Merge git://git.kernel.org/pub/scm/linux/kernel/git/pablo/nf
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS 0x66a
36 #define BYT_VIDS 0x66b
37 #define BYT_TURBO_RATIOS 0x66c
38 #define BYT_TURBO_VIDS 0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52 return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57 int mask, ret;
58
59 ret = fp_toint(x);
60 mask = (1 << FRAC_BITS) - 1;
61 if (x & mask)
62 ret += 1;
63 return ret;
64 }
65
66 struct sample {
67 int32_t core_pct_busy;
68 u64 aperf;
69 u64 mperf;
70 int freq;
71 ktime_t time;
72 };
73
74 struct pstate_data {
75 int current_pstate;
76 int min_pstate;
77 int max_pstate;
78 int scaling;
79 int turbo_pstate;
80 };
81
82 struct vid_data {
83 int min;
84 int max;
85 int turbo;
86 int32_t ratio;
87 };
88
89 struct _pid {
90 int setpoint;
91 int32_t integral;
92 int32_t p_gain;
93 int32_t i_gain;
94 int32_t d_gain;
95 int deadband;
96 int32_t last_err;
97 };
98
99 struct cpudata {
100 int cpu;
101
102 struct timer_list timer;
103
104 struct pstate_data pstate;
105 struct vid_data vid;
106 struct _pid pid;
107
108 ktime_t last_sample_time;
109 u64 prev_aperf;
110 u64 prev_mperf;
111 struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116 int sample_rate_ms;
117 int deadband;
118 int setpoint;
119 int p_gain_pct;
120 int d_gain_pct;
121 int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125 int (*get_max)(void);
126 int (*get_min)(void);
127 int (*get_turbo)(void);
128 int (*get_scaling)(void);
129 void (*set)(struct cpudata*, int pstate);
130 void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134 struct pstate_adjust_policy pid_policy;
135 struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143 int no_turbo;
144 int turbo_disabled;
145 int max_perf_pct;
146 int min_perf_pct;
147 int32_t max_perf;
148 int32_t min_perf;
149 int max_policy_pct;
150 int max_sysfs_pct;
151 };
152
153 static struct perf_limits limits = {
154 .no_turbo = 0,
155 .turbo_disabled = 0,
156 .max_perf_pct = 100,
157 .max_perf = int_tofp(1),
158 .min_perf_pct = 0,
159 .min_perf = 0,
160 .max_policy_pct = 100,
161 .max_sysfs_pct = 100,
162 };
163
164 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
165 int deadband, int integral) {
166 pid->setpoint = setpoint;
167 pid->deadband = deadband;
168 pid->integral = int_tofp(integral);
169 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
170 }
171
172 static inline void pid_p_gain_set(struct _pid *pid, int percent)
173 {
174 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176
177 static inline void pid_i_gain_set(struct _pid *pid, int percent)
178 {
179 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181
182 static inline void pid_d_gain_set(struct _pid *pid, int percent)
183 {
184 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186
187 static signed int pid_calc(struct _pid *pid, int32_t busy)
188 {
189 signed int result;
190 int32_t pterm, dterm, fp_error;
191 int32_t integral_limit;
192
193 fp_error = int_tofp(pid->setpoint) - busy;
194
195 if (abs(fp_error) <= int_tofp(pid->deadband))
196 return 0;
197
198 pterm = mul_fp(pid->p_gain, fp_error);
199
200 pid->integral += fp_error;
201
202 /*
203 * We limit the integral here so that it will never
204 * get higher than 30. This prevents it from becoming
205 * too large an input over long periods of time and allows
206 * it to get factored out sooner.
207 *
208 * The value of 30 was chosen through experimentation.
209 */
210 integral_limit = int_tofp(30);
211 if (pid->integral > integral_limit)
212 pid->integral = integral_limit;
213 if (pid->integral < -integral_limit)
214 pid->integral = -integral_limit;
215
216 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
217 pid->last_err = fp_error;
218
219 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
220 result = result + (1 << (FRAC_BITS-1));
221 return (signed int)fp_toint(result);
222 }
223
224 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
225 {
226 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
227 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
228 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
229
230 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
231 }
232
233 static inline void intel_pstate_reset_all_pid(void)
234 {
235 unsigned int cpu;
236
237 for_each_online_cpu(cpu) {
238 if (all_cpu_data[cpu])
239 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
240 }
241 }
242
243 static inline void update_turbo_state(void)
244 {
245 u64 misc_en;
246 struct cpudata *cpu;
247
248 cpu = all_cpu_data[0];
249 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
250 limits.turbo_disabled =
251 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
252 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
253 }
254
255 #define PCT_TO_HWP(x) (x * 255 / 100)
256 static void intel_pstate_hwp_set(void)
257 {
258 int min, max, cpu;
259 u64 value, freq;
260
261 get_online_cpus();
262
263 for_each_online_cpu(cpu) {
264 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
265 min = PCT_TO_HWP(limits.min_perf_pct);
266 value &= ~HWP_MIN_PERF(~0L);
267 value |= HWP_MIN_PERF(min);
268
269 max = PCT_TO_HWP(limits.max_perf_pct);
270 if (limits.no_turbo) {
271 rdmsrl( MSR_HWP_CAPABILITIES, freq);
272 max = HWP_GUARANTEED_PERF(freq);
273 }
274
275 value &= ~HWP_MAX_PERF(~0L);
276 value |= HWP_MAX_PERF(max);
277 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
278 }
279
280 put_online_cpus();
281 }
282
283 /************************** debugfs begin ************************/
284 static int pid_param_set(void *data, u64 val)
285 {
286 *(u32 *)data = val;
287 intel_pstate_reset_all_pid();
288 return 0;
289 }
290
291 static int pid_param_get(void *data, u64 *val)
292 {
293 *val = *(u32 *)data;
294 return 0;
295 }
296 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
297
298 struct pid_param {
299 char *name;
300 void *value;
301 };
302
303 static struct pid_param pid_files[] = {
304 {"sample_rate_ms", &pid_params.sample_rate_ms},
305 {"d_gain_pct", &pid_params.d_gain_pct},
306 {"i_gain_pct", &pid_params.i_gain_pct},
307 {"deadband", &pid_params.deadband},
308 {"setpoint", &pid_params.setpoint},
309 {"p_gain_pct", &pid_params.p_gain_pct},
310 {NULL, NULL}
311 };
312
313 static void __init intel_pstate_debug_expose_params(void)
314 {
315 struct dentry *debugfs_parent;
316 int i = 0;
317
318 if (hwp_active)
319 return;
320 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
321 if (IS_ERR_OR_NULL(debugfs_parent))
322 return;
323 while (pid_files[i].name) {
324 debugfs_create_file(pid_files[i].name, 0660,
325 debugfs_parent, pid_files[i].value,
326 &fops_pid_param);
327 i++;
328 }
329 }
330
331 /************************** debugfs end ************************/
332
333 /************************** sysfs begin ************************/
334 #define show_one(file_name, object) \
335 static ssize_t show_##file_name \
336 (struct kobject *kobj, struct attribute *attr, char *buf) \
337 { \
338 return sprintf(buf, "%u\n", limits.object); \
339 }
340
341 static ssize_t show_no_turbo(struct kobject *kobj,
342 struct attribute *attr, char *buf)
343 {
344 ssize_t ret;
345
346 update_turbo_state();
347 if (limits.turbo_disabled)
348 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
349 else
350 ret = sprintf(buf, "%u\n", limits.no_turbo);
351
352 return ret;
353 }
354
355 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
356 const char *buf, size_t count)
357 {
358 unsigned int input;
359 int ret;
360
361 ret = sscanf(buf, "%u", &input);
362 if (ret != 1)
363 return -EINVAL;
364
365 update_turbo_state();
366 if (limits.turbo_disabled) {
367 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
368 return -EPERM;
369 }
370
371 limits.no_turbo = clamp_t(int, input, 0, 1);
372
373 if (hwp_active)
374 intel_pstate_hwp_set();
375
376 return count;
377 }
378
379 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
380 const char *buf, size_t count)
381 {
382 unsigned int input;
383 int ret;
384
385 ret = sscanf(buf, "%u", &input);
386 if (ret != 1)
387 return -EINVAL;
388
389 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
390 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
391 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
392
393 if (hwp_active)
394 intel_pstate_hwp_set();
395 return count;
396 }
397
398 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
399 const char *buf, size_t count)
400 {
401 unsigned int input;
402 int ret;
403
404 ret = sscanf(buf, "%u", &input);
405 if (ret != 1)
406 return -EINVAL;
407 limits.min_perf_pct = clamp_t(int, input, 0 , 100);
408 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
409
410 if (hwp_active)
411 intel_pstate_hwp_set();
412 return count;
413 }
414
415 show_one(max_perf_pct, max_perf_pct);
416 show_one(min_perf_pct, min_perf_pct);
417
418 define_one_global_rw(no_turbo);
419 define_one_global_rw(max_perf_pct);
420 define_one_global_rw(min_perf_pct);
421
422 static struct attribute *intel_pstate_attributes[] = {
423 &no_turbo.attr,
424 &max_perf_pct.attr,
425 &min_perf_pct.attr,
426 NULL
427 };
428
429 static struct attribute_group intel_pstate_attr_group = {
430 .attrs = intel_pstate_attributes,
431 };
432
433 static void __init intel_pstate_sysfs_expose_params(void)
434 {
435 struct kobject *intel_pstate_kobject;
436 int rc;
437
438 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
439 &cpu_subsys.dev_root->kobj);
440 BUG_ON(!intel_pstate_kobject);
441 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
442 BUG_ON(rc);
443 }
444 /************************** sysfs end ************************/
445
446 static void intel_pstate_hwp_enable(void)
447 {
448 hwp_active++;
449 pr_info("intel_pstate HWP enabled\n");
450
451 wrmsrl( MSR_PM_ENABLE, 0x1);
452 }
453
454 static int byt_get_min_pstate(void)
455 {
456 u64 value;
457
458 rdmsrl(BYT_RATIOS, value);
459 return (value >> 8) & 0x7F;
460 }
461
462 static int byt_get_max_pstate(void)
463 {
464 u64 value;
465
466 rdmsrl(BYT_RATIOS, value);
467 return (value >> 16) & 0x7F;
468 }
469
470 static int byt_get_turbo_pstate(void)
471 {
472 u64 value;
473
474 rdmsrl(BYT_TURBO_RATIOS, value);
475 return value & 0x7F;
476 }
477
478 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
479 {
480 u64 val;
481 int32_t vid_fp;
482 u32 vid;
483
484 val = pstate << 8;
485 if (limits.no_turbo && !limits.turbo_disabled)
486 val |= (u64)1 << 32;
487
488 vid_fp = cpudata->vid.min + mul_fp(
489 int_tofp(pstate - cpudata->pstate.min_pstate),
490 cpudata->vid.ratio);
491
492 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
493 vid = ceiling_fp(vid_fp);
494
495 if (pstate > cpudata->pstate.max_pstate)
496 vid = cpudata->vid.turbo;
497
498 val |= vid;
499
500 wrmsrl(MSR_IA32_PERF_CTL, val);
501 }
502
503 #define BYT_BCLK_FREQS 5
504 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
505
506 static int byt_get_scaling(void)
507 {
508 u64 value;
509 int i;
510
511 rdmsrl(MSR_FSB_FREQ, value);
512 i = value & 0x3;
513
514 BUG_ON(i > BYT_BCLK_FREQS);
515
516 return byt_freq_table[i] * 100;
517 }
518
519 static void byt_get_vid(struct cpudata *cpudata)
520 {
521 u64 value;
522
523 rdmsrl(BYT_VIDS, value);
524 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
525 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
526 cpudata->vid.ratio = div_fp(
527 cpudata->vid.max - cpudata->vid.min,
528 int_tofp(cpudata->pstate.max_pstate -
529 cpudata->pstate.min_pstate));
530
531 rdmsrl(BYT_TURBO_VIDS, value);
532 cpudata->vid.turbo = value & 0x7f;
533 }
534
535 static int core_get_min_pstate(void)
536 {
537 u64 value;
538
539 rdmsrl(MSR_PLATFORM_INFO, value);
540 return (value >> 40) & 0xFF;
541 }
542
543 static int core_get_max_pstate(void)
544 {
545 u64 value;
546
547 rdmsrl(MSR_PLATFORM_INFO, value);
548 return (value >> 8) & 0xFF;
549 }
550
551 static int core_get_turbo_pstate(void)
552 {
553 u64 value;
554 int nont, ret;
555
556 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
557 nont = core_get_max_pstate();
558 ret = (value) & 255;
559 if (ret <= nont)
560 ret = nont;
561 return ret;
562 }
563
564 static inline int core_get_scaling(void)
565 {
566 return 100000;
567 }
568
569 static void core_set_pstate(struct cpudata *cpudata, int pstate)
570 {
571 u64 val;
572
573 val = pstate << 8;
574 if (limits.no_turbo && !limits.turbo_disabled)
575 val |= (u64)1 << 32;
576
577 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
578 }
579
580 static struct cpu_defaults core_params = {
581 .pid_policy = {
582 .sample_rate_ms = 10,
583 .deadband = 0,
584 .setpoint = 97,
585 .p_gain_pct = 20,
586 .d_gain_pct = 0,
587 .i_gain_pct = 0,
588 },
589 .funcs = {
590 .get_max = core_get_max_pstate,
591 .get_min = core_get_min_pstate,
592 .get_turbo = core_get_turbo_pstate,
593 .get_scaling = core_get_scaling,
594 .set = core_set_pstate,
595 },
596 };
597
598 static struct cpu_defaults byt_params = {
599 .pid_policy = {
600 .sample_rate_ms = 10,
601 .deadband = 0,
602 .setpoint = 97,
603 .p_gain_pct = 14,
604 .d_gain_pct = 0,
605 .i_gain_pct = 4,
606 },
607 .funcs = {
608 .get_max = byt_get_max_pstate,
609 .get_min = byt_get_min_pstate,
610 .get_turbo = byt_get_turbo_pstate,
611 .set = byt_set_pstate,
612 .get_scaling = byt_get_scaling,
613 .get_vid = byt_get_vid,
614 },
615 };
616
617 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
618 {
619 int max_perf = cpu->pstate.turbo_pstate;
620 int max_perf_adj;
621 int min_perf;
622
623 if (limits.no_turbo || limits.turbo_disabled)
624 max_perf = cpu->pstate.max_pstate;
625
626 /*
627 * performance can be limited by user through sysfs, by cpufreq
628 * policy, or by cpu specific default values determined through
629 * experimentation.
630 */
631 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
632 *max = clamp_t(int, max_perf_adj,
633 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
634
635 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
636 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
637 }
638
639 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
640 {
641 int max_perf, min_perf;
642
643 update_turbo_state();
644
645 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
646
647 pstate = clamp_t(int, pstate, min_perf, max_perf);
648
649 if (pstate == cpu->pstate.current_pstate)
650 return;
651
652 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
653
654 cpu->pstate.current_pstate = pstate;
655
656 pstate_funcs.set(cpu, pstate);
657 }
658
659 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
660 {
661 cpu->pstate.min_pstate = pstate_funcs.get_min();
662 cpu->pstate.max_pstate = pstate_funcs.get_max();
663 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
664 cpu->pstate.scaling = pstate_funcs.get_scaling();
665
666 if (pstate_funcs.get_vid)
667 pstate_funcs.get_vid(cpu);
668 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
669 }
670
671 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
672 {
673 struct sample *sample = &cpu->sample;
674 int64_t core_pct;
675
676 core_pct = int_tofp(sample->aperf) * int_tofp(100);
677 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
678
679 sample->freq = fp_toint(
680 mul_fp(int_tofp(
681 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
682 core_pct));
683
684 sample->core_pct_busy = (int32_t)core_pct;
685 }
686
687 static inline void intel_pstate_sample(struct cpudata *cpu)
688 {
689 u64 aperf, mperf;
690 unsigned long flags;
691
692 local_irq_save(flags);
693 rdmsrl(MSR_IA32_APERF, aperf);
694 rdmsrl(MSR_IA32_MPERF, mperf);
695 local_irq_restore(flags);
696
697 cpu->last_sample_time = cpu->sample.time;
698 cpu->sample.time = ktime_get();
699 cpu->sample.aperf = aperf;
700 cpu->sample.mperf = mperf;
701 cpu->sample.aperf -= cpu->prev_aperf;
702 cpu->sample.mperf -= cpu->prev_mperf;
703
704 intel_pstate_calc_busy(cpu);
705
706 cpu->prev_aperf = aperf;
707 cpu->prev_mperf = mperf;
708 }
709
710 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
711 {
712 int delay;
713
714 delay = msecs_to_jiffies(50);
715 mod_timer_pinned(&cpu->timer, jiffies + delay);
716 }
717
718 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
719 {
720 int delay;
721
722 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
723 mod_timer_pinned(&cpu->timer, jiffies + delay);
724 }
725
726 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
727 {
728 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
729 u32 duration_us;
730 u32 sample_time;
731
732 /*
733 * core_busy is the ratio of actual performance to max
734 * max_pstate is the max non turbo pstate available
735 * current_pstate was the pstate that was requested during
736 * the last sample period.
737 *
738 * We normalize core_busy, which was our actual percent
739 * performance to what we requested during the last sample
740 * period. The result will be a percentage of busy at a
741 * specified pstate.
742 */
743 core_busy = cpu->sample.core_pct_busy;
744 max_pstate = int_tofp(cpu->pstate.max_pstate);
745 current_pstate = int_tofp(cpu->pstate.current_pstate);
746 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
747
748 /*
749 * Since we have a deferred timer, it will not fire unless
750 * we are in C0. So, determine if the actual elapsed time
751 * is significantly greater (3x) than our sample interval. If it
752 * is, then we were idle for a long enough period of time
753 * to adjust our busyness.
754 */
755 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
756 duration_us = (u32) ktime_us_delta(cpu->sample.time,
757 cpu->last_sample_time);
758 if (duration_us > sample_time * 3) {
759 sample_ratio = div_fp(int_tofp(sample_time),
760 int_tofp(duration_us));
761 core_busy = mul_fp(core_busy, sample_ratio);
762 }
763
764 return core_busy;
765 }
766
767 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
768 {
769 int32_t busy_scaled;
770 struct _pid *pid;
771 signed int ctl;
772
773 pid = &cpu->pid;
774 busy_scaled = intel_pstate_get_scaled_busy(cpu);
775
776 ctl = pid_calc(pid, busy_scaled);
777
778 /* Negative values of ctl increase the pstate and vice versa */
779 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
780 }
781
782 static void intel_hwp_timer_func(unsigned long __data)
783 {
784 struct cpudata *cpu = (struct cpudata *) __data;
785
786 intel_pstate_sample(cpu);
787 intel_hwp_set_sample_time(cpu);
788 }
789
790 static void intel_pstate_timer_func(unsigned long __data)
791 {
792 struct cpudata *cpu = (struct cpudata *) __data;
793 struct sample *sample;
794
795 intel_pstate_sample(cpu);
796
797 sample = &cpu->sample;
798
799 intel_pstate_adjust_busy_pstate(cpu);
800
801 trace_pstate_sample(fp_toint(sample->core_pct_busy),
802 fp_toint(intel_pstate_get_scaled_busy(cpu)),
803 cpu->pstate.current_pstate,
804 sample->mperf,
805 sample->aperf,
806 sample->freq);
807
808 intel_pstate_set_sample_time(cpu);
809 }
810
811 #define ICPU(model, policy) \
812 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
813 (unsigned long)&policy }
814
815 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
816 ICPU(0x2a, core_params),
817 ICPU(0x2d, core_params),
818 ICPU(0x37, byt_params),
819 ICPU(0x3a, core_params),
820 ICPU(0x3c, core_params),
821 ICPU(0x3d, core_params),
822 ICPU(0x3e, core_params),
823 ICPU(0x3f, core_params),
824 ICPU(0x45, core_params),
825 ICPU(0x46, core_params),
826 ICPU(0x47, core_params),
827 ICPU(0x4c, byt_params),
828 ICPU(0x4f, core_params),
829 ICPU(0x56, core_params),
830 {}
831 };
832 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
833
834 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
835 ICPU(0x56, core_params),
836 {}
837 };
838
839 static int intel_pstate_init_cpu(unsigned int cpunum)
840 {
841 struct cpudata *cpu;
842
843 if (!all_cpu_data[cpunum])
844 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
845 GFP_KERNEL);
846 if (!all_cpu_data[cpunum])
847 return -ENOMEM;
848
849 cpu = all_cpu_data[cpunum];
850
851 cpu->cpu = cpunum;
852 intel_pstate_get_cpu_pstates(cpu);
853
854 init_timer_deferrable(&cpu->timer);
855 cpu->timer.data = (unsigned long)cpu;
856 cpu->timer.expires = jiffies + HZ/100;
857
858 if (!hwp_active)
859 cpu->timer.function = intel_pstate_timer_func;
860 else
861 cpu->timer.function = intel_hwp_timer_func;
862
863 intel_pstate_busy_pid_reset(cpu);
864 intel_pstate_sample(cpu);
865
866 add_timer_on(&cpu->timer, cpunum);
867
868 pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
869
870 return 0;
871 }
872
873 static unsigned int intel_pstate_get(unsigned int cpu_num)
874 {
875 struct sample *sample;
876 struct cpudata *cpu;
877
878 cpu = all_cpu_data[cpu_num];
879 if (!cpu)
880 return 0;
881 sample = &cpu->sample;
882 return sample->freq;
883 }
884
885 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
886 {
887 if (!policy->cpuinfo.max_freq)
888 return -ENODEV;
889
890 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
891 limits.min_perf_pct = 100;
892 limits.min_perf = int_tofp(1);
893 limits.max_policy_pct = 100;
894 limits.max_perf_pct = 100;
895 limits.max_perf = int_tofp(1);
896 limits.no_turbo = 0;
897 return 0;
898 }
899
900 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
901 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
902 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
903
904 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
905 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
906 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
907 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
908
909 if (hwp_active)
910 intel_pstate_hwp_set();
911
912 return 0;
913 }
914
915 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
916 {
917 cpufreq_verify_within_cpu_limits(policy);
918
919 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
920 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
921 return -EINVAL;
922
923 return 0;
924 }
925
926 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
927 {
928 int cpu_num = policy->cpu;
929 struct cpudata *cpu = all_cpu_data[cpu_num];
930
931 pr_info("intel_pstate CPU %d exiting\n", cpu_num);
932
933 del_timer_sync(&all_cpu_data[cpu_num]->timer);
934 if (hwp_active)
935 return;
936
937 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
938 }
939
940 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
941 {
942 struct cpudata *cpu;
943 int rc;
944
945 rc = intel_pstate_init_cpu(policy->cpu);
946 if (rc)
947 return rc;
948
949 cpu = all_cpu_data[policy->cpu];
950
951 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
952 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
953 else
954 policy->policy = CPUFREQ_POLICY_POWERSAVE;
955
956 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
957 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
958
959 /* cpuinfo and default policy values */
960 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
961 policy->cpuinfo.max_freq =
962 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
963 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
964 cpumask_set_cpu(policy->cpu, policy->cpus);
965
966 return 0;
967 }
968
969 static struct cpufreq_driver intel_pstate_driver = {
970 .flags = CPUFREQ_CONST_LOOPS,
971 .verify = intel_pstate_verify_policy,
972 .setpolicy = intel_pstate_set_policy,
973 .get = intel_pstate_get,
974 .init = intel_pstate_cpu_init,
975 .stop_cpu = intel_pstate_stop_cpu,
976 .name = "intel_pstate",
977 };
978
979 static int __initdata no_load;
980 static int __initdata no_hwp;
981 static unsigned int force_load;
982
983 static int intel_pstate_msrs_not_valid(void)
984 {
985 /* Check that all the msr's we are using are valid. */
986 u64 aperf, mperf, tmp;
987
988 rdmsrl(MSR_IA32_APERF, aperf);
989 rdmsrl(MSR_IA32_MPERF, mperf);
990
991 if (!pstate_funcs.get_max() ||
992 !pstate_funcs.get_min() ||
993 !pstate_funcs.get_turbo())
994 return -ENODEV;
995
996 rdmsrl(MSR_IA32_APERF, tmp);
997 if (!(tmp - aperf))
998 return -ENODEV;
999
1000 rdmsrl(MSR_IA32_MPERF, tmp);
1001 if (!(tmp - mperf))
1002 return -ENODEV;
1003
1004 return 0;
1005 }
1006
1007 static void copy_pid_params(struct pstate_adjust_policy *policy)
1008 {
1009 pid_params.sample_rate_ms = policy->sample_rate_ms;
1010 pid_params.p_gain_pct = policy->p_gain_pct;
1011 pid_params.i_gain_pct = policy->i_gain_pct;
1012 pid_params.d_gain_pct = policy->d_gain_pct;
1013 pid_params.deadband = policy->deadband;
1014 pid_params.setpoint = policy->setpoint;
1015 }
1016
1017 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1018 {
1019 pstate_funcs.get_max = funcs->get_max;
1020 pstate_funcs.get_min = funcs->get_min;
1021 pstate_funcs.get_turbo = funcs->get_turbo;
1022 pstate_funcs.get_scaling = funcs->get_scaling;
1023 pstate_funcs.set = funcs->set;
1024 pstate_funcs.get_vid = funcs->get_vid;
1025 }
1026
1027 #if IS_ENABLED(CONFIG_ACPI)
1028 #include <acpi/processor.h>
1029
1030 static bool intel_pstate_no_acpi_pss(void)
1031 {
1032 int i;
1033
1034 for_each_possible_cpu(i) {
1035 acpi_status status;
1036 union acpi_object *pss;
1037 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1038 struct acpi_processor *pr = per_cpu(processors, i);
1039
1040 if (!pr)
1041 continue;
1042
1043 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1044 if (ACPI_FAILURE(status))
1045 continue;
1046
1047 pss = buffer.pointer;
1048 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1049 kfree(pss);
1050 return false;
1051 }
1052
1053 kfree(pss);
1054 }
1055
1056 return true;
1057 }
1058
1059 static bool intel_pstate_has_acpi_ppc(void)
1060 {
1061 int i;
1062
1063 for_each_possible_cpu(i) {
1064 struct acpi_processor *pr = per_cpu(processors, i);
1065
1066 if (!pr)
1067 continue;
1068 if (acpi_has_method(pr->handle, "_PPC"))
1069 return true;
1070 }
1071 return false;
1072 }
1073
1074 enum {
1075 PSS,
1076 PPC,
1077 };
1078
1079 struct hw_vendor_info {
1080 u16 valid;
1081 char oem_id[ACPI_OEM_ID_SIZE];
1082 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1083 int oem_pwr_table;
1084 };
1085
1086 /* Hardware vendor-specific info that has its own power management modes */
1087 static struct hw_vendor_info vendor_info[] = {
1088 {1, "HP ", "ProLiant", PSS},
1089 {1, "ORACLE", "X4-2 ", PPC},
1090 {1, "ORACLE", "X4-2L ", PPC},
1091 {1, "ORACLE", "X4-2B ", PPC},
1092 {1, "ORACLE", "X3-2 ", PPC},
1093 {1, "ORACLE", "X3-2L ", PPC},
1094 {1, "ORACLE", "X3-2B ", PPC},
1095 {1, "ORACLE", "X4470M2 ", PPC},
1096 {1, "ORACLE", "X4270M3 ", PPC},
1097 {1, "ORACLE", "X4270M2 ", PPC},
1098 {1, "ORACLE", "X4170M2 ", PPC},
1099 {0, "", ""},
1100 };
1101
1102 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1103 {
1104 struct acpi_table_header hdr;
1105 struct hw_vendor_info *v_info;
1106 const struct x86_cpu_id *id;
1107 u64 misc_pwr;
1108
1109 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1110 if (id) {
1111 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1112 if ( misc_pwr & (1 << 8))
1113 return true;
1114 }
1115
1116 if (acpi_disabled ||
1117 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1118 return false;
1119
1120 for (v_info = vendor_info; v_info->valid; v_info++) {
1121 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1122 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1123 ACPI_OEM_TABLE_ID_SIZE))
1124 switch (v_info->oem_pwr_table) {
1125 case PSS:
1126 return intel_pstate_no_acpi_pss();
1127 case PPC:
1128 return intel_pstate_has_acpi_ppc() &&
1129 (!force_load);
1130 }
1131 }
1132
1133 return false;
1134 }
1135 #else /* CONFIG_ACPI not enabled */
1136 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1137 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1138 #endif /* CONFIG_ACPI */
1139
1140 static int __init intel_pstate_init(void)
1141 {
1142 int cpu, rc = 0;
1143 const struct x86_cpu_id *id;
1144 struct cpu_defaults *cpu_info;
1145 struct cpuinfo_x86 *c = &boot_cpu_data;
1146
1147 if (no_load)
1148 return -ENODEV;
1149
1150 id = x86_match_cpu(intel_pstate_cpu_ids);
1151 if (!id)
1152 return -ENODEV;
1153
1154 /*
1155 * The Intel pstate driver will be ignored if the platform
1156 * firmware has its own power management modes.
1157 */
1158 if (intel_pstate_platform_pwr_mgmt_exists())
1159 return -ENODEV;
1160
1161 cpu_info = (struct cpu_defaults *)id->driver_data;
1162
1163 copy_pid_params(&cpu_info->pid_policy);
1164 copy_cpu_funcs(&cpu_info->funcs);
1165
1166 if (intel_pstate_msrs_not_valid())
1167 return -ENODEV;
1168
1169 pr_info("Intel P-state driver initializing.\n");
1170
1171 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1172 if (!all_cpu_data)
1173 return -ENOMEM;
1174
1175 if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1176 intel_pstate_hwp_enable();
1177
1178 rc = cpufreq_register_driver(&intel_pstate_driver);
1179 if (rc)
1180 goto out;
1181
1182 intel_pstate_debug_expose_params();
1183 intel_pstate_sysfs_expose_params();
1184
1185 return rc;
1186 out:
1187 get_online_cpus();
1188 for_each_online_cpu(cpu) {
1189 if (all_cpu_data[cpu]) {
1190 del_timer_sync(&all_cpu_data[cpu]->timer);
1191 kfree(all_cpu_data[cpu]);
1192 }
1193 }
1194
1195 put_online_cpus();
1196 vfree(all_cpu_data);
1197 return -ENODEV;
1198 }
1199 device_initcall(intel_pstate_init);
1200
1201 static int __init intel_pstate_setup(char *str)
1202 {
1203 if (!str)
1204 return -EINVAL;
1205
1206 if (!strcmp(str, "disable"))
1207 no_load = 1;
1208 if (!strcmp(str, "no_hwp"))
1209 no_hwp = 1;
1210 if (!strcmp(str, "force"))
1211 force_load = 1;
1212 return 0;
1213 }
1214 early_param("intel_pstate", intel_pstate_setup);
1215
1216 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1217 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1218 MODULE_LICENSE("GPL");
This page took 0.056244 seconds and 5 git commands to generate.