Merge tag 'cris-for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/jesper...
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS 0x66a
36 #define BYT_VIDS 0x66b
37 #define BYT_TURBO_RATIOS 0x66c
38 #define BYT_TURBO_VIDS 0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52 return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 static inline int ceiling_fp(int32_t x)
56 {
57 int mask, ret;
58
59 ret = fp_toint(x);
60 mask = (1 << FRAC_BITS) - 1;
61 if (x & mask)
62 ret += 1;
63 return ret;
64 }
65
66 struct sample {
67 int32_t core_pct_busy;
68 u64 aperf;
69 u64 mperf;
70 int freq;
71 ktime_t time;
72 };
73
74 struct pstate_data {
75 int current_pstate;
76 int min_pstate;
77 int max_pstate;
78 int scaling;
79 int turbo_pstate;
80 };
81
82 struct vid_data {
83 int min;
84 int max;
85 int turbo;
86 int32_t ratio;
87 };
88
89 struct _pid {
90 int setpoint;
91 int32_t integral;
92 int32_t p_gain;
93 int32_t i_gain;
94 int32_t d_gain;
95 int deadband;
96 int32_t last_err;
97 };
98
99 struct cpudata {
100 int cpu;
101
102 struct timer_list timer;
103
104 struct pstate_data pstate;
105 struct vid_data vid;
106 struct _pid pid;
107
108 ktime_t last_sample_time;
109 u64 prev_aperf;
110 u64 prev_mperf;
111 struct sample sample;
112 };
113
114 static struct cpudata **all_cpu_data;
115 struct pstate_adjust_policy {
116 int sample_rate_ms;
117 int deadband;
118 int setpoint;
119 int p_gain_pct;
120 int d_gain_pct;
121 int i_gain_pct;
122 };
123
124 struct pstate_funcs {
125 int (*get_max)(void);
126 int (*get_min)(void);
127 int (*get_turbo)(void);
128 int (*get_scaling)(void);
129 void (*set)(struct cpudata*, int pstate);
130 void (*get_vid)(struct cpudata *);
131 };
132
133 struct cpu_defaults {
134 struct pstate_adjust_policy pid_policy;
135 struct pstate_funcs funcs;
136 };
137
138 static struct pstate_adjust_policy pid_params;
139 static struct pstate_funcs pstate_funcs;
140 static int hwp_active;
141
142 struct perf_limits {
143 int no_turbo;
144 int turbo_disabled;
145 int max_perf_pct;
146 int min_perf_pct;
147 int32_t max_perf;
148 int32_t min_perf;
149 int max_policy_pct;
150 int max_sysfs_pct;
151 int min_policy_pct;
152 int min_sysfs_pct;
153 };
154
155 static struct perf_limits limits = {
156 .no_turbo = 0,
157 .turbo_disabled = 0,
158 .max_perf_pct = 100,
159 .max_perf = int_tofp(1),
160 .min_perf_pct = 0,
161 .min_perf = 0,
162 .max_policy_pct = 100,
163 .max_sysfs_pct = 100,
164 .min_policy_pct = 0,
165 .min_sysfs_pct = 0,
166 };
167
168 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
169 int deadband, int integral) {
170 pid->setpoint = setpoint;
171 pid->deadband = deadband;
172 pid->integral = int_tofp(integral);
173 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
174 }
175
176 static inline void pid_p_gain_set(struct _pid *pid, int percent)
177 {
178 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
179 }
180
181 static inline void pid_i_gain_set(struct _pid *pid, int percent)
182 {
183 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
184 }
185
186 static inline void pid_d_gain_set(struct _pid *pid, int percent)
187 {
188 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
189 }
190
191 static signed int pid_calc(struct _pid *pid, int32_t busy)
192 {
193 signed int result;
194 int32_t pterm, dterm, fp_error;
195 int32_t integral_limit;
196
197 fp_error = int_tofp(pid->setpoint) - busy;
198
199 if (abs(fp_error) <= int_tofp(pid->deadband))
200 return 0;
201
202 pterm = mul_fp(pid->p_gain, fp_error);
203
204 pid->integral += fp_error;
205
206 /*
207 * We limit the integral here so that it will never
208 * get higher than 30. This prevents it from becoming
209 * too large an input over long periods of time and allows
210 * it to get factored out sooner.
211 *
212 * The value of 30 was chosen through experimentation.
213 */
214 integral_limit = int_tofp(30);
215 if (pid->integral > integral_limit)
216 pid->integral = integral_limit;
217 if (pid->integral < -integral_limit)
218 pid->integral = -integral_limit;
219
220 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
221 pid->last_err = fp_error;
222
223 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
224 result = result + (1 << (FRAC_BITS-1));
225 return (signed int)fp_toint(result);
226 }
227
228 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
229 {
230 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
231 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
232 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
233
234 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
235 }
236
237 static inline void intel_pstate_reset_all_pid(void)
238 {
239 unsigned int cpu;
240
241 for_each_online_cpu(cpu) {
242 if (all_cpu_data[cpu])
243 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
244 }
245 }
246
247 static inline void update_turbo_state(void)
248 {
249 u64 misc_en;
250 struct cpudata *cpu;
251
252 cpu = all_cpu_data[0];
253 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
254 limits.turbo_disabled =
255 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
256 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
257 }
258
259 #define PCT_TO_HWP(x) (x * 255 / 100)
260 static void intel_pstate_hwp_set(void)
261 {
262 int min, max, cpu;
263 u64 value, freq;
264
265 get_online_cpus();
266
267 for_each_online_cpu(cpu) {
268 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
269 min = PCT_TO_HWP(limits.min_perf_pct);
270 value &= ~HWP_MIN_PERF(~0L);
271 value |= HWP_MIN_PERF(min);
272
273 max = PCT_TO_HWP(limits.max_perf_pct);
274 if (limits.no_turbo) {
275 rdmsrl( MSR_HWP_CAPABILITIES, freq);
276 max = HWP_GUARANTEED_PERF(freq);
277 }
278
279 value &= ~HWP_MAX_PERF(~0L);
280 value |= HWP_MAX_PERF(max);
281 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
282 }
283
284 put_online_cpus();
285 }
286
287 /************************** debugfs begin ************************/
288 static int pid_param_set(void *data, u64 val)
289 {
290 *(u32 *)data = val;
291 intel_pstate_reset_all_pid();
292 return 0;
293 }
294
295 static int pid_param_get(void *data, u64 *val)
296 {
297 *val = *(u32 *)data;
298 return 0;
299 }
300 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
301
302 struct pid_param {
303 char *name;
304 void *value;
305 };
306
307 static struct pid_param pid_files[] = {
308 {"sample_rate_ms", &pid_params.sample_rate_ms},
309 {"d_gain_pct", &pid_params.d_gain_pct},
310 {"i_gain_pct", &pid_params.i_gain_pct},
311 {"deadband", &pid_params.deadband},
312 {"setpoint", &pid_params.setpoint},
313 {"p_gain_pct", &pid_params.p_gain_pct},
314 {NULL, NULL}
315 };
316
317 static void __init intel_pstate_debug_expose_params(void)
318 {
319 struct dentry *debugfs_parent;
320 int i = 0;
321
322 if (hwp_active)
323 return;
324 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
325 if (IS_ERR_OR_NULL(debugfs_parent))
326 return;
327 while (pid_files[i].name) {
328 debugfs_create_file(pid_files[i].name, 0660,
329 debugfs_parent, pid_files[i].value,
330 &fops_pid_param);
331 i++;
332 }
333 }
334
335 /************************** debugfs end ************************/
336
337 /************************** sysfs begin ************************/
338 #define show_one(file_name, object) \
339 static ssize_t show_##file_name \
340 (struct kobject *kobj, struct attribute *attr, char *buf) \
341 { \
342 return sprintf(buf, "%u\n", limits.object); \
343 }
344
345 static ssize_t show_turbo_pct(struct kobject *kobj,
346 struct attribute *attr, char *buf)
347 {
348 struct cpudata *cpu;
349 int total, no_turbo, turbo_pct;
350 uint32_t turbo_fp;
351
352 cpu = all_cpu_data[0];
353
354 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
355 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
356 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
357 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
358 return sprintf(buf, "%u\n", turbo_pct);
359 }
360
361 static ssize_t show_num_pstates(struct kobject *kobj,
362 struct attribute *attr, char *buf)
363 {
364 struct cpudata *cpu;
365 int total;
366
367 cpu = all_cpu_data[0];
368 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
369 return sprintf(buf, "%u\n", total);
370 }
371
372 static ssize_t show_no_turbo(struct kobject *kobj,
373 struct attribute *attr, char *buf)
374 {
375 ssize_t ret;
376
377 update_turbo_state();
378 if (limits.turbo_disabled)
379 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
380 else
381 ret = sprintf(buf, "%u\n", limits.no_turbo);
382
383 return ret;
384 }
385
386 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
387 const char *buf, size_t count)
388 {
389 unsigned int input;
390 int ret;
391
392 ret = sscanf(buf, "%u", &input);
393 if (ret != 1)
394 return -EINVAL;
395
396 update_turbo_state();
397 if (limits.turbo_disabled) {
398 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
399 return -EPERM;
400 }
401
402 limits.no_turbo = clamp_t(int, input, 0, 1);
403
404 if (hwp_active)
405 intel_pstate_hwp_set();
406
407 return count;
408 }
409
410 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
411 const char *buf, size_t count)
412 {
413 unsigned int input;
414 int ret;
415
416 ret = sscanf(buf, "%u", &input);
417 if (ret != 1)
418 return -EINVAL;
419
420 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
421 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
422 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
423
424 if (hwp_active)
425 intel_pstate_hwp_set();
426 return count;
427 }
428
429 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
430 const char *buf, size_t count)
431 {
432 unsigned int input;
433 int ret;
434
435 ret = sscanf(buf, "%u", &input);
436 if (ret != 1)
437 return -EINVAL;
438
439 limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
440 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
441 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
442
443 if (hwp_active)
444 intel_pstate_hwp_set();
445 return count;
446 }
447
448 show_one(max_perf_pct, max_perf_pct);
449 show_one(min_perf_pct, min_perf_pct);
450
451 define_one_global_rw(no_turbo);
452 define_one_global_rw(max_perf_pct);
453 define_one_global_rw(min_perf_pct);
454 define_one_global_ro(turbo_pct);
455 define_one_global_ro(num_pstates);
456
457 static struct attribute *intel_pstate_attributes[] = {
458 &no_turbo.attr,
459 &max_perf_pct.attr,
460 &min_perf_pct.attr,
461 &turbo_pct.attr,
462 &num_pstates.attr,
463 NULL
464 };
465
466 static struct attribute_group intel_pstate_attr_group = {
467 .attrs = intel_pstate_attributes,
468 };
469
470 static void __init intel_pstate_sysfs_expose_params(void)
471 {
472 struct kobject *intel_pstate_kobject;
473 int rc;
474
475 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
476 &cpu_subsys.dev_root->kobj);
477 BUG_ON(!intel_pstate_kobject);
478 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
479 BUG_ON(rc);
480 }
481 /************************** sysfs end ************************/
482
483 static void intel_pstate_hwp_enable(void)
484 {
485 hwp_active++;
486 pr_info("intel_pstate HWP enabled\n");
487
488 wrmsrl( MSR_PM_ENABLE, 0x1);
489 }
490
491 static int byt_get_min_pstate(void)
492 {
493 u64 value;
494
495 rdmsrl(BYT_RATIOS, value);
496 return (value >> 8) & 0x7F;
497 }
498
499 static int byt_get_max_pstate(void)
500 {
501 u64 value;
502
503 rdmsrl(BYT_RATIOS, value);
504 return (value >> 16) & 0x7F;
505 }
506
507 static int byt_get_turbo_pstate(void)
508 {
509 u64 value;
510
511 rdmsrl(BYT_TURBO_RATIOS, value);
512 return value & 0x7F;
513 }
514
515 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
516 {
517 u64 val;
518 int32_t vid_fp;
519 u32 vid;
520
521 val = pstate << 8;
522 if (limits.no_turbo && !limits.turbo_disabled)
523 val |= (u64)1 << 32;
524
525 vid_fp = cpudata->vid.min + mul_fp(
526 int_tofp(pstate - cpudata->pstate.min_pstate),
527 cpudata->vid.ratio);
528
529 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
530 vid = ceiling_fp(vid_fp);
531
532 if (pstate > cpudata->pstate.max_pstate)
533 vid = cpudata->vid.turbo;
534
535 val |= vid;
536
537 wrmsrl(MSR_IA32_PERF_CTL, val);
538 }
539
540 #define BYT_BCLK_FREQS 5
541 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
542
543 static int byt_get_scaling(void)
544 {
545 u64 value;
546 int i;
547
548 rdmsrl(MSR_FSB_FREQ, value);
549 i = value & 0x3;
550
551 BUG_ON(i > BYT_BCLK_FREQS);
552
553 return byt_freq_table[i] * 100;
554 }
555
556 static void byt_get_vid(struct cpudata *cpudata)
557 {
558 u64 value;
559
560 rdmsrl(BYT_VIDS, value);
561 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
562 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
563 cpudata->vid.ratio = div_fp(
564 cpudata->vid.max - cpudata->vid.min,
565 int_tofp(cpudata->pstate.max_pstate -
566 cpudata->pstate.min_pstate));
567
568 rdmsrl(BYT_TURBO_VIDS, value);
569 cpudata->vid.turbo = value & 0x7f;
570 }
571
572 static int core_get_min_pstate(void)
573 {
574 u64 value;
575
576 rdmsrl(MSR_PLATFORM_INFO, value);
577 return (value >> 40) & 0xFF;
578 }
579
580 static int core_get_max_pstate(void)
581 {
582 u64 value;
583
584 rdmsrl(MSR_PLATFORM_INFO, value);
585 return (value >> 8) & 0xFF;
586 }
587
588 static int core_get_turbo_pstate(void)
589 {
590 u64 value;
591 int nont, ret;
592
593 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
594 nont = core_get_max_pstate();
595 ret = (value) & 255;
596 if (ret <= nont)
597 ret = nont;
598 return ret;
599 }
600
601 static inline int core_get_scaling(void)
602 {
603 return 100000;
604 }
605
606 static void core_set_pstate(struct cpudata *cpudata, int pstate)
607 {
608 u64 val;
609
610 val = pstate << 8;
611 if (limits.no_turbo && !limits.turbo_disabled)
612 val |= (u64)1 << 32;
613
614 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
615 }
616
617 static int knl_get_turbo_pstate(void)
618 {
619 u64 value;
620 int nont, ret;
621
622 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
623 nont = core_get_max_pstate();
624 ret = (((value) >> 8) & 0xFF);
625 if (ret <= nont)
626 ret = nont;
627 return ret;
628 }
629
630 static struct cpu_defaults core_params = {
631 .pid_policy = {
632 .sample_rate_ms = 10,
633 .deadband = 0,
634 .setpoint = 97,
635 .p_gain_pct = 20,
636 .d_gain_pct = 0,
637 .i_gain_pct = 0,
638 },
639 .funcs = {
640 .get_max = core_get_max_pstate,
641 .get_min = core_get_min_pstate,
642 .get_turbo = core_get_turbo_pstate,
643 .get_scaling = core_get_scaling,
644 .set = core_set_pstate,
645 },
646 };
647
648 static struct cpu_defaults byt_params = {
649 .pid_policy = {
650 .sample_rate_ms = 10,
651 .deadband = 0,
652 .setpoint = 97,
653 .p_gain_pct = 14,
654 .d_gain_pct = 0,
655 .i_gain_pct = 4,
656 },
657 .funcs = {
658 .get_max = byt_get_max_pstate,
659 .get_min = byt_get_min_pstate,
660 .get_turbo = byt_get_turbo_pstate,
661 .set = byt_set_pstate,
662 .get_scaling = byt_get_scaling,
663 .get_vid = byt_get_vid,
664 },
665 };
666
667 static struct cpu_defaults knl_params = {
668 .pid_policy = {
669 .sample_rate_ms = 10,
670 .deadband = 0,
671 .setpoint = 97,
672 .p_gain_pct = 20,
673 .d_gain_pct = 0,
674 .i_gain_pct = 0,
675 },
676 .funcs = {
677 .get_max = core_get_max_pstate,
678 .get_min = core_get_min_pstate,
679 .get_turbo = knl_get_turbo_pstate,
680 .set = core_set_pstate,
681 },
682 };
683
684 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
685 {
686 int max_perf = cpu->pstate.turbo_pstate;
687 int max_perf_adj;
688 int min_perf;
689
690 if (limits.no_turbo || limits.turbo_disabled)
691 max_perf = cpu->pstate.max_pstate;
692
693 /*
694 * performance can be limited by user through sysfs, by cpufreq
695 * policy, or by cpu specific default values determined through
696 * experimentation.
697 */
698 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
699 *max = clamp_t(int, max_perf_adj,
700 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
701
702 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
703 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
704 }
705
706 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
707 {
708 int max_perf, min_perf;
709
710 update_turbo_state();
711
712 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
713
714 pstate = clamp_t(int, pstate, min_perf, max_perf);
715
716 if (pstate == cpu->pstate.current_pstate)
717 return;
718
719 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
720
721 cpu->pstate.current_pstate = pstate;
722
723 pstate_funcs.set(cpu, pstate);
724 }
725
726 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
727 {
728 cpu->pstate.min_pstate = pstate_funcs.get_min();
729 cpu->pstate.max_pstate = pstate_funcs.get_max();
730 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
731 cpu->pstate.scaling = pstate_funcs.get_scaling();
732
733 if (pstate_funcs.get_vid)
734 pstate_funcs.get_vid(cpu);
735 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
736 }
737
738 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
739 {
740 struct sample *sample = &cpu->sample;
741 int64_t core_pct;
742
743 core_pct = int_tofp(sample->aperf) * int_tofp(100);
744 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
745
746 sample->freq = fp_toint(
747 mul_fp(int_tofp(
748 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
749 core_pct));
750
751 sample->core_pct_busy = (int32_t)core_pct;
752 }
753
754 static inline void intel_pstate_sample(struct cpudata *cpu)
755 {
756 u64 aperf, mperf;
757 unsigned long flags;
758
759 local_irq_save(flags);
760 rdmsrl(MSR_IA32_APERF, aperf);
761 rdmsrl(MSR_IA32_MPERF, mperf);
762 local_irq_restore(flags);
763
764 cpu->last_sample_time = cpu->sample.time;
765 cpu->sample.time = ktime_get();
766 cpu->sample.aperf = aperf;
767 cpu->sample.mperf = mperf;
768 cpu->sample.aperf -= cpu->prev_aperf;
769 cpu->sample.mperf -= cpu->prev_mperf;
770
771 intel_pstate_calc_busy(cpu);
772
773 cpu->prev_aperf = aperf;
774 cpu->prev_mperf = mperf;
775 }
776
777 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
778 {
779 int delay;
780
781 delay = msecs_to_jiffies(50);
782 mod_timer_pinned(&cpu->timer, jiffies + delay);
783 }
784
785 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
786 {
787 int delay;
788
789 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
790 mod_timer_pinned(&cpu->timer, jiffies + delay);
791 }
792
793 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
794 {
795 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
796 u32 duration_us;
797 u32 sample_time;
798
799 /*
800 * core_busy is the ratio of actual performance to max
801 * max_pstate is the max non turbo pstate available
802 * current_pstate was the pstate that was requested during
803 * the last sample period.
804 *
805 * We normalize core_busy, which was our actual percent
806 * performance to what we requested during the last sample
807 * period. The result will be a percentage of busy at a
808 * specified pstate.
809 */
810 core_busy = cpu->sample.core_pct_busy;
811 max_pstate = int_tofp(cpu->pstate.max_pstate);
812 current_pstate = int_tofp(cpu->pstate.current_pstate);
813 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
814
815 /*
816 * Since we have a deferred timer, it will not fire unless
817 * we are in C0. So, determine if the actual elapsed time
818 * is significantly greater (3x) than our sample interval. If it
819 * is, then we were idle for a long enough period of time
820 * to adjust our busyness.
821 */
822 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
823 duration_us = (u32) ktime_us_delta(cpu->sample.time,
824 cpu->last_sample_time);
825 if (duration_us > sample_time * 3) {
826 sample_ratio = div_fp(int_tofp(sample_time),
827 int_tofp(duration_us));
828 core_busy = mul_fp(core_busy, sample_ratio);
829 }
830
831 return core_busy;
832 }
833
834 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
835 {
836 int32_t busy_scaled;
837 struct _pid *pid;
838 signed int ctl;
839
840 pid = &cpu->pid;
841 busy_scaled = intel_pstate_get_scaled_busy(cpu);
842
843 ctl = pid_calc(pid, busy_scaled);
844
845 /* Negative values of ctl increase the pstate and vice versa */
846 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
847 }
848
849 static void intel_hwp_timer_func(unsigned long __data)
850 {
851 struct cpudata *cpu = (struct cpudata *) __data;
852
853 intel_pstate_sample(cpu);
854 intel_hwp_set_sample_time(cpu);
855 }
856
857 static void intel_pstate_timer_func(unsigned long __data)
858 {
859 struct cpudata *cpu = (struct cpudata *) __data;
860 struct sample *sample;
861
862 intel_pstate_sample(cpu);
863
864 sample = &cpu->sample;
865
866 intel_pstate_adjust_busy_pstate(cpu);
867
868 trace_pstate_sample(fp_toint(sample->core_pct_busy),
869 fp_toint(intel_pstate_get_scaled_busy(cpu)),
870 cpu->pstate.current_pstate,
871 sample->mperf,
872 sample->aperf,
873 sample->freq);
874
875 intel_pstate_set_sample_time(cpu);
876 }
877
878 #define ICPU(model, policy) \
879 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
880 (unsigned long)&policy }
881
882 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
883 ICPU(0x2a, core_params),
884 ICPU(0x2d, core_params),
885 ICPU(0x37, byt_params),
886 ICPU(0x3a, core_params),
887 ICPU(0x3c, core_params),
888 ICPU(0x3d, core_params),
889 ICPU(0x3e, core_params),
890 ICPU(0x3f, core_params),
891 ICPU(0x45, core_params),
892 ICPU(0x46, core_params),
893 ICPU(0x47, core_params),
894 ICPU(0x4c, byt_params),
895 ICPU(0x4e, core_params),
896 ICPU(0x4f, core_params),
897 ICPU(0x56, core_params),
898 ICPU(0x57, knl_params),
899 {}
900 };
901 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
902
903 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
904 ICPU(0x56, core_params),
905 {}
906 };
907
908 static int intel_pstate_init_cpu(unsigned int cpunum)
909 {
910 struct cpudata *cpu;
911
912 if (!all_cpu_data[cpunum])
913 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
914 GFP_KERNEL);
915 if (!all_cpu_data[cpunum])
916 return -ENOMEM;
917
918 cpu = all_cpu_data[cpunum];
919
920 cpu->cpu = cpunum;
921 intel_pstate_get_cpu_pstates(cpu);
922
923 init_timer_deferrable(&cpu->timer);
924 cpu->timer.data = (unsigned long)cpu;
925 cpu->timer.expires = jiffies + HZ/100;
926
927 if (!hwp_active)
928 cpu->timer.function = intel_pstate_timer_func;
929 else
930 cpu->timer.function = intel_hwp_timer_func;
931
932 intel_pstate_busy_pid_reset(cpu);
933 intel_pstate_sample(cpu);
934
935 add_timer_on(&cpu->timer, cpunum);
936
937 pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
938
939 return 0;
940 }
941
942 static unsigned int intel_pstate_get(unsigned int cpu_num)
943 {
944 struct sample *sample;
945 struct cpudata *cpu;
946
947 cpu = all_cpu_data[cpu_num];
948 if (!cpu)
949 return 0;
950 sample = &cpu->sample;
951 return sample->freq;
952 }
953
954 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
955 {
956 if (!policy->cpuinfo.max_freq)
957 return -ENODEV;
958
959 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
960 policy->max >= policy->cpuinfo.max_freq) {
961 limits.min_policy_pct = 100;
962 limits.min_perf_pct = 100;
963 limits.min_perf = int_tofp(1);
964 limits.max_policy_pct = 100;
965 limits.max_perf_pct = 100;
966 limits.max_perf = int_tofp(1);
967 limits.no_turbo = 0;
968 return 0;
969 }
970
971 limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
972 limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
973 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
974 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
975
976 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
977 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
978 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
979 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
980
981 if (hwp_active)
982 intel_pstate_hwp_set();
983
984 return 0;
985 }
986
987 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
988 {
989 cpufreq_verify_within_cpu_limits(policy);
990
991 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
992 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
993 return -EINVAL;
994
995 return 0;
996 }
997
998 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
999 {
1000 int cpu_num = policy->cpu;
1001 struct cpudata *cpu = all_cpu_data[cpu_num];
1002
1003 pr_info("intel_pstate CPU %d exiting\n", cpu_num);
1004
1005 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1006 if (hwp_active)
1007 return;
1008
1009 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1010 }
1011
1012 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1013 {
1014 struct cpudata *cpu;
1015 int rc;
1016
1017 rc = intel_pstate_init_cpu(policy->cpu);
1018 if (rc)
1019 return rc;
1020
1021 cpu = all_cpu_data[policy->cpu];
1022
1023 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1024 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1025 else
1026 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1027
1028 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1029 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1030
1031 /* cpuinfo and default policy values */
1032 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1033 policy->cpuinfo.max_freq =
1034 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1035 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1036 cpumask_set_cpu(policy->cpu, policy->cpus);
1037
1038 return 0;
1039 }
1040
1041 static struct cpufreq_driver intel_pstate_driver = {
1042 .flags = CPUFREQ_CONST_LOOPS,
1043 .verify = intel_pstate_verify_policy,
1044 .setpolicy = intel_pstate_set_policy,
1045 .get = intel_pstate_get,
1046 .init = intel_pstate_cpu_init,
1047 .stop_cpu = intel_pstate_stop_cpu,
1048 .name = "intel_pstate",
1049 };
1050
1051 static int __initdata no_load;
1052 static int __initdata no_hwp;
1053 static int __initdata hwp_only;
1054 static unsigned int force_load;
1055
1056 static int intel_pstate_msrs_not_valid(void)
1057 {
1058 if (!pstate_funcs.get_max() ||
1059 !pstate_funcs.get_min() ||
1060 !pstate_funcs.get_turbo())
1061 return -ENODEV;
1062
1063 return 0;
1064 }
1065
1066 static void copy_pid_params(struct pstate_adjust_policy *policy)
1067 {
1068 pid_params.sample_rate_ms = policy->sample_rate_ms;
1069 pid_params.p_gain_pct = policy->p_gain_pct;
1070 pid_params.i_gain_pct = policy->i_gain_pct;
1071 pid_params.d_gain_pct = policy->d_gain_pct;
1072 pid_params.deadband = policy->deadband;
1073 pid_params.setpoint = policy->setpoint;
1074 }
1075
1076 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1077 {
1078 pstate_funcs.get_max = funcs->get_max;
1079 pstate_funcs.get_min = funcs->get_min;
1080 pstate_funcs.get_turbo = funcs->get_turbo;
1081 pstate_funcs.get_scaling = funcs->get_scaling;
1082 pstate_funcs.set = funcs->set;
1083 pstate_funcs.get_vid = funcs->get_vid;
1084 }
1085
1086 #if IS_ENABLED(CONFIG_ACPI)
1087 #include <acpi/processor.h>
1088
1089 static bool intel_pstate_no_acpi_pss(void)
1090 {
1091 int i;
1092
1093 for_each_possible_cpu(i) {
1094 acpi_status status;
1095 union acpi_object *pss;
1096 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1097 struct acpi_processor *pr = per_cpu(processors, i);
1098
1099 if (!pr)
1100 continue;
1101
1102 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1103 if (ACPI_FAILURE(status))
1104 continue;
1105
1106 pss = buffer.pointer;
1107 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1108 kfree(pss);
1109 return false;
1110 }
1111
1112 kfree(pss);
1113 }
1114
1115 return true;
1116 }
1117
1118 static bool intel_pstate_has_acpi_ppc(void)
1119 {
1120 int i;
1121
1122 for_each_possible_cpu(i) {
1123 struct acpi_processor *pr = per_cpu(processors, i);
1124
1125 if (!pr)
1126 continue;
1127 if (acpi_has_method(pr->handle, "_PPC"))
1128 return true;
1129 }
1130 return false;
1131 }
1132
1133 enum {
1134 PSS,
1135 PPC,
1136 };
1137
1138 struct hw_vendor_info {
1139 u16 valid;
1140 char oem_id[ACPI_OEM_ID_SIZE];
1141 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1142 int oem_pwr_table;
1143 };
1144
1145 /* Hardware vendor-specific info that has its own power management modes */
1146 static struct hw_vendor_info vendor_info[] = {
1147 {1, "HP ", "ProLiant", PSS},
1148 {1, "ORACLE", "X4-2 ", PPC},
1149 {1, "ORACLE", "X4-2L ", PPC},
1150 {1, "ORACLE", "X4-2B ", PPC},
1151 {1, "ORACLE", "X3-2 ", PPC},
1152 {1, "ORACLE", "X3-2L ", PPC},
1153 {1, "ORACLE", "X3-2B ", PPC},
1154 {1, "ORACLE", "X4470M2 ", PPC},
1155 {1, "ORACLE", "X4270M3 ", PPC},
1156 {1, "ORACLE", "X4270M2 ", PPC},
1157 {1, "ORACLE", "X4170M2 ", PPC},
1158 {0, "", ""},
1159 };
1160
1161 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1162 {
1163 struct acpi_table_header hdr;
1164 struct hw_vendor_info *v_info;
1165 const struct x86_cpu_id *id;
1166 u64 misc_pwr;
1167
1168 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1169 if (id) {
1170 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1171 if ( misc_pwr & (1 << 8))
1172 return true;
1173 }
1174
1175 if (acpi_disabled ||
1176 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1177 return false;
1178
1179 for (v_info = vendor_info; v_info->valid; v_info++) {
1180 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1181 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1182 ACPI_OEM_TABLE_ID_SIZE))
1183 switch (v_info->oem_pwr_table) {
1184 case PSS:
1185 return intel_pstate_no_acpi_pss();
1186 case PPC:
1187 return intel_pstate_has_acpi_ppc() &&
1188 (!force_load);
1189 }
1190 }
1191
1192 return false;
1193 }
1194 #else /* CONFIG_ACPI not enabled */
1195 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1196 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1197 #endif /* CONFIG_ACPI */
1198
1199 static int __init intel_pstate_init(void)
1200 {
1201 int cpu, rc = 0;
1202 const struct x86_cpu_id *id;
1203 struct cpu_defaults *cpu_info;
1204 struct cpuinfo_x86 *c = &boot_cpu_data;
1205
1206 if (no_load)
1207 return -ENODEV;
1208
1209 id = x86_match_cpu(intel_pstate_cpu_ids);
1210 if (!id)
1211 return -ENODEV;
1212
1213 /*
1214 * The Intel pstate driver will be ignored if the platform
1215 * firmware has its own power management modes.
1216 */
1217 if (intel_pstate_platform_pwr_mgmt_exists())
1218 return -ENODEV;
1219
1220 cpu_info = (struct cpu_defaults *)id->driver_data;
1221
1222 copy_pid_params(&cpu_info->pid_policy);
1223 copy_cpu_funcs(&cpu_info->funcs);
1224
1225 if (intel_pstate_msrs_not_valid())
1226 return -ENODEV;
1227
1228 pr_info("Intel P-state driver initializing.\n");
1229
1230 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1231 if (!all_cpu_data)
1232 return -ENOMEM;
1233
1234 if (cpu_has(c,X86_FEATURE_HWP) && !no_hwp)
1235 intel_pstate_hwp_enable();
1236
1237 if (!hwp_active && hwp_only)
1238 goto out;
1239
1240 rc = cpufreq_register_driver(&intel_pstate_driver);
1241 if (rc)
1242 goto out;
1243
1244 intel_pstate_debug_expose_params();
1245 intel_pstate_sysfs_expose_params();
1246
1247 return rc;
1248 out:
1249 get_online_cpus();
1250 for_each_online_cpu(cpu) {
1251 if (all_cpu_data[cpu]) {
1252 del_timer_sync(&all_cpu_data[cpu]->timer);
1253 kfree(all_cpu_data[cpu]);
1254 }
1255 }
1256
1257 put_online_cpus();
1258 vfree(all_cpu_data);
1259 return -ENODEV;
1260 }
1261 device_initcall(intel_pstate_init);
1262
1263 static int __init intel_pstate_setup(char *str)
1264 {
1265 if (!str)
1266 return -EINVAL;
1267
1268 if (!strcmp(str, "disable"))
1269 no_load = 1;
1270 if (!strcmp(str, "no_hwp"))
1271 no_hwp = 1;
1272 if (!strcmp(str, "force"))
1273 force_load = 1;
1274 if (!strcmp(str, "hwp_only"))
1275 hwp_only = 1;
1276 return 0;
1277 }
1278 early_param("intel_pstate", intel_pstate_setup);
1279
1280 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1281 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1282 MODULE_LICENSE("GPL");
This page took 0.059674 seconds and 5 git commands to generate.