ_NEED_INITIAL_FREQ_CHECK flag
[deliverable/linux.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/delay.h>
13 #include <linux/err.h>
14 #include <linux/module.h>
15 #include <linux/of.h>
16 #include <linux/pm_opp.h>
17 #include <linux/platform_device.h>
18 #include <linux/regulator/consumer.h>
19
20 #define PU_SOC_VOLTAGE_NORMAL 1250000
21 #define PU_SOC_VOLTAGE_HIGH 1275000
22 #define FREQ_1P2_GHZ 1200000000
23
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
27
28 static struct clk *arm_clk;
29 static struct clk *pll1_sys_clk;
30 static struct clk *pll1_sw_clk;
31 static struct clk *step_clk;
32 static struct clk *pll2_pfd2_396m_clk;
33
34 static struct device *cpu_dev;
35 static struct cpufreq_frequency_table *freq_table;
36 static unsigned int transition_latency;
37
38 static u32 *imx6_soc_volt;
39 static u32 soc_opp_count;
40
41 static unsigned int imx6q_get_speed(unsigned int cpu)
42 {
43 return clk_get_rate(arm_clk) / 1000;
44 }
45
46 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
47 {
48 struct dev_pm_opp *opp;
49 unsigned long freq_hz, volt, volt_old;
50 unsigned int old_freq, new_freq;
51 int ret;
52
53 new_freq = freq_table[index].frequency;
54 freq_hz = new_freq * 1000;
55 old_freq = clk_get_rate(arm_clk) / 1000;
56
57 rcu_read_lock();
58 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
59 if (IS_ERR(opp)) {
60 rcu_read_unlock();
61 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
62 return PTR_ERR(opp);
63 }
64
65 volt = dev_pm_opp_get_voltage(opp);
66 rcu_read_unlock();
67 volt_old = regulator_get_voltage(arm_reg);
68
69 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
70 old_freq / 1000, volt_old / 1000,
71 new_freq / 1000, volt / 1000);
72
73 /* scaling up? scale voltage before frequency */
74 if (new_freq > old_freq) {
75 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
76 if (ret) {
77 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
78 return ret;
79 }
80 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
81 if (ret) {
82 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
83 return ret;
84 }
85 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
86 if (ret) {
87 dev_err(cpu_dev,
88 "failed to scale vddarm up: %d\n", ret);
89 return ret;
90 }
91 }
92
93 /*
94 * The setpoints are selected per PLL/PDF frequencies, so we need to
95 * reprogram PLL for frequency scaling. The procedure of reprogramming
96 * PLL1 is as below.
97 *
98 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
99 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
100 * - Disable pll2_pfd2_396m_clk
101 */
102 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
103 clk_set_parent(pll1_sw_clk, step_clk);
104 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
105 clk_set_rate(pll1_sys_clk, new_freq * 1000);
106 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
107 }
108
109 /* Ensure the arm clock divider is what we expect */
110 ret = clk_set_rate(arm_clk, new_freq * 1000);
111 if (ret) {
112 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
113 regulator_set_voltage_tol(arm_reg, volt_old, 0);
114 return ret;
115 }
116
117 /* scaling down? scale voltage after frequency */
118 if (new_freq < old_freq) {
119 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
120 if (ret) {
121 dev_warn(cpu_dev,
122 "failed to scale vddarm down: %d\n", ret);
123 ret = 0;
124 }
125 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
126 if (ret) {
127 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
128 ret = 0;
129 }
130 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
131 if (ret) {
132 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
133 ret = 0;
134 }
135 }
136
137 return 0;
138 }
139
140 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
141 {
142 return cpufreq_generic_init(policy, freq_table, transition_latency);
143 }
144
145 static struct cpufreq_driver imx6q_cpufreq_driver = {
146 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
147 .verify = cpufreq_generic_frequency_table_verify,
148 .target_index = imx6q_set_target,
149 .get = imx6q_get_speed,
150 .init = imx6q_cpufreq_init,
151 .exit = cpufreq_generic_exit,
152 .name = "imx6q-cpufreq",
153 .attr = cpufreq_generic_attr,
154 };
155
156 static int imx6q_cpufreq_probe(struct platform_device *pdev)
157 {
158 struct device_node *np;
159 struct dev_pm_opp *opp;
160 unsigned long min_volt, max_volt;
161 int num, ret;
162 const struct property *prop;
163 const __be32 *val;
164 u32 nr, i, j;
165
166 cpu_dev = get_cpu_device(0);
167 if (!cpu_dev) {
168 pr_err("failed to get cpu0 device\n");
169 return -ENODEV;
170 }
171
172 np = of_node_get(cpu_dev->of_node);
173 if (!np) {
174 dev_err(cpu_dev, "failed to find cpu0 node\n");
175 return -ENOENT;
176 }
177
178 arm_clk = devm_clk_get(cpu_dev, "arm");
179 pll1_sys_clk = devm_clk_get(cpu_dev, "pll1_sys");
180 pll1_sw_clk = devm_clk_get(cpu_dev, "pll1_sw");
181 step_clk = devm_clk_get(cpu_dev, "step");
182 pll2_pfd2_396m_clk = devm_clk_get(cpu_dev, "pll2_pfd2_396m");
183 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
184 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
185 dev_err(cpu_dev, "failed to get clocks\n");
186 ret = -ENOENT;
187 goto put_node;
188 }
189
190 arm_reg = devm_regulator_get(cpu_dev, "arm");
191 pu_reg = devm_regulator_get(cpu_dev, "pu");
192 soc_reg = devm_regulator_get(cpu_dev, "soc");
193 if (IS_ERR(arm_reg) || IS_ERR(pu_reg) || IS_ERR(soc_reg)) {
194 dev_err(cpu_dev, "failed to get regulators\n");
195 ret = -ENOENT;
196 goto put_node;
197 }
198
199 /*
200 * We expect an OPP table supplied by platform.
201 * Just, incase the platform did not supply the OPP
202 * table, it will try to get it.
203 */
204 num = dev_pm_opp_get_opp_count(cpu_dev);
205 if (num < 0) {
206 ret = of_init_opp_table(cpu_dev);
207 if (ret < 0) {
208 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
209 goto put_node;
210 }
211
212 num = dev_pm_opp_get_opp_count(cpu_dev);
213 if (num < 0) {
214 ret = num;
215 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
216 goto put_node;
217 }
218 }
219
220 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
221 if (ret) {
222 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
223 goto put_node;
224 }
225
226 /* Make imx6_soc_volt array's size same as arm opp number */
227 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
228 if (imx6_soc_volt == NULL) {
229 ret = -ENOMEM;
230 goto free_freq_table;
231 }
232
233 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
234 if (!prop || !prop->value)
235 goto soc_opp_out;
236
237 /*
238 * Each OPP is a set of tuples consisting of frequency and
239 * voltage like <freq-kHz vol-uV>.
240 */
241 nr = prop->length / sizeof(u32);
242 if (nr % 2 || (nr / 2) < num)
243 goto soc_opp_out;
244
245 for (j = 0; j < num; j++) {
246 val = prop->value;
247 for (i = 0; i < nr / 2; i++) {
248 unsigned long freq = be32_to_cpup(val++);
249 unsigned long volt = be32_to_cpup(val++);
250 if (freq_table[j].frequency == freq) {
251 imx6_soc_volt[soc_opp_count++] = volt;
252 break;
253 }
254 }
255 }
256
257 soc_opp_out:
258 /* use fixed soc opp volt if no valid soc opp info found in dtb */
259 if (soc_opp_count != num) {
260 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
261 for (j = 0; j < num; j++)
262 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
263 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
264 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
265 }
266
267 if (of_property_read_u32(np, "clock-latency", &transition_latency))
268 transition_latency = CPUFREQ_ETERNAL;
269
270 /*
271 * Calculate the ramp time for max voltage change in the
272 * VDDSOC and VDDPU regulators.
273 */
274 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
275 if (ret > 0)
276 transition_latency += ret * 1000;
277 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
278 if (ret > 0)
279 transition_latency += ret * 1000;
280
281 /*
282 * OPP is maintained in order of increasing frequency, and
283 * freq_table initialised from OPP is therefore sorted in the
284 * same order.
285 */
286 rcu_read_lock();
287 opp = dev_pm_opp_find_freq_exact(cpu_dev,
288 freq_table[0].frequency * 1000, true);
289 min_volt = dev_pm_opp_get_voltage(opp);
290 opp = dev_pm_opp_find_freq_exact(cpu_dev,
291 freq_table[--num].frequency * 1000, true);
292 max_volt = dev_pm_opp_get_voltage(opp);
293 rcu_read_unlock();
294 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
295 if (ret > 0)
296 transition_latency += ret * 1000;
297
298 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
299 if (ret) {
300 dev_err(cpu_dev, "failed register driver: %d\n", ret);
301 goto free_freq_table;
302 }
303
304 of_node_put(np);
305 return 0;
306
307 free_freq_table:
308 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
309 put_node:
310 of_node_put(np);
311 return ret;
312 }
313
314 static int imx6q_cpufreq_remove(struct platform_device *pdev)
315 {
316 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
317 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
318
319 return 0;
320 }
321
322 static struct platform_driver imx6q_cpufreq_platdrv = {
323 .driver = {
324 .name = "imx6q-cpufreq",
325 .owner = THIS_MODULE,
326 },
327 .probe = imx6q_cpufreq_probe,
328 .remove = imx6q_cpufreq_remove,
329 };
330 module_platform_driver(imx6q_cpufreq_platdrv);
331
332 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
333 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
334 MODULE_LICENSE("GPL");
This page took 0.036708 seconds and 5 git commands to generate.