cpufreq: intel_pstate: Ignore _PPC processing under HWP
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/module.h>
18 #include <linux/ktime.h>
19 #include <linux/hrtimer.h>
20 #include <linux/tick.h>
21 #include <linux/slab.h>
22 #include <linux/sched.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
25 #include <linux/cpufreq.h>
26 #include <linux/sysfs.h>
27 #include <linux/types.h>
28 #include <linux/fs.h>
29 #include <linux/debugfs.h>
30 #include <linux/acpi.h>
31 #include <linux/vmalloc.h>
32 #include <trace/events/power.h>
33
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38
39 #define ATOM_RATIOS 0x66a
40 #define ATOM_VIDS 0x66b
41 #define ATOM_TURBO_RATIOS 0x66c
42 #define ATOM_TURBO_VIDS 0x66d
43
44 #ifdef CONFIG_ACPI
45 #include <acpi/processor.h>
46 #endif
47
48 #define FRAC_BITS 8
49 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
50 #define fp_toint(X) ((X) >> FRAC_BITS)
51
52 static inline int32_t mul_fp(int32_t x, int32_t y)
53 {
54 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
55 }
56
57 static inline int32_t div_fp(s64 x, s64 y)
58 {
59 return div64_s64((int64_t)x << FRAC_BITS, y);
60 }
61
62 static inline int ceiling_fp(int32_t x)
63 {
64 int mask, ret;
65
66 ret = fp_toint(x);
67 mask = (1 << FRAC_BITS) - 1;
68 if (x & mask)
69 ret += 1;
70 return ret;
71 }
72
73 /**
74 * struct sample - Store performance sample
75 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
76 * performance during last sample period
77 * @busy_scaled: Scaled busy value which is used to calculate next
78 * P state. This can be different than core_pct_busy
79 * to account for cpu idle period
80 * @aperf: Difference of actual performance frequency clock count
81 * read from APERF MSR between last and current sample
82 * @mperf: Difference of maximum performance frequency clock count
83 * read from MPERF MSR between last and current sample
84 * @tsc: Difference of time stamp counter between last and
85 * current sample
86 * @freq: Effective frequency calculated from APERF/MPERF
87 * @time: Current time from scheduler
88 *
89 * This structure is used in the cpudata structure to store performance sample
90 * data for choosing next P State.
91 */
92 struct sample {
93 int32_t core_pct_busy;
94 int32_t busy_scaled;
95 u64 aperf;
96 u64 mperf;
97 u64 tsc;
98 int freq;
99 u64 time;
100 };
101
102 /**
103 * struct pstate_data - Store P state data
104 * @current_pstate: Current requested P state
105 * @min_pstate: Min P state possible for this platform
106 * @max_pstate: Max P state possible for this platform
107 * @max_pstate_physical:This is physical Max P state for a processor
108 * This can be higher than the max_pstate which can
109 * be limited by platform thermal design power limits
110 * @scaling: Scaling factor to convert frequency to cpufreq
111 * frequency units
112 * @turbo_pstate: Max Turbo P state possible for this platform
113 *
114 * Stores the per cpu model P state limits and current P state.
115 */
116 struct pstate_data {
117 int current_pstate;
118 int min_pstate;
119 int max_pstate;
120 int max_pstate_physical;
121 int scaling;
122 int turbo_pstate;
123 };
124
125 /**
126 * struct vid_data - Stores voltage information data
127 * @min: VID data for this platform corresponding to
128 * the lowest P state
129 * @max: VID data corresponding to the highest P State.
130 * @turbo: VID data for turbo P state
131 * @ratio: Ratio of (vid max - vid min) /
132 * (max P state - Min P State)
133 *
134 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
135 * This data is used in Atom platforms, where in addition to target P state,
136 * the voltage data needs to be specified to select next P State.
137 */
138 struct vid_data {
139 int min;
140 int max;
141 int turbo;
142 int32_t ratio;
143 };
144
145 /**
146 * struct _pid - Stores PID data
147 * @setpoint: Target set point for busyness or performance
148 * @integral: Storage for accumulated error values
149 * @p_gain: PID proportional gain
150 * @i_gain: PID integral gain
151 * @d_gain: PID derivative gain
152 * @deadband: PID deadband
153 * @last_err: Last error storage for integral part of PID calculation
154 *
155 * Stores PID coefficients and last error for PID controller.
156 */
157 struct _pid {
158 int setpoint;
159 int32_t integral;
160 int32_t p_gain;
161 int32_t i_gain;
162 int32_t d_gain;
163 int deadband;
164 int32_t last_err;
165 };
166
167 /**
168 * struct cpudata - Per CPU instance data storage
169 * @cpu: CPU number for this instance data
170 * @update_util: CPUFreq utility callback information
171 * @pstate: Stores P state limits for this CPU
172 * @vid: Stores VID limits for this CPU
173 * @pid: Stores PID parameters for this CPU
174 * @last_sample_time: Last Sample time
175 * @prev_aperf: Last APERF value read from APERF MSR
176 * @prev_mperf: Last MPERF value read from MPERF MSR
177 * @prev_tsc: Last timestamp counter (TSC) value
178 * @prev_cummulative_iowait: IO Wait time difference from last and
179 * current sample
180 * @sample: Storage for storing last Sample data
181 * @acpi_perf_data: Stores ACPI perf information read from _PSS
182 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
183 *
184 * This structure stores per CPU instance data for all CPUs.
185 */
186 struct cpudata {
187 int cpu;
188
189 struct update_util_data update_util;
190
191 struct pstate_data pstate;
192 struct vid_data vid;
193 struct _pid pid;
194
195 u64 last_sample_time;
196 u64 prev_aperf;
197 u64 prev_mperf;
198 u64 prev_tsc;
199 u64 prev_cummulative_iowait;
200 struct sample sample;
201 #ifdef CONFIG_ACPI
202 struct acpi_processor_performance acpi_perf_data;
203 bool valid_pss_table;
204 #endif
205 };
206
207 static struct cpudata **all_cpu_data;
208
209 /**
210 * struct pid_adjust_policy - Stores static PID configuration data
211 * @sample_rate_ms: PID calculation sample rate in ms
212 * @sample_rate_ns: Sample rate calculation in ns
213 * @deadband: PID deadband
214 * @setpoint: PID Setpoint
215 * @p_gain_pct: PID proportional gain
216 * @i_gain_pct: PID integral gain
217 * @d_gain_pct: PID derivative gain
218 *
219 * Stores per CPU model static PID configuration data.
220 */
221 struct pstate_adjust_policy {
222 int sample_rate_ms;
223 s64 sample_rate_ns;
224 int deadband;
225 int setpoint;
226 int p_gain_pct;
227 int d_gain_pct;
228 int i_gain_pct;
229 };
230
231 /**
232 * struct pstate_funcs - Per CPU model specific callbacks
233 * @get_max: Callback to get maximum non turbo effective P state
234 * @get_max_physical: Callback to get maximum non turbo physical P state
235 * @get_min: Callback to get minimum P state
236 * @get_turbo: Callback to get turbo P state
237 * @get_scaling: Callback to get frequency scaling factor
238 * @get_val: Callback to convert P state to actual MSR write value
239 * @get_vid: Callback to get VID data for Atom platforms
240 * @get_target_pstate: Callback to a function to calculate next P state to use
241 *
242 * Core and Atom CPU models have different way to get P State limits. This
243 * structure is used to store those callbacks.
244 */
245 struct pstate_funcs {
246 int (*get_max)(void);
247 int (*get_max_physical)(void);
248 int (*get_min)(void);
249 int (*get_turbo)(void);
250 int (*get_scaling)(void);
251 u64 (*get_val)(struct cpudata*, int pstate);
252 void (*get_vid)(struct cpudata *);
253 int32_t (*get_target_pstate)(struct cpudata *);
254 };
255
256 /**
257 * struct cpu_defaults- Per CPU model default config data
258 * @pid_policy: PID config data
259 * @funcs: Callback function data
260 */
261 struct cpu_defaults {
262 struct pstate_adjust_policy pid_policy;
263 struct pstate_funcs funcs;
264 };
265
266 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
267 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
268
269 static struct pstate_adjust_policy pid_params;
270 static struct pstate_funcs pstate_funcs;
271 static int hwp_active;
272
273 #ifdef CONFIG_ACPI
274 static bool acpi_ppc;
275 #endif
276
277 /**
278 * struct perf_limits - Store user and policy limits
279 * @no_turbo: User requested turbo state from intel_pstate sysfs
280 * @turbo_disabled: Platform turbo status either from msr
281 * MSR_IA32_MISC_ENABLE or when maximum available pstate
282 * matches the maximum turbo pstate
283 * @max_perf_pct: Effective maximum performance limit in percentage, this
284 * is minimum of either limits enforced by cpufreq policy
285 * or limits from user set limits via intel_pstate sysfs
286 * @min_perf_pct: Effective minimum performance limit in percentage, this
287 * is maximum of either limits enforced by cpufreq policy
288 * or limits from user set limits via intel_pstate sysfs
289 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
290 * This value is used to limit max pstate
291 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
292 * This value is used to limit min pstate
293 * @max_policy_pct: The maximum performance in percentage enforced by
294 * cpufreq setpolicy interface
295 * @max_sysfs_pct: The maximum performance in percentage enforced by
296 * intel pstate sysfs interface
297 * @min_policy_pct: The minimum performance in percentage enforced by
298 * cpufreq setpolicy interface
299 * @min_sysfs_pct: The minimum performance in percentage enforced by
300 * intel pstate sysfs interface
301 *
302 * Storage for user and policy defined limits.
303 */
304 struct perf_limits {
305 int no_turbo;
306 int turbo_disabled;
307 int max_perf_pct;
308 int min_perf_pct;
309 int32_t max_perf;
310 int32_t min_perf;
311 int max_policy_pct;
312 int max_sysfs_pct;
313 int min_policy_pct;
314 int min_sysfs_pct;
315 };
316
317 static struct perf_limits performance_limits = {
318 .no_turbo = 0,
319 .turbo_disabled = 0,
320 .max_perf_pct = 100,
321 .max_perf = int_tofp(1),
322 .min_perf_pct = 100,
323 .min_perf = int_tofp(1),
324 .max_policy_pct = 100,
325 .max_sysfs_pct = 100,
326 .min_policy_pct = 0,
327 .min_sysfs_pct = 0,
328 };
329
330 static struct perf_limits powersave_limits = {
331 .no_turbo = 0,
332 .turbo_disabled = 0,
333 .max_perf_pct = 100,
334 .max_perf = int_tofp(1),
335 .min_perf_pct = 0,
336 .min_perf = 0,
337 .max_policy_pct = 100,
338 .max_sysfs_pct = 100,
339 .min_policy_pct = 0,
340 .min_sysfs_pct = 0,
341 };
342
343 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
344 static struct perf_limits *limits = &performance_limits;
345 #else
346 static struct perf_limits *limits = &powersave_limits;
347 #endif
348
349 #ifdef CONFIG_ACPI
350
351 static bool intel_pstate_get_ppc_enable_status(void)
352 {
353 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
354 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
355 return true;
356
357 return acpi_ppc;
358 }
359
360 /*
361 * The max target pstate ratio is a 8 bit value in both PLATFORM_INFO MSR and
362 * in TURBO_RATIO_LIMIT MSR, which pstate driver stores in max_pstate and
363 * max_turbo_pstate fields. The PERF_CTL MSR contains 16 bit value for P state
364 * ratio, out of it only high 8 bits are used. For example 0x1700 is setting
365 * target ratio 0x17. The _PSS control value stores in a format which can be
366 * directly written to PERF_CTL MSR. But in intel_pstate driver this shift
367 * occurs during write to PERF_CTL (E.g. for cores core_set_pstate()).
368 * This function converts the _PSS control value to intel pstate driver format
369 * for comparison and assignment.
370 */
371 static int convert_to_native_pstate_format(struct cpudata *cpu, int index)
372 {
373 return cpu->acpi_perf_data.states[index].control >> 8;
374 }
375
376 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
377 {
378 struct cpudata *cpu;
379 int turbo_pss_ctl;
380 int ret;
381 int i;
382
383 if (hwp_active)
384 return;
385
386 if (!intel_pstate_get_ppc_enable_status())
387 return;
388
389 cpu = all_cpu_data[policy->cpu];
390
391 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
392 policy->cpu);
393 if (ret)
394 return;
395
396 /*
397 * Check if the control value in _PSS is for PERF_CTL MSR, which should
398 * guarantee that the states returned by it map to the states in our
399 * list directly.
400 */
401 if (cpu->acpi_perf_data.control_register.space_id !=
402 ACPI_ADR_SPACE_FIXED_HARDWARE)
403 goto err;
404
405 /*
406 * If there is only one entry _PSS, simply ignore _PSS and continue as
407 * usual without taking _PSS into account
408 */
409 if (cpu->acpi_perf_data.state_count < 2)
410 goto err;
411
412 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
413 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
414 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
415 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
416 (u32) cpu->acpi_perf_data.states[i].core_frequency,
417 (u32) cpu->acpi_perf_data.states[i].power,
418 (u32) cpu->acpi_perf_data.states[i].control);
419 }
420
421 /*
422 * The _PSS table doesn't contain whole turbo frequency range.
423 * This just contains +1 MHZ above the max non turbo frequency,
424 * with control value corresponding to max turbo ratio. But
425 * when cpufreq set policy is called, it will call with this
426 * max frequency, which will cause a reduced performance as
427 * this driver uses real max turbo frequency as the max
428 * frequency. So correct this frequency in _PSS table to
429 * correct max turbo frequency based on the turbo ratio.
430 * Also need to convert to MHz as _PSS freq is in MHz.
431 */
432 turbo_pss_ctl = convert_to_native_pstate_format(cpu, 0);
433 if (turbo_pss_ctl > cpu->pstate.max_pstate)
434 cpu->acpi_perf_data.states[0].core_frequency =
435 policy->cpuinfo.max_freq / 1000;
436 cpu->valid_pss_table = true;
437 pr_info("_PPC limits will be enforced\n");
438
439 return;
440
441 err:
442 cpu->valid_pss_table = false;
443 acpi_processor_unregister_performance(policy->cpu);
444 }
445
446 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
447 {
448 struct cpudata *cpu;
449
450 cpu = all_cpu_data[policy->cpu];
451 if (!cpu->valid_pss_table)
452 return;
453
454 acpi_processor_unregister_performance(policy->cpu);
455 }
456
457 #else
458 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
459 {
460 }
461
462 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
463 {
464 }
465 #endif
466
467 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
468 int deadband, int integral) {
469 pid->setpoint = int_tofp(setpoint);
470 pid->deadband = int_tofp(deadband);
471 pid->integral = int_tofp(integral);
472 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
473 }
474
475 static inline void pid_p_gain_set(struct _pid *pid, int percent)
476 {
477 pid->p_gain = div_fp(percent, 100);
478 }
479
480 static inline void pid_i_gain_set(struct _pid *pid, int percent)
481 {
482 pid->i_gain = div_fp(percent, 100);
483 }
484
485 static inline void pid_d_gain_set(struct _pid *pid, int percent)
486 {
487 pid->d_gain = div_fp(percent, 100);
488 }
489
490 static signed int pid_calc(struct _pid *pid, int32_t busy)
491 {
492 signed int result;
493 int32_t pterm, dterm, fp_error;
494 int32_t integral_limit;
495
496 fp_error = pid->setpoint - busy;
497
498 if (abs(fp_error) <= pid->deadband)
499 return 0;
500
501 pterm = mul_fp(pid->p_gain, fp_error);
502
503 pid->integral += fp_error;
504
505 /*
506 * We limit the integral here so that it will never
507 * get higher than 30. This prevents it from becoming
508 * too large an input over long periods of time and allows
509 * it to get factored out sooner.
510 *
511 * The value of 30 was chosen through experimentation.
512 */
513 integral_limit = int_tofp(30);
514 if (pid->integral > integral_limit)
515 pid->integral = integral_limit;
516 if (pid->integral < -integral_limit)
517 pid->integral = -integral_limit;
518
519 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
520 pid->last_err = fp_error;
521
522 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
523 result = result + (1 << (FRAC_BITS-1));
524 return (signed int)fp_toint(result);
525 }
526
527 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
528 {
529 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
530 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
531 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
532
533 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
534 }
535
536 static inline void intel_pstate_reset_all_pid(void)
537 {
538 unsigned int cpu;
539
540 for_each_online_cpu(cpu) {
541 if (all_cpu_data[cpu])
542 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
543 }
544 }
545
546 static inline void update_turbo_state(void)
547 {
548 u64 misc_en;
549 struct cpudata *cpu;
550
551 cpu = all_cpu_data[0];
552 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
553 limits->turbo_disabled =
554 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
555 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
556 }
557
558 static void intel_pstate_hwp_set(const struct cpumask *cpumask)
559 {
560 int min, hw_min, max, hw_max, cpu, range, adj_range;
561 u64 value, cap;
562
563 rdmsrl(MSR_HWP_CAPABILITIES, cap);
564 hw_min = HWP_LOWEST_PERF(cap);
565 hw_max = HWP_HIGHEST_PERF(cap);
566 range = hw_max - hw_min;
567
568 for_each_cpu(cpu, cpumask) {
569 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
570 adj_range = limits->min_perf_pct * range / 100;
571 min = hw_min + adj_range;
572 value &= ~HWP_MIN_PERF(~0L);
573 value |= HWP_MIN_PERF(min);
574
575 adj_range = limits->max_perf_pct * range / 100;
576 max = hw_min + adj_range;
577 if (limits->no_turbo) {
578 hw_max = HWP_GUARANTEED_PERF(cap);
579 if (hw_max < max)
580 max = hw_max;
581 }
582
583 value &= ~HWP_MAX_PERF(~0L);
584 value |= HWP_MAX_PERF(max);
585 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
586 }
587 }
588
589 static void intel_pstate_hwp_set_online_cpus(void)
590 {
591 get_online_cpus();
592 intel_pstate_hwp_set(cpu_online_mask);
593 put_online_cpus();
594 }
595
596 /************************** debugfs begin ************************/
597 static int pid_param_set(void *data, u64 val)
598 {
599 *(u32 *)data = val;
600 intel_pstate_reset_all_pid();
601 return 0;
602 }
603
604 static int pid_param_get(void *data, u64 *val)
605 {
606 *val = *(u32 *)data;
607 return 0;
608 }
609 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
610
611 struct pid_param {
612 char *name;
613 void *value;
614 };
615
616 static struct pid_param pid_files[] = {
617 {"sample_rate_ms", &pid_params.sample_rate_ms},
618 {"d_gain_pct", &pid_params.d_gain_pct},
619 {"i_gain_pct", &pid_params.i_gain_pct},
620 {"deadband", &pid_params.deadband},
621 {"setpoint", &pid_params.setpoint},
622 {"p_gain_pct", &pid_params.p_gain_pct},
623 {NULL, NULL}
624 };
625
626 static void __init intel_pstate_debug_expose_params(void)
627 {
628 struct dentry *debugfs_parent;
629 int i = 0;
630
631 if (hwp_active)
632 return;
633 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
634 if (IS_ERR_OR_NULL(debugfs_parent))
635 return;
636 while (pid_files[i].name) {
637 debugfs_create_file(pid_files[i].name, 0660,
638 debugfs_parent, pid_files[i].value,
639 &fops_pid_param);
640 i++;
641 }
642 }
643
644 /************************** debugfs end ************************/
645
646 /************************** sysfs begin ************************/
647 #define show_one(file_name, object) \
648 static ssize_t show_##file_name \
649 (struct kobject *kobj, struct attribute *attr, char *buf) \
650 { \
651 return sprintf(buf, "%u\n", limits->object); \
652 }
653
654 static ssize_t show_turbo_pct(struct kobject *kobj,
655 struct attribute *attr, char *buf)
656 {
657 struct cpudata *cpu;
658 int total, no_turbo, turbo_pct;
659 uint32_t turbo_fp;
660
661 cpu = all_cpu_data[0];
662
663 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
664 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
665 turbo_fp = div_fp(no_turbo, total);
666 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
667 return sprintf(buf, "%u\n", turbo_pct);
668 }
669
670 static ssize_t show_num_pstates(struct kobject *kobj,
671 struct attribute *attr, char *buf)
672 {
673 struct cpudata *cpu;
674 int total;
675
676 cpu = all_cpu_data[0];
677 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
678 return sprintf(buf, "%u\n", total);
679 }
680
681 static ssize_t show_no_turbo(struct kobject *kobj,
682 struct attribute *attr, char *buf)
683 {
684 ssize_t ret;
685
686 update_turbo_state();
687 if (limits->turbo_disabled)
688 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
689 else
690 ret = sprintf(buf, "%u\n", limits->no_turbo);
691
692 return ret;
693 }
694
695 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
696 const char *buf, size_t count)
697 {
698 unsigned int input;
699 int ret;
700
701 ret = sscanf(buf, "%u", &input);
702 if (ret != 1)
703 return -EINVAL;
704
705 update_turbo_state();
706 if (limits->turbo_disabled) {
707 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
708 return -EPERM;
709 }
710
711 limits->no_turbo = clamp_t(int, input, 0, 1);
712
713 if (hwp_active)
714 intel_pstate_hwp_set_online_cpus();
715
716 return count;
717 }
718
719 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
720 const char *buf, size_t count)
721 {
722 unsigned int input;
723 int ret;
724
725 ret = sscanf(buf, "%u", &input);
726 if (ret != 1)
727 return -EINVAL;
728
729 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
730 limits->max_perf_pct = min(limits->max_policy_pct,
731 limits->max_sysfs_pct);
732 limits->max_perf_pct = max(limits->min_policy_pct,
733 limits->max_perf_pct);
734 limits->max_perf_pct = max(limits->min_perf_pct,
735 limits->max_perf_pct);
736 limits->max_perf = div_fp(limits->max_perf_pct, 100);
737
738 if (hwp_active)
739 intel_pstate_hwp_set_online_cpus();
740 return count;
741 }
742
743 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
744 const char *buf, size_t count)
745 {
746 unsigned int input;
747 int ret;
748
749 ret = sscanf(buf, "%u", &input);
750 if (ret != 1)
751 return -EINVAL;
752
753 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
754 limits->min_perf_pct = max(limits->min_policy_pct,
755 limits->min_sysfs_pct);
756 limits->min_perf_pct = min(limits->max_policy_pct,
757 limits->min_perf_pct);
758 limits->min_perf_pct = min(limits->max_perf_pct,
759 limits->min_perf_pct);
760 limits->min_perf = div_fp(limits->min_perf_pct, 100);
761
762 if (hwp_active)
763 intel_pstate_hwp_set_online_cpus();
764 return count;
765 }
766
767 show_one(max_perf_pct, max_perf_pct);
768 show_one(min_perf_pct, min_perf_pct);
769
770 define_one_global_rw(no_turbo);
771 define_one_global_rw(max_perf_pct);
772 define_one_global_rw(min_perf_pct);
773 define_one_global_ro(turbo_pct);
774 define_one_global_ro(num_pstates);
775
776 static struct attribute *intel_pstate_attributes[] = {
777 &no_turbo.attr,
778 &max_perf_pct.attr,
779 &min_perf_pct.attr,
780 &turbo_pct.attr,
781 &num_pstates.attr,
782 NULL
783 };
784
785 static struct attribute_group intel_pstate_attr_group = {
786 .attrs = intel_pstate_attributes,
787 };
788
789 static void __init intel_pstate_sysfs_expose_params(void)
790 {
791 struct kobject *intel_pstate_kobject;
792 int rc;
793
794 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
795 &cpu_subsys.dev_root->kobj);
796 BUG_ON(!intel_pstate_kobject);
797 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
798 BUG_ON(rc);
799 }
800 /************************** sysfs end ************************/
801
802 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
803 {
804 /* First disable HWP notification interrupt as we don't process them */
805 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
806
807 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
808 }
809
810 static int atom_get_min_pstate(void)
811 {
812 u64 value;
813
814 rdmsrl(ATOM_RATIOS, value);
815 return (value >> 8) & 0x7F;
816 }
817
818 static int atom_get_max_pstate(void)
819 {
820 u64 value;
821
822 rdmsrl(ATOM_RATIOS, value);
823 return (value >> 16) & 0x7F;
824 }
825
826 static int atom_get_turbo_pstate(void)
827 {
828 u64 value;
829
830 rdmsrl(ATOM_TURBO_RATIOS, value);
831 return value & 0x7F;
832 }
833
834 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
835 {
836 u64 val;
837 int32_t vid_fp;
838 u32 vid;
839
840 val = (u64)pstate << 8;
841 if (limits->no_turbo && !limits->turbo_disabled)
842 val |= (u64)1 << 32;
843
844 vid_fp = cpudata->vid.min + mul_fp(
845 int_tofp(pstate - cpudata->pstate.min_pstate),
846 cpudata->vid.ratio);
847
848 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
849 vid = ceiling_fp(vid_fp);
850
851 if (pstate > cpudata->pstate.max_pstate)
852 vid = cpudata->vid.turbo;
853
854 return val | vid;
855 }
856
857 static int silvermont_get_scaling(void)
858 {
859 u64 value;
860 int i;
861 /* Defined in Table 35-6 from SDM (Sept 2015) */
862 static int silvermont_freq_table[] = {
863 83300, 100000, 133300, 116700, 80000};
864
865 rdmsrl(MSR_FSB_FREQ, value);
866 i = value & 0x7;
867 WARN_ON(i > 4);
868
869 return silvermont_freq_table[i];
870 }
871
872 static int airmont_get_scaling(void)
873 {
874 u64 value;
875 int i;
876 /* Defined in Table 35-10 from SDM (Sept 2015) */
877 static int airmont_freq_table[] = {
878 83300, 100000, 133300, 116700, 80000,
879 93300, 90000, 88900, 87500};
880
881 rdmsrl(MSR_FSB_FREQ, value);
882 i = value & 0xF;
883 WARN_ON(i > 8);
884
885 return airmont_freq_table[i];
886 }
887
888 static void atom_get_vid(struct cpudata *cpudata)
889 {
890 u64 value;
891
892 rdmsrl(ATOM_VIDS, value);
893 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
894 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
895 cpudata->vid.ratio = div_fp(
896 cpudata->vid.max - cpudata->vid.min,
897 int_tofp(cpudata->pstate.max_pstate -
898 cpudata->pstate.min_pstate));
899
900 rdmsrl(ATOM_TURBO_VIDS, value);
901 cpudata->vid.turbo = value & 0x7f;
902 }
903
904 static int core_get_min_pstate(void)
905 {
906 u64 value;
907
908 rdmsrl(MSR_PLATFORM_INFO, value);
909 return (value >> 40) & 0xFF;
910 }
911
912 static int core_get_max_pstate_physical(void)
913 {
914 u64 value;
915
916 rdmsrl(MSR_PLATFORM_INFO, value);
917 return (value >> 8) & 0xFF;
918 }
919
920 static int core_get_max_pstate(void)
921 {
922 u64 tar;
923 u64 plat_info;
924 int max_pstate;
925 int err;
926
927 rdmsrl(MSR_PLATFORM_INFO, plat_info);
928 max_pstate = (plat_info >> 8) & 0xFF;
929
930 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
931 if (!err) {
932 /* Do some sanity checking for safety */
933 if (plat_info & 0x600000000) {
934 u64 tdp_ctrl;
935 u64 tdp_ratio;
936 int tdp_msr;
937
938 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
939 if (err)
940 goto skip_tar;
941
942 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
943 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
944 if (err)
945 goto skip_tar;
946
947 if (tdp_ratio - 1 == tar) {
948 max_pstate = tar;
949 pr_debug("max_pstate=TAC %x\n", max_pstate);
950 } else {
951 goto skip_tar;
952 }
953 }
954 }
955
956 skip_tar:
957 return max_pstate;
958 }
959
960 static int core_get_turbo_pstate(void)
961 {
962 u64 value;
963 int nont, ret;
964
965 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
966 nont = core_get_max_pstate();
967 ret = (value) & 255;
968 if (ret <= nont)
969 ret = nont;
970 return ret;
971 }
972
973 static inline int core_get_scaling(void)
974 {
975 return 100000;
976 }
977
978 static u64 core_get_val(struct cpudata *cpudata, int pstate)
979 {
980 u64 val;
981
982 val = (u64)pstate << 8;
983 if (limits->no_turbo && !limits->turbo_disabled)
984 val |= (u64)1 << 32;
985
986 return val;
987 }
988
989 static int knl_get_turbo_pstate(void)
990 {
991 u64 value;
992 int nont, ret;
993
994 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
995 nont = core_get_max_pstate();
996 ret = (((value) >> 8) & 0xFF);
997 if (ret <= nont)
998 ret = nont;
999 return ret;
1000 }
1001
1002 static struct cpu_defaults core_params = {
1003 .pid_policy = {
1004 .sample_rate_ms = 10,
1005 .deadband = 0,
1006 .setpoint = 97,
1007 .p_gain_pct = 20,
1008 .d_gain_pct = 0,
1009 .i_gain_pct = 0,
1010 },
1011 .funcs = {
1012 .get_max = core_get_max_pstate,
1013 .get_max_physical = core_get_max_pstate_physical,
1014 .get_min = core_get_min_pstate,
1015 .get_turbo = core_get_turbo_pstate,
1016 .get_scaling = core_get_scaling,
1017 .get_val = core_get_val,
1018 .get_target_pstate = get_target_pstate_use_performance,
1019 },
1020 };
1021
1022 static struct cpu_defaults silvermont_params = {
1023 .pid_policy = {
1024 .sample_rate_ms = 10,
1025 .deadband = 0,
1026 .setpoint = 60,
1027 .p_gain_pct = 14,
1028 .d_gain_pct = 0,
1029 .i_gain_pct = 4,
1030 },
1031 .funcs = {
1032 .get_max = atom_get_max_pstate,
1033 .get_max_physical = atom_get_max_pstate,
1034 .get_min = atom_get_min_pstate,
1035 .get_turbo = atom_get_turbo_pstate,
1036 .get_val = atom_get_val,
1037 .get_scaling = silvermont_get_scaling,
1038 .get_vid = atom_get_vid,
1039 .get_target_pstate = get_target_pstate_use_cpu_load,
1040 },
1041 };
1042
1043 static struct cpu_defaults airmont_params = {
1044 .pid_policy = {
1045 .sample_rate_ms = 10,
1046 .deadband = 0,
1047 .setpoint = 60,
1048 .p_gain_pct = 14,
1049 .d_gain_pct = 0,
1050 .i_gain_pct = 4,
1051 },
1052 .funcs = {
1053 .get_max = atom_get_max_pstate,
1054 .get_max_physical = atom_get_max_pstate,
1055 .get_min = atom_get_min_pstate,
1056 .get_turbo = atom_get_turbo_pstate,
1057 .get_val = atom_get_val,
1058 .get_scaling = airmont_get_scaling,
1059 .get_vid = atom_get_vid,
1060 .get_target_pstate = get_target_pstate_use_cpu_load,
1061 },
1062 };
1063
1064 static struct cpu_defaults knl_params = {
1065 .pid_policy = {
1066 .sample_rate_ms = 10,
1067 .deadband = 0,
1068 .setpoint = 97,
1069 .p_gain_pct = 20,
1070 .d_gain_pct = 0,
1071 .i_gain_pct = 0,
1072 },
1073 .funcs = {
1074 .get_max = core_get_max_pstate,
1075 .get_max_physical = core_get_max_pstate_physical,
1076 .get_min = core_get_min_pstate,
1077 .get_turbo = knl_get_turbo_pstate,
1078 .get_scaling = core_get_scaling,
1079 .get_val = core_get_val,
1080 .get_target_pstate = get_target_pstate_use_performance,
1081 },
1082 };
1083
1084 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
1085 {
1086 int max_perf = cpu->pstate.turbo_pstate;
1087 int max_perf_adj;
1088 int min_perf;
1089
1090 if (limits->no_turbo || limits->turbo_disabled)
1091 max_perf = cpu->pstate.max_pstate;
1092
1093 /*
1094 * performance can be limited by user through sysfs, by cpufreq
1095 * policy, or by cpu specific default values determined through
1096 * experimentation.
1097 */
1098 max_perf_adj = fp_toint(max_perf * limits->max_perf);
1099 *max = clamp_t(int, max_perf_adj,
1100 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
1101
1102 min_perf = fp_toint(max_perf * limits->min_perf);
1103 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
1104 }
1105
1106 static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
1107 {
1108 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
1109 cpu->pstate.current_pstate = pstate;
1110 }
1111
1112 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
1113 {
1114 int pstate = cpu->pstate.min_pstate;
1115
1116 intel_pstate_record_pstate(cpu, pstate);
1117 /*
1118 * Generally, there is no guarantee that this code will always run on
1119 * the CPU being updated, so force the register update to run on the
1120 * right CPU.
1121 */
1122 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1123 pstate_funcs.get_val(cpu, pstate));
1124 }
1125
1126 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1127 {
1128 cpu->pstate.min_pstate = pstate_funcs.get_min();
1129 cpu->pstate.max_pstate = pstate_funcs.get_max();
1130 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
1131 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
1132 cpu->pstate.scaling = pstate_funcs.get_scaling();
1133
1134 if (pstate_funcs.get_vid)
1135 pstate_funcs.get_vid(cpu);
1136
1137 intel_pstate_set_min_pstate(cpu);
1138 }
1139
1140 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
1141 {
1142 struct sample *sample = &cpu->sample;
1143 int64_t core_pct;
1144
1145 core_pct = sample->aperf * int_tofp(100);
1146 core_pct = div64_u64(core_pct, sample->mperf);
1147
1148 sample->core_pct_busy = (int32_t)core_pct;
1149 }
1150
1151 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
1152 {
1153 u64 aperf, mperf;
1154 unsigned long flags;
1155 u64 tsc;
1156
1157 local_irq_save(flags);
1158 rdmsrl(MSR_IA32_APERF, aperf);
1159 rdmsrl(MSR_IA32_MPERF, mperf);
1160 tsc = rdtsc();
1161 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
1162 local_irq_restore(flags);
1163 return false;
1164 }
1165 local_irq_restore(flags);
1166
1167 cpu->last_sample_time = cpu->sample.time;
1168 cpu->sample.time = time;
1169 cpu->sample.aperf = aperf;
1170 cpu->sample.mperf = mperf;
1171 cpu->sample.tsc = tsc;
1172 cpu->sample.aperf -= cpu->prev_aperf;
1173 cpu->sample.mperf -= cpu->prev_mperf;
1174 cpu->sample.tsc -= cpu->prev_tsc;
1175
1176 cpu->prev_aperf = aperf;
1177 cpu->prev_mperf = mperf;
1178 cpu->prev_tsc = tsc;
1179 /*
1180 * First time this function is invoked in a given cycle, all of the
1181 * previous sample data fields are equal to zero or stale and they must
1182 * be populated with meaningful numbers for things to work, so assume
1183 * that sample.time will always be reset before setting the utilization
1184 * update hook and make the caller skip the sample then.
1185 */
1186 return !!cpu->last_sample_time;
1187 }
1188
1189 static inline int32_t get_avg_frequency(struct cpudata *cpu)
1190 {
1191 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
1192 cpu->pstate.scaling, cpu->sample.mperf);
1193 }
1194
1195 static inline int32_t get_avg_pstate(struct cpudata *cpu)
1196 {
1197 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf,
1198 cpu->sample.mperf);
1199 }
1200
1201 static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1202 {
1203 struct sample *sample = &cpu->sample;
1204 u64 cummulative_iowait, delta_iowait_us;
1205 u64 delta_iowait_mperf;
1206 u64 mperf, now;
1207 int32_t cpu_load;
1208
1209 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1210
1211 /*
1212 * Convert iowait time into number of IO cycles spent at max_freq.
1213 * IO is considered as busy only for the cpu_load algorithm. For
1214 * performance this is not needed since we always try to reach the
1215 * maximum P-State, so we are already boosting the IOs.
1216 */
1217 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1218 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1219 cpu->pstate.max_pstate, MSEC_PER_SEC);
1220
1221 mperf = cpu->sample.mperf + delta_iowait_mperf;
1222 cpu->prev_cummulative_iowait = cummulative_iowait;
1223
1224 /*
1225 * The load can be estimated as the ratio of the mperf counter
1226 * running at a constant frequency during active periods
1227 * (C0) and the time stamp counter running at the same frequency
1228 * also during C-states.
1229 */
1230 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
1231 cpu->sample.busy_scaled = cpu_load;
1232
1233 return get_avg_pstate(cpu) - pid_calc(&cpu->pid, cpu_load);
1234 }
1235
1236 static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
1237 {
1238 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
1239 u64 duration_ns;
1240
1241 intel_pstate_calc_busy(cpu);
1242
1243 /*
1244 * core_busy is the ratio of actual performance to max
1245 * max_pstate is the max non turbo pstate available
1246 * current_pstate was the pstate that was requested during
1247 * the last sample period.
1248 *
1249 * We normalize core_busy, which was our actual percent
1250 * performance to what we requested during the last sample
1251 * period. The result will be a percentage of busy at a
1252 * specified pstate.
1253 */
1254 core_busy = cpu->sample.core_pct_busy;
1255 max_pstate = cpu->pstate.max_pstate_physical;
1256 current_pstate = cpu->pstate.current_pstate;
1257 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
1258
1259 /*
1260 * Since our utilization update callback will not run unless we are
1261 * in C0, check if the actual elapsed time is significantly greater (3x)
1262 * than our sample interval. If it is, then we were idle for a long
1263 * enough period of time to adjust our busyness.
1264 */
1265 duration_ns = cpu->sample.time - cpu->last_sample_time;
1266 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
1267 sample_ratio = div_fp(pid_params.sample_rate_ns, duration_ns);
1268 core_busy = mul_fp(core_busy, sample_ratio);
1269 } else {
1270 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1271 if (sample_ratio < int_tofp(1))
1272 core_busy = 0;
1273 }
1274
1275 cpu->sample.busy_scaled = core_busy;
1276 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
1277 }
1278
1279 static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1280 {
1281 int max_perf, min_perf;
1282
1283 update_turbo_state();
1284
1285 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1286 pstate = clamp_t(int, pstate, min_perf, max_perf);
1287 if (pstate == cpu->pstate.current_pstate)
1288 return;
1289
1290 intel_pstate_record_pstate(cpu, pstate);
1291 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1292 }
1293
1294 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1295 {
1296 int from, target_pstate;
1297 struct sample *sample;
1298
1299 from = cpu->pstate.current_pstate;
1300
1301 target_pstate = pstate_funcs.get_target_pstate(cpu);
1302
1303 intel_pstate_update_pstate(cpu, target_pstate);
1304
1305 sample = &cpu->sample;
1306 trace_pstate_sample(fp_toint(sample->core_pct_busy),
1307 fp_toint(sample->busy_scaled),
1308 from,
1309 cpu->pstate.current_pstate,
1310 sample->mperf,
1311 sample->aperf,
1312 sample->tsc,
1313 get_avg_frequency(cpu));
1314 }
1315
1316 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1317 unsigned long util, unsigned long max)
1318 {
1319 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1320 u64 delta_ns = time - cpu->sample.time;
1321
1322 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1323 bool sample_taken = intel_pstate_sample(cpu, time);
1324
1325 if (sample_taken && !hwp_active)
1326 intel_pstate_adjust_busy_pstate(cpu);
1327 }
1328 }
1329
1330 #define ICPU(model, policy) \
1331 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1332 (unsigned long)&policy }
1333
1334 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
1335 ICPU(0x2a, core_params),
1336 ICPU(0x2d, core_params),
1337 ICPU(0x37, silvermont_params),
1338 ICPU(0x3a, core_params),
1339 ICPU(0x3c, core_params),
1340 ICPU(0x3d, core_params),
1341 ICPU(0x3e, core_params),
1342 ICPU(0x3f, core_params),
1343 ICPU(0x45, core_params),
1344 ICPU(0x46, core_params),
1345 ICPU(0x47, core_params),
1346 ICPU(0x4c, airmont_params),
1347 ICPU(0x4e, core_params),
1348 ICPU(0x4f, core_params),
1349 ICPU(0x5e, core_params),
1350 ICPU(0x56, core_params),
1351 ICPU(0x57, knl_params),
1352 {}
1353 };
1354 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1355
1356 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1357 ICPU(0x56, core_params),
1358 {}
1359 };
1360
1361 static int intel_pstate_init_cpu(unsigned int cpunum)
1362 {
1363 struct cpudata *cpu;
1364
1365 if (!all_cpu_data[cpunum])
1366 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1367 GFP_KERNEL);
1368 if (!all_cpu_data[cpunum])
1369 return -ENOMEM;
1370
1371 cpu = all_cpu_data[cpunum];
1372
1373 cpu->cpu = cpunum;
1374
1375 if (hwp_active) {
1376 intel_pstate_hwp_enable(cpu);
1377 pid_params.sample_rate_ms = 50;
1378 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1379 }
1380
1381 intel_pstate_get_cpu_pstates(cpu);
1382
1383 intel_pstate_busy_pid_reset(cpu);
1384
1385 pr_debug("controlling: cpu %d\n", cpunum);
1386
1387 return 0;
1388 }
1389
1390 static unsigned int intel_pstate_get(unsigned int cpu_num)
1391 {
1392 struct sample *sample;
1393 struct cpudata *cpu;
1394
1395 cpu = all_cpu_data[cpu_num];
1396 if (!cpu)
1397 return 0;
1398 sample = &cpu->sample;
1399 return get_avg_frequency(cpu);
1400 }
1401
1402 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
1403 {
1404 struct cpudata *cpu = all_cpu_data[cpu_num];
1405
1406 /* Prevent intel_pstate_update_util() from using stale data. */
1407 cpu->sample.time = 0;
1408 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
1409 intel_pstate_update_util);
1410 }
1411
1412 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1413 {
1414 cpufreq_remove_update_util_hook(cpu);
1415 synchronize_sched();
1416 }
1417
1418 static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1419 {
1420 limits->no_turbo = 0;
1421 limits->turbo_disabled = 0;
1422 limits->max_perf_pct = 100;
1423 limits->max_perf = int_tofp(1);
1424 limits->min_perf_pct = 100;
1425 limits->min_perf = int_tofp(1);
1426 limits->max_policy_pct = 100;
1427 limits->max_sysfs_pct = 100;
1428 limits->min_policy_pct = 0;
1429 limits->min_sysfs_pct = 0;
1430 }
1431
1432 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1433 {
1434 struct cpudata *cpu;
1435
1436 if (!policy->cpuinfo.max_freq)
1437 return -ENODEV;
1438
1439 intel_pstate_clear_update_util_hook(policy->cpu);
1440
1441 cpu = all_cpu_data[0];
1442 if (cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate) {
1443 if (policy->max < policy->cpuinfo.max_freq &&
1444 policy->max > cpu->pstate.max_pstate * cpu->pstate.scaling) {
1445 pr_debug("policy->max > max non turbo frequency\n");
1446 policy->max = policy->cpuinfo.max_freq;
1447 }
1448 }
1449
1450 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
1451 limits = &performance_limits;
1452 if (policy->max >= policy->cpuinfo.max_freq) {
1453 pr_debug("set performance\n");
1454 intel_pstate_set_performance_limits(limits);
1455 goto out;
1456 }
1457 } else {
1458 pr_debug("set powersave\n");
1459 limits = &powersave_limits;
1460 }
1461
1462 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1463 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
1464 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1465 policy->cpuinfo.max_freq);
1466 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
1467
1468 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1469 limits->min_perf_pct = max(limits->min_policy_pct,
1470 limits->min_sysfs_pct);
1471 limits->min_perf_pct = min(limits->max_policy_pct,
1472 limits->min_perf_pct);
1473 limits->max_perf_pct = min(limits->max_policy_pct,
1474 limits->max_sysfs_pct);
1475 limits->max_perf_pct = max(limits->min_policy_pct,
1476 limits->max_perf_pct);
1477 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
1478
1479 /* Make sure min_perf_pct <= max_perf_pct */
1480 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
1481
1482 limits->min_perf = div_fp(limits->min_perf_pct, 100);
1483 limits->max_perf = div_fp(limits->max_perf_pct, 100);
1484
1485 out:
1486 intel_pstate_set_update_util_hook(policy->cpu);
1487
1488 if (hwp_active)
1489 intel_pstate_hwp_set(policy->cpus);
1490
1491 return 0;
1492 }
1493
1494 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1495 {
1496 cpufreq_verify_within_cpu_limits(policy);
1497
1498 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1499 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1500 return -EINVAL;
1501
1502 return 0;
1503 }
1504
1505 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1506 {
1507 int cpu_num = policy->cpu;
1508 struct cpudata *cpu = all_cpu_data[cpu_num];
1509
1510 pr_debug("CPU %d exiting\n", cpu_num);
1511
1512 intel_pstate_clear_update_util_hook(cpu_num);
1513
1514 if (hwp_active)
1515 return;
1516
1517 intel_pstate_set_min_pstate(cpu);
1518 }
1519
1520 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1521 {
1522 struct cpudata *cpu;
1523 int rc;
1524
1525 rc = intel_pstate_init_cpu(policy->cpu);
1526 if (rc)
1527 return rc;
1528
1529 cpu = all_cpu_data[policy->cpu];
1530
1531 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
1532 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1533 else
1534 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1535
1536 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1537 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1538
1539 /* cpuinfo and default policy values */
1540 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1541 policy->cpuinfo.max_freq =
1542 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1543 intel_pstate_init_acpi_perf_limits(policy);
1544 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1545 cpumask_set_cpu(policy->cpu, policy->cpus);
1546
1547 return 0;
1548 }
1549
1550 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
1551 {
1552 intel_pstate_exit_perf_limits(policy);
1553
1554 return 0;
1555 }
1556
1557 static struct cpufreq_driver intel_pstate_driver = {
1558 .flags = CPUFREQ_CONST_LOOPS,
1559 .verify = intel_pstate_verify_policy,
1560 .setpolicy = intel_pstate_set_policy,
1561 .get = intel_pstate_get,
1562 .init = intel_pstate_cpu_init,
1563 .exit = intel_pstate_cpu_exit,
1564 .stop_cpu = intel_pstate_stop_cpu,
1565 .name = "intel_pstate",
1566 };
1567
1568 static int __initdata no_load;
1569 static int __initdata no_hwp;
1570 static int __initdata hwp_only;
1571 static unsigned int force_load;
1572
1573 static int intel_pstate_msrs_not_valid(void)
1574 {
1575 if (!pstate_funcs.get_max() ||
1576 !pstate_funcs.get_min() ||
1577 !pstate_funcs.get_turbo())
1578 return -ENODEV;
1579
1580 return 0;
1581 }
1582
1583 static void copy_pid_params(struct pstate_adjust_policy *policy)
1584 {
1585 pid_params.sample_rate_ms = policy->sample_rate_ms;
1586 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
1587 pid_params.p_gain_pct = policy->p_gain_pct;
1588 pid_params.i_gain_pct = policy->i_gain_pct;
1589 pid_params.d_gain_pct = policy->d_gain_pct;
1590 pid_params.deadband = policy->deadband;
1591 pid_params.setpoint = policy->setpoint;
1592 }
1593
1594 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1595 {
1596 pstate_funcs.get_max = funcs->get_max;
1597 pstate_funcs.get_max_physical = funcs->get_max_physical;
1598 pstate_funcs.get_min = funcs->get_min;
1599 pstate_funcs.get_turbo = funcs->get_turbo;
1600 pstate_funcs.get_scaling = funcs->get_scaling;
1601 pstate_funcs.get_val = funcs->get_val;
1602 pstate_funcs.get_vid = funcs->get_vid;
1603 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1604
1605 }
1606
1607 #ifdef CONFIG_ACPI
1608
1609 static bool intel_pstate_no_acpi_pss(void)
1610 {
1611 int i;
1612
1613 for_each_possible_cpu(i) {
1614 acpi_status status;
1615 union acpi_object *pss;
1616 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1617 struct acpi_processor *pr = per_cpu(processors, i);
1618
1619 if (!pr)
1620 continue;
1621
1622 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1623 if (ACPI_FAILURE(status))
1624 continue;
1625
1626 pss = buffer.pointer;
1627 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1628 kfree(pss);
1629 return false;
1630 }
1631
1632 kfree(pss);
1633 }
1634
1635 return true;
1636 }
1637
1638 static bool intel_pstate_has_acpi_ppc(void)
1639 {
1640 int i;
1641
1642 for_each_possible_cpu(i) {
1643 struct acpi_processor *pr = per_cpu(processors, i);
1644
1645 if (!pr)
1646 continue;
1647 if (acpi_has_method(pr->handle, "_PPC"))
1648 return true;
1649 }
1650 return false;
1651 }
1652
1653 enum {
1654 PSS,
1655 PPC,
1656 };
1657
1658 struct hw_vendor_info {
1659 u16 valid;
1660 char oem_id[ACPI_OEM_ID_SIZE];
1661 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1662 int oem_pwr_table;
1663 };
1664
1665 /* Hardware vendor-specific info that has its own power management modes */
1666 static struct hw_vendor_info vendor_info[] = {
1667 {1, "HP ", "ProLiant", PSS},
1668 {1, "ORACLE", "X4-2 ", PPC},
1669 {1, "ORACLE", "X4-2L ", PPC},
1670 {1, "ORACLE", "X4-2B ", PPC},
1671 {1, "ORACLE", "X3-2 ", PPC},
1672 {1, "ORACLE", "X3-2L ", PPC},
1673 {1, "ORACLE", "X3-2B ", PPC},
1674 {1, "ORACLE", "X4470M2 ", PPC},
1675 {1, "ORACLE", "X4270M3 ", PPC},
1676 {1, "ORACLE", "X4270M2 ", PPC},
1677 {1, "ORACLE", "X4170M2 ", PPC},
1678 {1, "ORACLE", "X4170 M3", PPC},
1679 {1, "ORACLE", "X4275 M3", PPC},
1680 {1, "ORACLE", "X6-2 ", PPC},
1681 {1, "ORACLE", "Sudbury ", PPC},
1682 {0, "", ""},
1683 };
1684
1685 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1686 {
1687 struct acpi_table_header hdr;
1688 struct hw_vendor_info *v_info;
1689 const struct x86_cpu_id *id;
1690 u64 misc_pwr;
1691
1692 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1693 if (id) {
1694 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1695 if ( misc_pwr & (1 << 8))
1696 return true;
1697 }
1698
1699 if (acpi_disabled ||
1700 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1701 return false;
1702
1703 for (v_info = vendor_info; v_info->valid; v_info++) {
1704 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1705 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1706 ACPI_OEM_TABLE_ID_SIZE))
1707 switch (v_info->oem_pwr_table) {
1708 case PSS:
1709 return intel_pstate_no_acpi_pss();
1710 case PPC:
1711 return intel_pstate_has_acpi_ppc() &&
1712 (!force_load);
1713 }
1714 }
1715
1716 return false;
1717 }
1718 #else /* CONFIG_ACPI not enabled */
1719 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1720 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1721 #endif /* CONFIG_ACPI */
1722
1723 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1724 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1725 {}
1726 };
1727
1728 static int __init intel_pstate_init(void)
1729 {
1730 int cpu, rc = 0;
1731 const struct x86_cpu_id *id;
1732 struct cpu_defaults *cpu_def;
1733
1734 if (no_load)
1735 return -ENODEV;
1736
1737 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1738 copy_cpu_funcs(&core_params.funcs);
1739 hwp_active++;
1740 goto hwp_cpu_matched;
1741 }
1742
1743 id = x86_match_cpu(intel_pstate_cpu_ids);
1744 if (!id)
1745 return -ENODEV;
1746
1747 cpu_def = (struct cpu_defaults *)id->driver_data;
1748
1749 copy_pid_params(&cpu_def->pid_policy);
1750 copy_cpu_funcs(&cpu_def->funcs);
1751
1752 if (intel_pstate_msrs_not_valid())
1753 return -ENODEV;
1754
1755 hwp_cpu_matched:
1756 /*
1757 * The Intel pstate driver will be ignored if the platform
1758 * firmware has its own power management modes.
1759 */
1760 if (intel_pstate_platform_pwr_mgmt_exists())
1761 return -ENODEV;
1762
1763 pr_info("Intel P-state driver initializing\n");
1764
1765 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1766 if (!all_cpu_data)
1767 return -ENOMEM;
1768
1769 if (!hwp_active && hwp_only)
1770 goto out;
1771
1772 rc = cpufreq_register_driver(&intel_pstate_driver);
1773 if (rc)
1774 goto out;
1775
1776 intel_pstate_debug_expose_params();
1777 intel_pstate_sysfs_expose_params();
1778
1779 if (hwp_active)
1780 pr_info("HWP enabled\n");
1781
1782 return rc;
1783 out:
1784 get_online_cpus();
1785 for_each_online_cpu(cpu) {
1786 if (all_cpu_data[cpu]) {
1787 intel_pstate_clear_update_util_hook(cpu);
1788 kfree(all_cpu_data[cpu]);
1789 }
1790 }
1791
1792 put_online_cpus();
1793 vfree(all_cpu_data);
1794 return -ENODEV;
1795 }
1796 device_initcall(intel_pstate_init);
1797
1798 static int __init intel_pstate_setup(char *str)
1799 {
1800 if (!str)
1801 return -EINVAL;
1802
1803 if (!strcmp(str, "disable"))
1804 no_load = 1;
1805 if (!strcmp(str, "no_hwp")) {
1806 pr_info("HWP disabled\n");
1807 no_hwp = 1;
1808 }
1809 if (!strcmp(str, "force"))
1810 force_load = 1;
1811 if (!strcmp(str, "hwp_only"))
1812 hwp_only = 1;
1813
1814 #ifdef CONFIG_ACPI
1815 if (!strcmp(str, "support_acpi_ppc"))
1816 acpi_ppc = true;
1817 #endif
1818
1819 return 0;
1820 }
1821 early_param("intel_pstate", intel_pstate_setup);
1822
1823 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1824 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1825 MODULE_LICENSE("GPL");
This page took 0.100227 seconds and 5 git commands to generate.