Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[deliverable/linux.git] / drivers / cpufreq / imx6q-cpufreq.c
1 /*
2 * Copyright (C) 2013 Freescale Semiconductor, Inc.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 */
8
9 #include <linux/clk.h>
10 #include <linux/cpu.h>
11 #include <linux/cpufreq.h>
12 #include <linux/err.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/pm_opp.h>
16 #include <linux/platform_device.h>
17 #include <linux/regulator/consumer.h>
18
19 #define PU_SOC_VOLTAGE_NORMAL 1250000
20 #define PU_SOC_VOLTAGE_HIGH 1275000
21 #define FREQ_1P2_GHZ 1200000000
22
23 static struct regulator *arm_reg;
24 static struct regulator *pu_reg;
25 static struct regulator *soc_reg;
26
27 static struct clk *arm_clk;
28 static struct clk *pll1_sys_clk;
29 static struct clk *pll1_sw_clk;
30 static struct clk *step_clk;
31 static struct clk *pll2_pfd2_396m_clk;
32
33 static struct device *cpu_dev;
34 static struct cpufreq_frequency_table *freq_table;
35 static unsigned int transition_latency;
36
37 static u32 *imx6_soc_volt;
38 static u32 soc_opp_count;
39
40 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
41 {
42 struct dev_pm_opp *opp;
43 unsigned long freq_hz, volt, volt_old;
44 unsigned int old_freq, new_freq;
45 int ret;
46
47 new_freq = freq_table[index].frequency;
48 freq_hz = new_freq * 1000;
49 old_freq = clk_get_rate(arm_clk) / 1000;
50
51 rcu_read_lock();
52 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
53 if (IS_ERR(opp)) {
54 rcu_read_unlock();
55 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
56 return PTR_ERR(opp);
57 }
58
59 volt = dev_pm_opp_get_voltage(opp);
60 rcu_read_unlock();
61 volt_old = regulator_get_voltage(arm_reg);
62
63 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
64 old_freq / 1000, volt_old / 1000,
65 new_freq / 1000, volt / 1000);
66
67 /* scaling up? scale voltage before frequency */
68 if (new_freq > old_freq) {
69 if (!IS_ERR(pu_reg)) {
70 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
71 if (ret) {
72 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
73 return ret;
74 }
75 }
76 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
77 if (ret) {
78 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
79 return ret;
80 }
81 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
82 if (ret) {
83 dev_err(cpu_dev,
84 "failed to scale vddarm up: %d\n", ret);
85 return ret;
86 }
87 }
88
89 /*
90 * The setpoints are selected per PLL/PDF frequencies, so we need to
91 * reprogram PLL for frequency scaling. The procedure of reprogramming
92 * PLL1 is as below.
93 *
94 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
95 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
96 * - Disable pll2_pfd2_396m_clk
97 */
98 clk_set_parent(step_clk, pll2_pfd2_396m_clk);
99 clk_set_parent(pll1_sw_clk, step_clk);
100 if (freq_hz > clk_get_rate(pll2_pfd2_396m_clk)) {
101 clk_set_rate(pll1_sys_clk, new_freq * 1000);
102 clk_set_parent(pll1_sw_clk, pll1_sys_clk);
103 }
104
105 /* Ensure the arm clock divider is what we expect */
106 ret = clk_set_rate(arm_clk, new_freq * 1000);
107 if (ret) {
108 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
109 regulator_set_voltage_tol(arm_reg, volt_old, 0);
110 return ret;
111 }
112
113 /* scaling down? scale voltage after frequency */
114 if (new_freq < old_freq) {
115 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
116 if (ret) {
117 dev_warn(cpu_dev,
118 "failed to scale vddarm down: %d\n", ret);
119 ret = 0;
120 }
121 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
122 if (ret) {
123 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
124 ret = 0;
125 }
126 if (!IS_ERR(pu_reg)) {
127 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
128 if (ret) {
129 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
130 ret = 0;
131 }
132 }
133 }
134
135 return 0;
136 }
137
138 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
139 {
140 policy->clk = arm_clk;
141 return cpufreq_generic_init(policy, freq_table, transition_latency);
142 }
143
144 static struct cpufreq_driver imx6q_cpufreq_driver = {
145 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK,
146 .verify = cpufreq_generic_frequency_table_verify,
147 .target_index = imx6q_set_target,
148 .get = cpufreq_generic_get,
149 .init = imx6q_cpufreq_init,
150 .name = "imx6q-cpufreq",
151 .attr = cpufreq_generic_attr,
152 };
153
154 static int imx6q_cpufreq_probe(struct platform_device *pdev)
155 {
156 struct device_node *np;
157 struct dev_pm_opp *opp;
158 unsigned long min_volt, max_volt;
159 int num, ret;
160 const struct property *prop;
161 const __be32 *val;
162 u32 nr, i, j;
163
164 cpu_dev = get_cpu_device(0);
165 if (!cpu_dev) {
166 pr_err("failed to get cpu0 device\n");
167 return -ENODEV;
168 }
169
170 np = of_node_get(cpu_dev->of_node);
171 if (!np) {
172 dev_err(cpu_dev, "failed to find cpu0 node\n");
173 return -ENOENT;
174 }
175
176 arm_clk = clk_get(cpu_dev, "arm");
177 pll1_sys_clk = clk_get(cpu_dev, "pll1_sys");
178 pll1_sw_clk = clk_get(cpu_dev, "pll1_sw");
179 step_clk = clk_get(cpu_dev, "step");
180 pll2_pfd2_396m_clk = clk_get(cpu_dev, "pll2_pfd2_396m");
181 if (IS_ERR(arm_clk) || IS_ERR(pll1_sys_clk) || IS_ERR(pll1_sw_clk) ||
182 IS_ERR(step_clk) || IS_ERR(pll2_pfd2_396m_clk)) {
183 dev_err(cpu_dev, "failed to get clocks\n");
184 ret = -ENOENT;
185 goto put_clk;
186 }
187
188 arm_reg = regulator_get(cpu_dev, "arm");
189 pu_reg = regulator_get_optional(cpu_dev, "pu");
190 soc_reg = regulator_get(cpu_dev, "soc");
191 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
192 dev_err(cpu_dev, "failed to get regulators\n");
193 ret = -ENOENT;
194 goto put_reg;
195 }
196
197 /*
198 * We expect an OPP table supplied by platform.
199 * Just, incase the platform did not supply the OPP
200 * table, it will try to get it.
201 */
202 num = dev_pm_opp_get_opp_count(cpu_dev);
203 if (num < 0) {
204 ret = of_init_opp_table(cpu_dev);
205 if (ret < 0) {
206 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
207 goto put_reg;
208 }
209
210 num = dev_pm_opp_get_opp_count(cpu_dev);
211 if (num < 0) {
212 ret = num;
213 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
214 goto put_reg;
215 }
216 }
217
218 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
219 if (ret) {
220 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
221 goto put_reg;
222 }
223
224 /* Make imx6_soc_volt array's size same as arm opp number */
225 imx6_soc_volt = devm_kzalloc(cpu_dev, sizeof(*imx6_soc_volt) * num, GFP_KERNEL);
226 if (imx6_soc_volt == NULL) {
227 ret = -ENOMEM;
228 goto free_freq_table;
229 }
230
231 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
232 if (!prop || !prop->value)
233 goto soc_opp_out;
234
235 /*
236 * Each OPP is a set of tuples consisting of frequency and
237 * voltage like <freq-kHz vol-uV>.
238 */
239 nr = prop->length / sizeof(u32);
240 if (nr % 2 || (nr / 2) < num)
241 goto soc_opp_out;
242
243 for (j = 0; j < num; j++) {
244 val = prop->value;
245 for (i = 0; i < nr / 2; i++) {
246 unsigned long freq = be32_to_cpup(val++);
247 unsigned long volt = be32_to_cpup(val++);
248 if (freq_table[j].frequency == freq) {
249 imx6_soc_volt[soc_opp_count++] = volt;
250 break;
251 }
252 }
253 }
254
255 soc_opp_out:
256 /* use fixed soc opp volt if no valid soc opp info found in dtb */
257 if (soc_opp_count != num) {
258 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
259 for (j = 0; j < num; j++)
260 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
261 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
262 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
263 }
264
265 if (of_property_read_u32(np, "clock-latency", &transition_latency))
266 transition_latency = CPUFREQ_ETERNAL;
267
268 /*
269 * Calculate the ramp time for max voltage change in the
270 * VDDSOC and VDDPU regulators.
271 */
272 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
273 if (ret > 0)
274 transition_latency += ret * 1000;
275 if (!IS_ERR(pu_reg)) {
276 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
277 if (ret > 0)
278 transition_latency += ret * 1000;
279 }
280
281 /*
282 * OPP is maintained in order of increasing frequency, and
283 * freq_table initialised from OPP is therefore sorted in the
284 * same order.
285 */
286 rcu_read_lock();
287 opp = dev_pm_opp_find_freq_exact(cpu_dev,
288 freq_table[0].frequency * 1000, true);
289 min_volt = dev_pm_opp_get_voltage(opp);
290 opp = dev_pm_opp_find_freq_exact(cpu_dev,
291 freq_table[--num].frequency * 1000, true);
292 max_volt = dev_pm_opp_get_voltage(opp);
293 rcu_read_unlock();
294 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
295 if (ret > 0)
296 transition_latency += ret * 1000;
297
298 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
299 if (ret) {
300 dev_err(cpu_dev, "failed register driver: %d\n", ret);
301 goto free_freq_table;
302 }
303
304 of_node_put(np);
305 return 0;
306
307 free_freq_table:
308 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
309 put_reg:
310 if (!IS_ERR(arm_reg))
311 regulator_put(arm_reg);
312 if (!IS_ERR(pu_reg))
313 regulator_put(pu_reg);
314 if (!IS_ERR(soc_reg))
315 regulator_put(soc_reg);
316 put_clk:
317 if (!IS_ERR(arm_clk))
318 clk_put(arm_clk);
319 if (!IS_ERR(pll1_sys_clk))
320 clk_put(pll1_sys_clk);
321 if (!IS_ERR(pll1_sw_clk))
322 clk_put(pll1_sw_clk);
323 if (!IS_ERR(step_clk))
324 clk_put(step_clk);
325 if (!IS_ERR(pll2_pfd2_396m_clk))
326 clk_put(pll2_pfd2_396m_clk);
327 of_node_put(np);
328 return ret;
329 }
330
331 static int imx6q_cpufreq_remove(struct platform_device *pdev)
332 {
333 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
334 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
335 regulator_put(arm_reg);
336 if (!IS_ERR(pu_reg))
337 regulator_put(pu_reg);
338 regulator_put(soc_reg);
339 clk_put(arm_clk);
340 clk_put(pll1_sys_clk);
341 clk_put(pll1_sw_clk);
342 clk_put(step_clk);
343 clk_put(pll2_pfd2_396m_clk);
344
345 return 0;
346 }
347
348 static struct platform_driver imx6q_cpufreq_platdrv = {
349 .driver = {
350 .name = "imx6q-cpufreq",
351 .owner = THIS_MODULE,
352 },
353 .probe = imx6q_cpufreq_probe,
354 .remove = imx6q_cpufreq_remove,
355 };
356 module_platform_driver(imx6q_cpufreq_platdrv);
357
358 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
359 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
360 MODULE_LICENSE("GPL");
This page took 0.045212 seconds and 5 git commands to generate.