intel_pstate: Add num_pstates to sysfs
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS 0x66a
36 #define BYT_VIDS 0x66b
37 #define BYT_TURBO_RATIOS 0x66c
38 #define BYT_TURBO_VIDS 0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52 return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57 int mask, ret;
58
59 ret = fp_toint(x);
60 mask = (1 << FRAC_BITS) - 1;
61 if (x & mask)
62 ret += 1;
63 return ret;
64 }
65
66 struct sample {
67 int32_t core_pct_busy;
68 u64 aperf;
69 u64 mperf;
70 int freq;
71 ktime_t time;
72 };
73
74 struct pstate_data {
75 int current_pstate;
76 int min_pstate;
77 int max_pstate;
78 int scaling;
79 int turbo_pstate;
80 };
81
82 struct vid_data {
83 int min;
84 int max;
85 int turbo;
86 int32_t ratio;
87 };
88
89 struct _pid {
90 int setpoint;
91 int32_t integral;
92 int32_t p_gain;
93 int32_t i_gain;
94 int32_t d_gain;
95 int deadband;
96 int32_t last_err;
97 };
98
99 struct cpudata {
100 int cpu;
101
102 struct timer_list timer;
103
104 struct pstate_data pstate;
105 struct vid_data vid;
106 struct _pid pid;
107
108 ktime_t last_sample_time;
109 u64 prev_aperf;
110 u64 prev_mperf;
111 struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116 int sample_rate_ms;
117 int deadband;
118 int setpoint;
119 int p_gain_pct;
120 int d_gain_pct;
121 int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125 int (*get_max)(void);
126 int (*get_min)(void);
127 int (*get_turbo)(void);
128 int (*get_scaling)(void);
129 void (*set)(struct cpudata*, int pstate);
130 void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134 struct pstate_adjust_policy pid_policy;
135 struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143 int no_turbo;
144 int turbo_disabled;
145 int max_perf_pct;
146 int min_perf_pct;
147 int32_t max_perf;
148 int32_t min_perf;
149 int max_policy_pct;
150 int max_sysfs_pct;
151 };
152
153 static struct perf_limits limits = {
154 .no_turbo = 0,
155 .turbo_disabled = 0,
156 .max_perf_pct = 100,
157 .max_perf = int_tofp(1),
158 .min_perf_pct = 0,
159 .min_perf = 0,
160 .max_policy_pct = 100,
161 .max_sysfs_pct = 100,
162 };
163
164 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
165 int deadband, int integral) {
166 pid->setpoint = setpoint;
167 pid->deadband = deadband;
168 pid->integral = int_tofp(integral);
169 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
170 }
171
172 static inline void pid_p_gain_set(struct _pid *pid, int percent)
173 {
174 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
175 }
176
177 static inline void pid_i_gain_set(struct _pid *pid, int percent)
178 {
179 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
180 }
181
182 static inline void pid_d_gain_set(struct _pid *pid, int percent)
183 {
184 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
185 }
186
187 static signed int pid_calc(struct _pid *pid, int32_t busy)
188 {
189 signed int result;
190 int32_t pterm, dterm, fp_error;
191 int32_t integral_limit;
192
193 fp_error = int_tofp(pid->setpoint) - busy;
194
195 if (abs(fp_error) <= int_tofp(pid->deadband))
196 return 0;
197
198 pterm = mul_fp(pid->p_gain, fp_error);
199
200 pid->integral += fp_error;
201
202 /*
203 * We limit the integral here so that it will never
204 * get higher than 30. This prevents it from becoming
205 * too large an input over long periods of time and allows
206 * it to get factored out sooner.
207 *
208 * The value of 30 was chosen through experimentation.
209 */
210 integral_limit = int_tofp(30);
211 if (pid->integral > integral_limit)
212 pid->integral = integral_limit;
213 if (pid->integral < -integral_limit)
214 pid->integral = -integral_limit;
215
216 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
217 pid->last_err = fp_error;
218
219 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
220 result = result + (1 << (FRAC_BITS-1));
221 return (signed int)fp_toint(result);
222 }
223
224 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
225 {
226 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
227 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
228 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
229
230 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
231 }
232
233 static inline void intel_pstate_reset_all_pid(void)
234 {
235 unsigned int cpu;
236
237 for_each_online_cpu(cpu) {
238 if (all_cpu_data[cpu])
239 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
240 }
241 }
242
243 static inline void update_turbo_state(void)
244 {
245 u64 misc_en;
246 struct cpudata *cpu;
247
248 cpu = all_cpu_data[0];
249 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
250 limits.turbo_disabled =
251 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
252 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
253 }
254
255 #define PCT_TO_HWP(x) (x * 255 / 100)
256 static void intel_pstate_hwp_set(void)
257 {
258 int min, max, cpu;
259 u64 value, freq;
260
261 get_online_cpus();
262
263 for_each_online_cpu(cpu) {
264 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
265 min = PCT_TO_HWP(limits.min_perf_pct);
266 value &= ~HWP_MIN_PERF(~0L);
267 value |= HWP_MIN_PERF(min);
268
269 max = PCT_TO_HWP(limits.max_perf_pct);
270 if (limits.no_turbo) {
271 rdmsrl( MSR_HWP_CAPABILITIES, freq);
272 max = HWP_GUARANTEED_PERF(freq);
273 }
274
275 value &= ~HWP_MAX_PERF(~0L);
276 value |= HWP_MAX_PERF(max);
277 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
278 }
279
280 put_online_cpus();
281 }
282
283 /************************** debugfs begin ************************/
284 static int pid_param_set(void *data, u64 val)
285 {
286 *(u32 *)data = val;
287 intel_pstate_reset_all_pid();
288 return 0;
289 }
290
291 static int pid_param_get(void *data, u64 *val)
292 {
293 *val = *(u32 *)data;
294 return 0;
295 }
296 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
297
298 struct pid_param {
299 char *name;
300 void *value;
301 };
302
303 static struct pid_param pid_files[] = {
304 {"sample_rate_ms", &pid_params.sample_rate_ms},
305 {"d_gain_pct", &pid_params.d_gain_pct},
306 {"i_gain_pct", &pid_params.i_gain_pct},
307 {"deadband", &pid_params.deadband},
308 {"setpoint", &pid_params.setpoint},
309 {"p_gain_pct", &pid_params.p_gain_pct},
310 {NULL, NULL}
311 };
312
313 static void __init intel_pstate_debug_expose_params(void)
314 {
315 struct dentry *debugfs_parent;
316 int i = 0;
317
318 if (hwp_active)
319 return;
320 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
321 if (IS_ERR_OR_NULL(debugfs_parent))
322 return;
323 while (pid_files[i].name) {
324 debugfs_create_file(pid_files[i].name, 0660,
325 debugfs_parent, pid_files[i].value,
326 &fops_pid_param);
327 i++;
328 }
329 }
330
331 /************************** debugfs end ************************/
332
333 /************************** sysfs begin ************************/
334 #define show_one(file_name, object) \
335 static ssize_t show_##file_name \
336 (struct kobject *kobj, struct attribute *attr, char *buf) \
337 { \
338 return sprintf(buf, "%u\n", limits.object); \
339 }
340
341 static ssize_t show_turbo_pct(struct kobject *kobj,
342 struct attribute *attr, char *buf)
343 {
344 struct cpudata *cpu;
345 int total, no_turbo, turbo_pct;
346 uint32_t turbo_fp;
347
348 cpu = all_cpu_data[0];
349
350 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
351 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
352 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
353 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
354 return sprintf(buf, "%u\n", turbo_pct);
355 }
356
357 static ssize_t show_num_pstates(struct kobject *kobj,
358 struct attribute *attr, char *buf)
359 {
360 struct cpudata *cpu;
361 int total;
362
363 cpu = all_cpu_data[0];
364 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
365 return sprintf(buf, "%u\n", total);
366 }
367
368 static ssize_t show_no_turbo(struct kobject *kobj,
369 struct attribute *attr, char *buf)
370 {
371 ssize_t ret;
372
373 update_turbo_state();
374 if (limits.turbo_disabled)
375 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
376 else
377 ret = sprintf(buf, "%u\n", limits.no_turbo);
378
379 return ret;
380 }
381
382 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
383 const char *buf, size_t count)
384 {
385 unsigned int input;
386 int ret;
387
388 ret = sscanf(buf, "%u", &input);
389 if (ret != 1)
390 return -EINVAL;
391
392 update_turbo_state();
393 if (limits.turbo_disabled) {
394 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
395 return -EPERM;
396 }
397
398 limits.no_turbo = clamp_t(int, input, 0, 1);
399
400 if (hwp_active)
401 intel_pstate_hwp_set();
402
403 return count;
404 }
405
406 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
407 const char *buf, size_t count)
408 {
409 unsigned int input;
410 int ret;
411
412 ret = sscanf(buf, "%u", &input);
413 if (ret != 1)
414 return -EINVAL;
415
416 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
417 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
418 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
419
420 if (hwp_active)
421 intel_pstate_hwp_set();
422 return count;
423 }
424
425 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
426 const char *buf, size_t count)
427 {
428 unsigned int input;
429 int ret;
430
431 ret = sscanf(buf, "%u", &input);
432 if (ret != 1)
433 return -EINVAL;
434 limits.min_perf_pct = clamp_t(int, input, 0 , 100);
435 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
436
437 if (hwp_active)
438 intel_pstate_hwp_set();
439 return count;
440 }
441
442 show_one(max_perf_pct, max_perf_pct);
443 show_one(min_perf_pct, min_perf_pct);
444
445 define_one_global_rw(no_turbo);
446 define_one_global_rw(max_perf_pct);
447 define_one_global_rw(min_perf_pct);
448 define_one_global_ro(turbo_pct);
449 define_one_global_ro(num_pstates);
450
451 static struct attribute *intel_pstate_attributes[] = {
452 &no_turbo.attr,
453 &max_perf_pct.attr,
454 &min_perf_pct.attr,
455 &turbo_pct.attr,
456 &num_pstates.attr,
457 NULL
458 };
459
460 static struct attribute_group intel_pstate_attr_group = {
461 .attrs = intel_pstate_attributes,
462 };
463
464 static void __init intel_pstate_sysfs_expose_params(void)
465 {
466 struct kobject *intel_pstate_kobject;
467 int rc;
468
469 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
470 &cpu_subsys.dev_root->kobj);
471 BUG_ON(!intel_pstate_kobject);
472 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
473 BUG_ON(rc);
474 }
475 /************************** sysfs end ************************/
476
477 static void intel_pstate_hwp_enable(void)
478 {
479 hwp_active++;
480 pr_info("intel_pstate HWP enabled\n");
481
482 wrmsrl( MSR_PM_ENABLE, 0x1);
483 }
484
485 static int byt_get_min_pstate(void)
486 {
487 u64 value;
488
489 rdmsrl(BYT_RATIOS, value);
490 return (value >> 8) & 0x7F;
491 }
492
493 static int byt_get_max_pstate(void)
494 {
495 u64 value;
496
497 rdmsrl(BYT_RATIOS, value);
498 return (value >> 16) & 0x7F;
499 }
500
501 static int byt_get_turbo_pstate(void)
502 {
503 u64 value;
504
505 rdmsrl(BYT_TURBO_RATIOS, value);
506 return value & 0x7F;
507 }
508
509 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
510 {
511 u64 val;
512 int32_t vid_fp;
513 u32 vid;
514
515 val = pstate << 8;
516 if (limits.no_turbo && !limits.turbo_disabled)
517 val |= (u64)1 << 32;
518
519 vid_fp = cpudata->vid.min + mul_fp(
520 int_tofp(pstate - cpudata->pstate.min_pstate),
521 cpudata->vid.ratio);
522
523 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
524 vid = ceiling_fp(vid_fp);
525
526 if (pstate > cpudata->pstate.max_pstate)
527 vid = cpudata->vid.turbo;
528
529 val |= vid;
530
531 wrmsrl(MSR_IA32_PERF_CTL, val);
532 }
533
534 #define BYT_BCLK_FREQS 5
535 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
536
537 static int byt_get_scaling(void)
538 {
539 u64 value;
540 int i;
541
542 rdmsrl(MSR_FSB_FREQ, value);
543 i = value & 0x3;
544
545 BUG_ON(i > BYT_BCLK_FREQS);
546
547 return byt_freq_table[i] * 100;
548 }
549
550 static void byt_get_vid(struct cpudata *cpudata)
551 {
552 u64 value;
553
554 rdmsrl(BYT_VIDS, value);
555 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
556 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
557 cpudata->vid.ratio = div_fp(
558 cpudata->vid.max - cpudata->vid.min,
559 int_tofp(cpudata->pstate.max_pstate -
560 cpudata->pstate.min_pstate));
561
562 rdmsrl(BYT_TURBO_VIDS, value);
563 cpudata->vid.turbo = value & 0x7f;
564 }
565
566 static int core_get_min_pstate(void)
567 {
568 u64 value;
569
570 rdmsrl(MSR_PLATFORM_INFO, value);
571 return (value >> 40) & 0xFF;
572 }
573
574 static int core_get_max_pstate(void)
575 {
576 u64 value;
577
578 rdmsrl(MSR_PLATFORM_INFO, value);
579 return (value >> 8) & 0xFF;
580 }
581
582 static int core_get_turbo_pstate(void)
583 {
584 u64 value;
585 int nont, ret;
586
587 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
588 nont = core_get_max_pstate();
589 ret = (value) & 255;
590 if (ret <= nont)
591 ret = nont;
592 return ret;
593 }
594
595 static inline int core_get_scaling(void)
596 {
597 return 100000;
598 }
599
600 static void core_set_pstate(struct cpudata *cpudata, int pstate)
601 {
602 u64 val;
603
604 val = pstate << 8;
605 if (limits.no_turbo && !limits.turbo_disabled)
606 val |= (u64)1 << 32;
607
608 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
609 }
610
611 static struct cpu_defaults core_params = {
612 .pid_policy = {
613 .sample_rate_ms = 10,
614 .deadband = 0,
615 .setpoint = 97,
616 .p_gain_pct = 20,
617 .d_gain_pct = 0,
618 .i_gain_pct = 0,
619 },
620 .funcs = {
621 .get_max = core_get_max_pstate,
622 .get_min = core_get_min_pstate,
623 .get_turbo = core_get_turbo_pstate,
624 .get_scaling = core_get_scaling,
625 .set = core_set_pstate,
626 },
627 };
628
629 static struct cpu_defaults byt_params = {
630 .pid_policy = {
631 .sample_rate_ms = 10,
632 .deadband = 0,
633 .setpoint = 97,
634 .p_gain_pct = 14,
635 .d_gain_pct = 0,
636 .i_gain_pct = 4,
637 },
638 .funcs = {
639 .get_max = byt_get_max_pstate,
640 .get_min = byt_get_min_pstate,
641 .get_turbo = byt_get_turbo_pstate,
642 .set = byt_set_pstate,
643 .get_scaling = byt_get_scaling,
644 .get_vid = byt_get_vid,
645 },
646 };
647
648 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
649 {
650 int max_perf = cpu->pstate.turbo_pstate;
651 int max_perf_adj;
652 int min_perf;
653
654 if (limits.no_turbo || limits.turbo_disabled)
655 max_perf = cpu->pstate.max_pstate;
656
657 /*
658 * performance can be limited by user through sysfs, by cpufreq
659 * policy, or by cpu specific default values determined through
660 * experimentation.
661 */
662 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
663 *max = clamp_t(int, max_perf_adj,
664 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
665
666 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
667 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
668 }
669
670 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
671 {
672 int max_perf, min_perf;
673
674 update_turbo_state();
675
676 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
677
678 pstate = clamp_t(int, pstate, min_perf, max_perf);
679
680 if (pstate == cpu->pstate.current_pstate)
681 return;
682
683 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
684
685 cpu->pstate.current_pstate = pstate;
686
687 pstate_funcs.set(cpu, pstate);
688 }
689
690 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
691 {
692 cpu->pstate.min_pstate = pstate_funcs.get_min();
693 cpu->pstate.max_pstate = pstate_funcs.get_max();
694 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
695 cpu->pstate.scaling = pstate_funcs.get_scaling();
696
697 if (pstate_funcs.get_vid)
698 pstate_funcs.get_vid(cpu);
699 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
700 }
701
702 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
703 {
704 struct sample *sample = &cpu->sample;
705 int64_t core_pct;
706
707 core_pct = int_tofp(sample->aperf) * int_tofp(100);
708 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
709
710 sample->freq = fp_toint(
711 mul_fp(int_tofp(
712 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
713 core_pct));
714
715 sample->core_pct_busy = (int32_t)core_pct;
716 }
717
718 static inline void intel_pstate_sample(struct cpudata *cpu)
719 {
720 u64 aperf, mperf;
721 unsigned long flags;
722
723 local_irq_save(flags);
724 rdmsrl(MSR_IA32_APERF, aperf);
725 rdmsrl(MSR_IA32_MPERF, mperf);
726 local_irq_restore(flags);
727
728 cpu->last_sample_time = cpu->sample.time;
729 cpu->sample.time = ktime_get();
730 cpu->sample.aperf = aperf;
731 cpu->sample.mperf = mperf;
732 cpu->sample.aperf -= cpu->prev_aperf;
733 cpu->sample.mperf -= cpu->prev_mperf;
734
735 intel_pstate_calc_busy(cpu);
736
737 cpu->prev_aperf = aperf;
738 cpu->prev_mperf = mperf;
739 }
740
741 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
742 {
743 int delay;
744
745 delay = msecs_to_jiffies(50);
746 mod_timer_pinned(&cpu->timer, jiffies + delay);
747 }
748
749 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
750 {
751 int delay;
752
753 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
754 mod_timer_pinned(&cpu->timer, jiffies + delay);
755 }
756
757 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
758 {
759 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
760 u32 duration_us;
761 u32 sample_time;
762
763 /*
764 * core_busy is the ratio of actual performance to max
765 * max_pstate is the max non turbo pstate available
766 * current_pstate was the pstate that was requested during
767 * the last sample period.
768 *
769 * We normalize core_busy, which was our actual percent
770 * performance to what we requested during the last sample
771 * period. The result will be a percentage of busy at a
772 * specified pstate.
773 */
774 core_busy = cpu->sample.core_pct_busy;
775 max_pstate = int_tofp(cpu->pstate.max_pstate);
776 current_pstate = int_tofp(cpu->pstate.current_pstate);
777 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
778
779 /*
780 * Since we have a deferred timer, it will not fire unless
781 * we are in C0. So, determine if the actual elapsed time
782 * is significantly greater (3x) than our sample interval. If it
783 * is, then we were idle for a long enough period of time
784 * to adjust our busyness.
785 */
786 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
787 duration_us = (u32) ktime_us_delta(cpu->sample.time,
788 cpu->last_sample_time);
789 if (duration_us > sample_time * 3) {
790 sample_ratio = div_fp(int_tofp(sample_time),
791 int_tofp(duration_us));
792 core_busy = mul_fp(core_busy, sample_ratio);
793 }
794
795 return core_busy;
796 }
797
798 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
799 {
800 int32_t busy_scaled;
801 struct _pid *pid;
802 signed int ctl;
803
804 pid = &cpu->pid;
805 busy_scaled = intel_pstate_get_scaled_busy(cpu);
806
807 ctl = pid_calc(pid, busy_scaled);
808
809 /* Negative values of ctl increase the pstate and vice versa */
810 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
811 }
812
813 static void intel_hwp_timer_func(unsigned long __data)
814 {
815 struct cpudata *cpu = (struct cpudata *) __data;
816
817 intel_pstate_sample(cpu);
818 intel_hwp_set_sample_time(cpu);
819 }
820
821 static void intel_pstate_timer_func(unsigned long __data)
822 {
823 struct cpudata *cpu = (struct cpudata *) __data;
824 struct sample *sample;
825
826 intel_pstate_sample(cpu);
827
828 sample = &cpu->sample;
829
830 intel_pstate_adjust_busy_pstate(cpu);
831
832 trace_pstate_sample(fp_toint(sample->core_pct_busy),
833 fp_toint(intel_pstate_get_scaled_busy(cpu)),
834 cpu->pstate.current_pstate,
835 sample->mperf,
836 sample->aperf,
837 sample->freq);
838
839 intel_pstate_set_sample_time(cpu);
840 }
841
842 #define ICPU(model, policy) \
843 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
844 (unsigned long)&policy }
845
846 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
847 ICPU(0x2a, core_params),
848 ICPU(0x2d, core_params),
849 ICPU(0x37, byt_params),
850 ICPU(0x3a, core_params),
851 ICPU(0x3c, core_params),
852 ICPU(0x3d, core_params),
853 ICPU(0x3e, core_params),
854 ICPU(0x3f, core_params),
855 ICPU(0x45, core_params),
856 ICPU(0x46, core_params),
857 ICPU(0x47, core_params),
858 ICPU(0x4c, byt_params),
859 ICPU(0x4e, core_params),
860 ICPU(0x4f, core_params),
861 ICPU(0x56, core_params),
862 {}
863 };
864 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
865
866 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
867 ICPU(0x56, core_params),
868 {}
869 };
870
871 static int intel_pstate_init_cpu(unsigned int cpunum)
872 {
873 struct cpudata *cpu;
874
875 if (!all_cpu_data[cpunum])
876 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
877 GFP_KERNEL);
878 if (!all_cpu_data[cpunum])
879 return -ENOMEM;
880
881 cpu = all_cpu_data[cpunum];
882
883 cpu->cpu = cpunum;
884 intel_pstate_get_cpu_pstates(cpu);
885
886 init_timer_deferrable(&cpu->timer);
887 cpu->timer.data = (unsigned long)cpu;
888 cpu->timer.expires = jiffies + HZ/100;
889
890 if (!hwp_active)
891 cpu->timer.function = intel_pstate_timer_func;
892 else
893 cpu->timer.function = intel_hwp_timer_func;
894
895 intel_pstate_busy_pid_reset(cpu);
896 intel_pstate_sample(cpu);
897
898 add_timer_on(&cpu->timer, cpunum);
899
900 pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
901
902 return 0;
903 }
904
905 static unsigned int intel_pstate_get(unsigned int cpu_num)
906 {
907 struct sample *sample;
908 struct cpudata *cpu;
909
910 cpu = all_cpu_data[cpu_num];
911 if (!cpu)
912 return 0;
913 sample = &cpu->sample;
914 return sample->freq;
915 }
916
917 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
918 {
919 if (!policy->cpuinfo.max_freq)
920 return -ENODEV;
921
922 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
923 limits.min_perf_pct = 100;
924 limits.min_perf = int_tofp(1);
925 limits.max_policy_pct = 100;
926 limits.max_perf_pct = 100;
927 limits.max_perf = int_tofp(1);
928 limits.no_turbo = 0;
929 return 0;
930 }
931
932 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
933 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
934 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
935
936 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
937 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
938 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
939 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
940
941 if (hwp_active)
942 intel_pstate_hwp_set();
943
944 return 0;
945 }
946
947 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
948 {
949 cpufreq_verify_within_cpu_limits(policy);
950
951 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
952 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
953 return -EINVAL;
954
955 return 0;
956 }
957
958 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
959 {
960 int cpu_num = policy->cpu;
961 struct cpudata *cpu = all_cpu_data[cpu_num];
962
963 pr_info("intel_pstate CPU %d exiting\n", cpu_num);
964
965 del_timer_sync(&all_cpu_data[cpu_num]->timer);
966 if (hwp_active)
967 return;
968
969 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
970 }
971
972 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
973 {
974 struct cpudata *cpu;
975 int rc;
976
977 rc = intel_pstate_init_cpu(policy->cpu);
978 if (rc)
979 return rc;
980
981 cpu = all_cpu_data[policy->cpu];
982
983 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
984 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
985 else
986 policy->policy = CPUFREQ_POLICY_POWERSAVE;
987
988 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
989 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
990
991 /* cpuinfo and default policy values */
992 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
993 policy->cpuinfo.max_freq =
994 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
995 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
996 cpumask_set_cpu(policy->cpu, policy->cpus);
997
998 return 0;
999 }
1000
1001 static struct cpufreq_driver intel_pstate_driver = {
1002 .flags = CPUFREQ_CONST_LOOPS,
1003 .verify = intel_pstate_verify_policy,
1004 .setpolicy = intel_pstate_set_policy,
1005 .get = intel_pstate_get,
1006 .init = intel_pstate_cpu_init,
1007 .stop_cpu = intel_pstate_stop_cpu,
1008 .name = "intel_pstate",
1009 };
1010
1011 static int __initdata no_load;
1012 static int __initdata no_hwp;
1013 static unsigned int force_load;
1014
1015 static int intel_pstate_msrs_not_valid(void)
1016 {
1017 /* Check that all the msr's we are using are valid. */
1018 u64 aperf, mperf, tmp;
1019
1020 rdmsrl(MSR_IA32_APERF, aperf);
1021 rdmsrl(MSR_IA32_MPERF, mperf);
1022
1023 if (!pstate_funcs.get_max() ||
1024 !pstate_funcs.get_min() ||
1025 !pstate_funcs.get_turbo())
1026 return -ENODEV;
1027
1028 rdmsrl(MSR_IA32_APERF, tmp);
1029 if (!(tmp - aperf))
1030 return -ENODEV;
1031
1032 rdmsrl(MSR_IA32_MPERF, tmp);
1033 if (!(tmp - mperf))
1034 return -ENODEV;
1035
1036 return 0;
1037 }
1038
1039 static void copy_pid_params(struct pstate_adjust_policy *policy)
1040 {
1041 pid_params.sample_rate_ms = policy->sample_rate_ms;
1042 pid_params.p_gain_pct = policy->p_gain_pct;
1043 pid_params.i_gain_pct = policy->i_gain_pct;
1044 pid_params.d_gain_pct = policy->d_gain_pct;
1045 pid_params.deadband = policy->deadband;
1046 pid_params.setpoint = policy->setpoint;
1047 }
1048
1049 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1050 {
1051 pstate_funcs.get_max = funcs->get_max;
1052 pstate_funcs.get_min = funcs->get_min;
1053 pstate_funcs.get_turbo = funcs->get_turbo;
1054 pstate_funcs.get_scaling = funcs->get_scaling;
1055 pstate_funcs.set = funcs->set;
1056 pstate_funcs.get_vid = funcs->get_vid;
1057 }
1058
1059 #if IS_ENABLED(CONFIG_ACPI)
1060 #include <acpi/processor.h>
1061
1062 static bool intel_pstate_no_acpi_pss(void)
1063 {
1064 int i;
1065
1066 for_each_possible_cpu(i) {
1067 acpi_status status;
1068 union acpi_object *pss;
1069 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1070 struct acpi_processor *pr = per_cpu(processors, i);
1071
1072 if (!pr)
1073 continue;
1074
1075 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1076 if (ACPI_FAILURE(status))
1077 continue;
1078
1079 pss = buffer.pointer;
1080 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1081 kfree(pss);
1082 return false;
1083 }
1084
1085 kfree(pss);
1086 }
1087
1088 return true;
1089 }
1090
1091 static bool intel_pstate_has_acpi_ppc(void)
1092 {
1093 int i;
1094
1095 for_each_possible_cpu(i) {
1096 struct acpi_processor *pr = per_cpu(processors, i);
1097
1098 if (!pr)
1099 continue;
1100 if (acpi_has_method(pr->handle, "_PPC"))
1101 return true;
1102 }
1103 return false;
1104 }
1105
1106 enum {
1107 PSS,
1108 PPC,
1109 };
1110
1111 struct hw_vendor_info {
1112 u16 valid;
1113 char oem_id[ACPI_OEM_ID_SIZE];
1114 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1115 int oem_pwr_table;
1116 };
1117
1118 /* Hardware vendor-specific info that has its own power management modes */
1119 static struct hw_vendor_info vendor_info[] = {
1120 {1, "HP ", "ProLiant", PSS},
1121 {1, "ORACLE", "X4-2 ", PPC},
1122 {1, "ORACLE", "X4-2L ", PPC},
1123 {1, "ORACLE", "X4-2B ", PPC},
1124 {1, "ORACLE", "X3-2 ", PPC},
1125 {1, "ORACLE", "X3-2L ", PPC},
1126 {1, "ORACLE", "X3-2B ", PPC},
1127 {1, "ORACLE", "X4470M2 ", PPC},
1128 {1, "ORACLE", "X4270M3 ", PPC},
1129 {1, "ORACLE", "X4270M2 ", PPC},
1130 {1, "ORACLE", "X4170M2 ", PPC},
1131 {0, "", ""},
1132 };
1133
1134 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1135 {
1136 struct acpi_table_header hdr;
1137 struct hw_vendor_info *v_info;
1138 const struct x86_cpu_id *id;
1139 u64 misc_pwr;
1140
1141 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1142 if (id) {
1143 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1144 if ( misc_pwr & (1 << 8))
1145 return true;
1146 }
1147
1148 if (acpi_disabled ||
1149 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1150 return false;
1151
1152 for (v_info = vendor_info; v_info->valid; v_info++) {
1153 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1154 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1155 ACPI_OEM_TABLE_ID_SIZE))
1156 switch (v_info->oem_pwr_table) {
1157 case PSS:
1158 return intel_pstate_no_acpi_pss();
1159 case PPC:
1160 return intel_pstate_has_acpi_ppc() &&
1161 (!force_load);
1162 }
1163 }
1164
1165 return false;
1166 }
1167 #else /* CONFIG_ACPI not enabled */
1168 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1169 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1170 #endif /* CONFIG_ACPI */
1171
1172 static int __init intel_pstate_init(void)
1173 {
1174 int cpu, rc = 0;
1175 const struct x86_cpu_id *id;
1176 struct cpu_defaults *cpu_info;
1177 struct cpuinfo_x86 *c = &boot_cpu_data;
1178
1179 if (no_load)
1180 return -ENODEV;
1181
1182 id = x86_match_cpu(intel_pstate_cpu_ids);
1183 if (!id)
1184 return -ENODEV;
1185
1186 /*
1187 * The Intel pstate driver will be ignored if the platform
1188 * firmware has its own power management modes.
1189 */
1190 if (intel_pstate_platform_pwr_mgmt_exists())
1191 return -ENODEV;
1192
1193 cpu_info = (struct cpu_defaults *)id->driver_data;
1194
1195 copy_pid_params(&cpu_info->pid_policy);
1196 copy_cpu_funcs(&cpu_info->funcs);
1197
1198 if (intel_pstate_msrs_not_valid())
1199 return -ENODEV;
1200
1201 pr_info("Intel P-state driver initializing.\n");
1202
1203 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1204 if (!all_cpu_data)
1205 return -ENOMEM;
1206
1207 if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1208 intel_pstate_hwp_enable();
1209
1210 rc = cpufreq_register_driver(&intel_pstate_driver);
1211 if (rc)
1212 goto out;
1213
1214 intel_pstate_debug_expose_params();
1215 intel_pstate_sysfs_expose_params();
1216
1217 return rc;
1218 out:
1219 get_online_cpus();
1220 for_each_online_cpu(cpu) {
1221 if (all_cpu_data[cpu]) {
1222 del_timer_sync(&all_cpu_data[cpu]->timer);
1223 kfree(all_cpu_data[cpu]);
1224 }
1225 }
1226
1227 put_online_cpus();
1228 vfree(all_cpu_data);
1229 return -ENODEV;
1230 }
1231 device_initcall(intel_pstate_init);
1232
1233 static int __init intel_pstate_setup(char *str)
1234 {
1235 if (!str)
1236 return -EINVAL;
1237
1238 if (!strcmp(str, "disable"))
1239 no_load = 1;
1240 if (!strcmp(str, "no_hwp"))
1241 no_hwp = 1;
1242 if (!strcmp(str, "force"))
1243 force_load = 1;
1244 return 0;
1245 }
1246 early_param("intel_pstate", intel_pstate_setup);
1247
1248 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1249 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1250 MODULE_LICENSE("GPL");
This page took 0.145866 seconds and 5 git commands to generate.