c5eac949760de99ab8345fa1933657278afe7092
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <trace/events/power.h>
30
31 #include <asm/div64.h>
32 #include <asm/msr.h>
33 #include <asm/cpu_device_id.h>
34
35 #define BYT_RATIOS 0x66a
36 #define BYT_VIDS 0x66b
37 #define BYT_TURBO_RATIOS 0x66c
38 #define BYT_TURBO_VIDS 0x66d
39
40 #define FRAC_BITS 8
41 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
42 #define fp_toint(X) ((X) >> FRAC_BITS)
43
44
45 static inline int32_t mul_fp(int32_t x, int32_t y)
46 {
47 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
48 }
49
50 static inline int32_t div_fp(int32_t x, int32_t y)
51 {
52 return div_s64((int64_t)x << FRAC_BITS, y);
53 }
54
55 struct sample {
56 int32_t core_pct_busy;
57 u64 aperf;
58 u64 mperf;
59 int freq;
60 ktime_t time;
61 };
62
63 struct pstate_data {
64 int current_pstate;
65 int min_pstate;
66 int max_pstate;
67 int turbo_pstate;
68 };
69
70 struct vid_data {
71 int min;
72 int max;
73 int turbo;
74 int32_t ratio;
75 };
76
77 struct _pid {
78 int setpoint;
79 int32_t integral;
80 int32_t p_gain;
81 int32_t i_gain;
82 int32_t d_gain;
83 int deadband;
84 int32_t last_err;
85 };
86
87 struct cpudata {
88 int cpu;
89
90 struct timer_list timer;
91
92 struct pstate_data pstate;
93 struct vid_data vid;
94 struct _pid pid;
95
96 ktime_t last_sample_time;
97 u64 prev_aperf;
98 u64 prev_mperf;
99 struct sample sample;
100 };
101
102 static struct cpudata **all_cpu_data;
103 struct pstate_adjust_policy {
104 int sample_rate_ms;
105 int deadband;
106 int setpoint;
107 int p_gain_pct;
108 int d_gain_pct;
109 int i_gain_pct;
110 };
111
112 struct pstate_funcs {
113 int (*get_max)(void);
114 int (*get_min)(void);
115 int (*get_turbo)(void);
116 void (*set)(struct cpudata*, int pstate);
117 void (*get_vid)(struct cpudata *);
118 };
119
120 struct cpu_defaults {
121 struct pstate_adjust_policy pid_policy;
122 struct pstate_funcs funcs;
123 };
124
125 static struct pstate_adjust_policy pid_params;
126 static struct pstate_funcs pstate_funcs;
127
128 struct perf_limits {
129 int no_turbo;
130 int turbo_disabled;
131 int max_perf_pct;
132 int min_perf_pct;
133 int32_t max_perf;
134 int32_t min_perf;
135 int max_policy_pct;
136 int max_sysfs_pct;
137 };
138
139 static struct perf_limits limits = {
140 .no_turbo = 0,
141 .max_perf_pct = 100,
142 .max_perf = int_tofp(1),
143 .min_perf_pct = 0,
144 .min_perf = 0,
145 .max_policy_pct = 100,
146 .max_sysfs_pct = 100,
147 };
148
149 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
150 int deadband, int integral) {
151 pid->setpoint = setpoint;
152 pid->deadband = deadband;
153 pid->integral = int_tofp(integral);
154 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
155 }
156
157 static inline void pid_p_gain_set(struct _pid *pid, int percent)
158 {
159 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
160 }
161
162 static inline void pid_i_gain_set(struct _pid *pid, int percent)
163 {
164 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
165 }
166
167 static inline void pid_d_gain_set(struct _pid *pid, int percent)
168 {
169 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
170 }
171
172 static signed int pid_calc(struct _pid *pid, int32_t busy)
173 {
174 signed int result;
175 int32_t pterm, dterm, fp_error;
176 int32_t integral_limit;
177
178 fp_error = int_tofp(pid->setpoint) - busy;
179
180 if (abs(fp_error) <= int_tofp(pid->deadband))
181 return 0;
182
183 pterm = mul_fp(pid->p_gain, fp_error);
184
185 pid->integral += fp_error;
186
187 /* limit the integral term */
188 integral_limit = int_tofp(30);
189 if (pid->integral > integral_limit)
190 pid->integral = integral_limit;
191 if (pid->integral < -integral_limit)
192 pid->integral = -integral_limit;
193
194 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
195 pid->last_err = fp_error;
196
197 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
198 result = result + (1 << (FRAC_BITS-1));
199 return (signed int)fp_toint(result);
200 }
201
202 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
203 {
204 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
205 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
206 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
207
208 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
209 }
210
211 static inline void intel_pstate_reset_all_pid(void)
212 {
213 unsigned int cpu;
214
215 for_each_online_cpu(cpu) {
216 if (all_cpu_data[cpu])
217 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
218 }
219 }
220
221 /************************** debugfs begin ************************/
222 static int pid_param_set(void *data, u64 val)
223 {
224 *(u32 *)data = val;
225 intel_pstate_reset_all_pid();
226 return 0;
227 }
228
229 static int pid_param_get(void *data, u64 *val)
230 {
231 *val = *(u32 *)data;
232 return 0;
233 }
234 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
235
236 struct pid_param {
237 char *name;
238 void *value;
239 };
240
241 static struct pid_param pid_files[] = {
242 {"sample_rate_ms", &pid_params.sample_rate_ms},
243 {"d_gain_pct", &pid_params.d_gain_pct},
244 {"i_gain_pct", &pid_params.i_gain_pct},
245 {"deadband", &pid_params.deadband},
246 {"setpoint", &pid_params.setpoint},
247 {"p_gain_pct", &pid_params.p_gain_pct},
248 {NULL, NULL}
249 };
250
251 static void __init intel_pstate_debug_expose_params(void)
252 {
253 struct dentry *debugfs_parent;
254 int i = 0;
255
256 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
257 if (IS_ERR_OR_NULL(debugfs_parent))
258 return;
259 while (pid_files[i].name) {
260 debugfs_create_file(pid_files[i].name, 0660,
261 debugfs_parent, pid_files[i].value,
262 &fops_pid_param);
263 i++;
264 }
265 }
266
267 /************************** debugfs end ************************/
268
269 /************************** sysfs begin ************************/
270 #define show_one(file_name, object) \
271 static ssize_t show_##file_name \
272 (struct kobject *kobj, struct attribute *attr, char *buf) \
273 { \
274 return sprintf(buf, "%u\n", limits.object); \
275 }
276
277 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
278 const char *buf, size_t count)
279 {
280 unsigned int input;
281 int ret;
282
283 ret = sscanf(buf, "%u", &input);
284 if (ret != 1)
285 return -EINVAL;
286 limits.no_turbo = clamp_t(int, input, 0 , 1);
287 if (limits.turbo_disabled) {
288 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
289 limits.no_turbo = limits.turbo_disabled;
290 }
291 return count;
292 }
293
294 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
295 const char *buf, size_t count)
296 {
297 unsigned int input;
298 int ret;
299
300 ret = sscanf(buf, "%u", &input);
301 if (ret != 1)
302 return -EINVAL;
303
304 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
305 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
306 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
307
308 return count;
309 }
310
311 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
312 const char *buf, size_t count)
313 {
314 unsigned int input;
315 int ret;
316
317 ret = sscanf(buf, "%u", &input);
318 if (ret != 1)
319 return -EINVAL;
320 limits.min_perf_pct = clamp_t(int, input, 0 , 100);
321 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
322
323 return count;
324 }
325
326 show_one(no_turbo, no_turbo);
327 show_one(max_perf_pct, max_perf_pct);
328 show_one(min_perf_pct, min_perf_pct);
329
330 define_one_global_rw(no_turbo);
331 define_one_global_rw(max_perf_pct);
332 define_one_global_rw(min_perf_pct);
333
334 static struct attribute *intel_pstate_attributes[] = {
335 &no_turbo.attr,
336 &max_perf_pct.attr,
337 &min_perf_pct.attr,
338 NULL
339 };
340
341 static struct attribute_group intel_pstate_attr_group = {
342 .attrs = intel_pstate_attributes,
343 };
344
345 static void __init intel_pstate_sysfs_expose_params(void)
346 {
347 struct kobject *intel_pstate_kobject;
348 int rc;
349
350 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
351 &cpu_subsys.dev_root->kobj);
352 BUG_ON(!intel_pstate_kobject);
353 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
354 BUG_ON(rc);
355 }
356
357 /************************** sysfs end ************************/
358 static int byt_get_min_pstate(void)
359 {
360 u64 value;
361
362 rdmsrl(BYT_RATIOS, value);
363 return (value >> 8) & 0x7F;
364 }
365
366 static int byt_get_max_pstate(void)
367 {
368 u64 value;
369
370 rdmsrl(BYT_RATIOS, value);
371 return (value >> 16) & 0x7F;
372 }
373
374 static int byt_get_turbo_pstate(void)
375 {
376 u64 value;
377
378 rdmsrl(BYT_TURBO_RATIOS, value);
379 return value & 0x7F;
380 }
381
382 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
383 {
384 u64 val;
385 int32_t vid_fp;
386 u32 vid;
387
388 val = pstate << 8;
389 if (limits.no_turbo && !limits.turbo_disabled)
390 val |= (u64)1 << 32;
391
392 vid_fp = cpudata->vid.min + mul_fp(
393 int_tofp(pstate - cpudata->pstate.min_pstate),
394 cpudata->vid.ratio);
395
396 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
397 vid = fp_toint(vid_fp);
398
399 if (pstate > cpudata->pstate.max_pstate)
400 vid = cpudata->vid.turbo;
401
402 val |= vid;
403
404 wrmsrl(MSR_IA32_PERF_CTL, val);
405 }
406
407 static void byt_get_vid(struct cpudata *cpudata)
408 {
409 u64 value;
410
411 rdmsrl(BYT_VIDS, value);
412 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
413 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
414 cpudata->vid.ratio = div_fp(
415 cpudata->vid.max - cpudata->vid.min,
416 int_tofp(cpudata->pstate.max_pstate -
417 cpudata->pstate.min_pstate));
418
419 rdmsrl(BYT_TURBO_VIDS, value);
420 cpudata->vid.turbo = value & 0x7f;
421 }
422
423 static int core_get_min_pstate(void)
424 {
425 u64 value;
426
427 rdmsrl(MSR_PLATFORM_INFO, value);
428 return (value >> 40) & 0xFF;
429 }
430
431 static int core_get_max_pstate(void)
432 {
433 u64 value;
434
435 rdmsrl(MSR_PLATFORM_INFO, value);
436 return (value >> 8) & 0xFF;
437 }
438
439 static int core_get_turbo_pstate(void)
440 {
441 u64 value;
442 int nont, ret;
443
444 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
445 nont = core_get_max_pstate();
446 ret = (value) & 255;
447 if (ret <= nont)
448 ret = nont;
449 return ret;
450 }
451
452 static void core_set_pstate(struct cpudata *cpudata, int pstate)
453 {
454 u64 val;
455
456 val = pstate << 8;
457 if (limits.no_turbo && !limits.turbo_disabled)
458 val |= (u64)1 << 32;
459
460 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
461 }
462
463 static struct cpu_defaults core_params = {
464 .pid_policy = {
465 .sample_rate_ms = 10,
466 .deadband = 0,
467 .setpoint = 97,
468 .p_gain_pct = 20,
469 .d_gain_pct = 0,
470 .i_gain_pct = 0,
471 },
472 .funcs = {
473 .get_max = core_get_max_pstate,
474 .get_min = core_get_min_pstate,
475 .get_turbo = core_get_turbo_pstate,
476 .set = core_set_pstate,
477 },
478 };
479
480 static struct cpu_defaults byt_params = {
481 .pid_policy = {
482 .sample_rate_ms = 10,
483 .deadband = 0,
484 .setpoint = 97,
485 .p_gain_pct = 14,
486 .d_gain_pct = 0,
487 .i_gain_pct = 4,
488 },
489 .funcs = {
490 .get_max = byt_get_max_pstate,
491 .get_min = byt_get_min_pstate,
492 .get_turbo = byt_get_turbo_pstate,
493 .set = byt_set_pstate,
494 .get_vid = byt_get_vid,
495 },
496 };
497
498 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
499 {
500 int max_perf = cpu->pstate.turbo_pstate;
501 int max_perf_adj;
502 int min_perf;
503
504 if (limits.no_turbo)
505 max_perf = cpu->pstate.max_pstate;
506
507 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
508 *max = clamp_t(int, max_perf_adj,
509 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
510
511 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
512 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
513 }
514
515 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
516 {
517 int max_perf, min_perf;
518
519 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
520
521 pstate = clamp_t(int, pstate, min_perf, max_perf);
522
523 if (pstate == cpu->pstate.current_pstate)
524 return;
525
526 trace_cpu_frequency(pstate * 100000, cpu->cpu);
527
528 cpu->pstate.current_pstate = pstate;
529
530 pstate_funcs.set(cpu, pstate);
531 }
532
533 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
534 {
535 cpu->pstate.min_pstate = pstate_funcs.get_min();
536 cpu->pstate.max_pstate = pstate_funcs.get_max();
537 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
538
539 if (pstate_funcs.get_vid)
540 pstate_funcs.get_vid(cpu);
541 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
542 }
543
544 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
545 {
546 struct sample *sample = &cpu->sample;
547 int64_t core_pct;
548
549 core_pct = int_tofp(sample->aperf) * int_tofp(100);
550 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
551
552 sample->freq = fp_toint(
553 mul_fp(int_tofp(cpu->pstate.max_pstate * 1000), core_pct));
554
555 sample->core_pct_busy = (int32_t)core_pct;
556 }
557
558 static inline void intel_pstate_sample(struct cpudata *cpu)
559 {
560 u64 aperf, mperf;
561 unsigned long flags;
562
563 local_irq_save(flags);
564 rdmsrl(MSR_IA32_APERF, aperf);
565 rdmsrl(MSR_IA32_MPERF, mperf);
566 local_irq_restore(flags);
567
568 cpu->last_sample_time = cpu->sample.time;
569 cpu->sample.time = ktime_get();
570 cpu->sample.aperf = aperf;
571 cpu->sample.mperf = mperf;
572 cpu->sample.aperf -= cpu->prev_aperf;
573 cpu->sample.mperf -= cpu->prev_mperf;
574
575 intel_pstate_calc_busy(cpu);
576
577 cpu->prev_aperf = aperf;
578 cpu->prev_mperf = mperf;
579 }
580
581 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
582 {
583 int delay;
584
585 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
586 mod_timer_pinned(&cpu->timer, jiffies + delay);
587 }
588
589 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
590 {
591 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
592 u32 duration_us;
593 u32 sample_time;
594
595 core_busy = cpu->sample.core_pct_busy;
596 max_pstate = int_tofp(cpu->pstate.max_pstate);
597 current_pstate = int_tofp(cpu->pstate.current_pstate);
598 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
599
600 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
601 duration_us = (u32) ktime_us_delta(cpu->sample.time,
602 cpu->last_sample_time);
603 if (duration_us > sample_time * 3) {
604 sample_ratio = div_fp(int_tofp(sample_time),
605 int_tofp(duration_us));
606 core_busy = mul_fp(core_busy, sample_ratio);
607 }
608
609 return core_busy;
610 }
611
612 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
613 {
614 int32_t busy_scaled;
615 struct _pid *pid;
616 signed int ctl;
617
618 pid = &cpu->pid;
619 busy_scaled = intel_pstate_get_scaled_busy(cpu);
620
621 ctl = pid_calc(pid, busy_scaled);
622
623 /* Negative values of ctl increase the pstate and vice versa */
624 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
625 }
626
627 static void intel_pstate_timer_func(unsigned long __data)
628 {
629 struct cpudata *cpu = (struct cpudata *) __data;
630 struct sample *sample;
631
632 intel_pstate_sample(cpu);
633
634 sample = &cpu->sample;
635
636 intel_pstate_adjust_busy_pstate(cpu);
637
638 trace_pstate_sample(fp_toint(sample->core_pct_busy),
639 fp_toint(intel_pstate_get_scaled_busy(cpu)),
640 cpu->pstate.current_pstate,
641 sample->mperf,
642 sample->aperf,
643 sample->freq);
644
645 intel_pstate_set_sample_time(cpu);
646 }
647
648 #define ICPU(model, policy) \
649 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
650 (unsigned long)&policy }
651
652 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
653 ICPU(0x2a, core_params),
654 ICPU(0x2d, core_params),
655 ICPU(0x37, byt_params),
656 ICPU(0x3a, core_params),
657 ICPU(0x3c, core_params),
658 ICPU(0x3d, core_params),
659 ICPU(0x3e, core_params),
660 ICPU(0x3f, core_params),
661 ICPU(0x45, core_params),
662 ICPU(0x46, core_params),
663 ICPU(0x4f, core_params),
664 ICPU(0x56, core_params),
665 {}
666 };
667 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
668
669 static int intel_pstate_init_cpu(unsigned int cpunum)
670 {
671 struct cpudata *cpu;
672
673 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
674 if (!all_cpu_data[cpunum])
675 return -ENOMEM;
676
677 cpu = all_cpu_data[cpunum];
678
679 cpu->cpu = cpunum;
680 intel_pstate_get_cpu_pstates(cpu);
681
682 init_timer_deferrable(&cpu->timer);
683 cpu->timer.function = intel_pstate_timer_func;
684 cpu->timer.data = (unsigned long)cpu;
685 cpu->timer.expires = jiffies + HZ/100;
686 intel_pstate_busy_pid_reset(cpu);
687 intel_pstate_sample(cpu);
688
689 add_timer_on(&cpu->timer, cpunum);
690
691 pr_info("Intel pstate controlling: cpu %d\n", cpunum);
692
693 return 0;
694 }
695
696 static unsigned int intel_pstate_get(unsigned int cpu_num)
697 {
698 struct sample *sample;
699 struct cpudata *cpu;
700
701 cpu = all_cpu_data[cpu_num];
702 if (!cpu)
703 return 0;
704 sample = &cpu->sample;
705 return sample->freq;
706 }
707
708 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
709 {
710 struct cpudata *cpu;
711
712 cpu = all_cpu_data[policy->cpu];
713
714 if (!policy->cpuinfo.max_freq)
715 return -ENODEV;
716
717 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
718 limits.min_perf_pct = 100;
719 limits.min_perf = int_tofp(1);
720 limits.max_perf_pct = 100;
721 limits.max_perf = int_tofp(1);
722 limits.no_turbo = limits.turbo_disabled;
723 return 0;
724 }
725 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
726 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
727 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
728
729 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
730 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
731 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
732 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
733
734 return 0;
735 }
736
737 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
738 {
739 cpufreq_verify_within_cpu_limits(policy);
740
741 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
742 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
743 return -EINVAL;
744
745 return 0;
746 }
747
748 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
749 {
750 int cpu_num = policy->cpu;
751 struct cpudata *cpu = all_cpu_data[cpu_num];
752
753 pr_info("intel_pstate CPU %d exiting\n", cpu_num);
754
755 del_timer_sync(&all_cpu_data[cpu_num]->timer);
756 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
757 kfree(all_cpu_data[cpu_num]);
758 all_cpu_data[cpu_num] = NULL;
759 }
760
761 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
762 {
763 struct cpudata *cpu;
764 int rc;
765 u64 misc_en;
766
767 rc = intel_pstate_init_cpu(policy->cpu);
768 if (rc)
769 return rc;
770
771 cpu = all_cpu_data[policy->cpu];
772
773 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
774 if (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
775 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate) {
776 limits.turbo_disabled = 1;
777 limits.no_turbo = 1;
778 }
779 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
780 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
781 else
782 policy->policy = CPUFREQ_POLICY_POWERSAVE;
783
784 policy->min = cpu->pstate.min_pstate * 100000;
785 policy->max = cpu->pstate.turbo_pstate * 100000;
786
787 /* cpuinfo and default policy values */
788 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
789 policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
790 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
791 cpumask_set_cpu(policy->cpu, policy->cpus);
792
793 return 0;
794 }
795
796 static struct cpufreq_driver intel_pstate_driver = {
797 .flags = CPUFREQ_CONST_LOOPS,
798 .verify = intel_pstate_verify_policy,
799 .setpolicy = intel_pstate_set_policy,
800 .get = intel_pstate_get,
801 .init = intel_pstate_cpu_init,
802 .stop_cpu = intel_pstate_stop_cpu,
803 .name = "intel_pstate",
804 };
805
806 static int __initdata no_load;
807
808 static int intel_pstate_msrs_not_valid(void)
809 {
810 /* Check that all the msr's we are using are valid. */
811 u64 aperf, mperf, tmp;
812
813 rdmsrl(MSR_IA32_APERF, aperf);
814 rdmsrl(MSR_IA32_MPERF, mperf);
815
816 if (!pstate_funcs.get_max() ||
817 !pstate_funcs.get_min() ||
818 !pstate_funcs.get_turbo())
819 return -ENODEV;
820
821 rdmsrl(MSR_IA32_APERF, tmp);
822 if (!(tmp - aperf))
823 return -ENODEV;
824
825 rdmsrl(MSR_IA32_MPERF, tmp);
826 if (!(tmp - mperf))
827 return -ENODEV;
828
829 return 0;
830 }
831
832 static void copy_pid_params(struct pstate_adjust_policy *policy)
833 {
834 pid_params.sample_rate_ms = policy->sample_rate_ms;
835 pid_params.p_gain_pct = policy->p_gain_pct;
836 pid_params.i_gain_pct = policy->i_gain_pct;
837 pid_params.d_gain_pct = policy->d_gain_pct;
838 pid_params.deadband = policy->deadband;
839 pid_params.setpoint = policy->setpoint;
840 }
841
842 static void copy_cpu_funcs(struct pstate_funcs *funcs)
843 {
844 pstate_funcs.get_max = funcs->get_max;
845 pstate_funcs.get_min = funcs->get_min;
846 pstate_funcs.get_turbo = funcs->get_turbo;
847 pstate_funcs.set = funcs->set;
848 pstate_funcs.get_vid = funcs->get_vid;
849 }
850
851 #if IS_ENABLED(CONFIG_ACPI)
852 #include <acpi/processor.h>
853
854 static bool intel_pstate_no_acpi_pss(void)
855 {
856 int i;
857
858 for_each_possible_cpu(i) {
859 acpi_status status;
860 union acpi_object *pss;
861 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
862 struct acpi_processor *pr = per_cpu(processors, i);
863
864 if (!pr)
865 continue;
866
867 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
868 if (ACPI_FAILURE(status))
869 continue;
870
871 pss = buffer.pointer;
872 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
873 kfree(pss);
874 return false;
875 }
876
877 kfree(pss);
878 }
879
880 return true;
881 }
882
883 struct hw_vendor_info {
884 u16 valid;
885 char oem_id[ACPI_OEM_ID_SIZE];
886 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
887 };
888
889 /* Hardware vendor-specific info that has its own power management modes */
890 static struct hw_vendor_info vendor_info[] = {
891 {1, "HP ", "ProLiant"},
892 {0, "", ""},
893 };
894
895 static bool intel_pstate_platform_pwr_mgmt_exists(void)
896 {
897 struct acpi_table_header hdr;
898 struct hw_vendor_info *v_info;
899
900 if (acpi_disabled ||
901 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
902 return false;
903
904 for (v_info = vendor_info; v_info->valid; v_info++) {
905 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
906 !strncmp(hdr.oem_table_id, v_info->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
907 intel_pstate_no_acpi_pss())
908 return true;
909 }
910
911 return false;
912 }
913 #else /* CONFIG_ACPI not enabled */
914 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
915 #endif /* CONFIG_ACPI */
916
917 static int __init intel_pstate_init(void)
918 {
919 int cpu, rc = 0;
920 const struct x86_cpu_id *id;
921 struct cpu_defaults *cpu_info;
922
923 if (no_load)
924 return -ENODEV;
925
926 id = x86_match_cpu(intel_pstate_cpu_ids);
927 if (!id)
928 return -ENODEV;
929
930 /*
931 * The Intel pstate driver will be ignored if the platform
932 * firmware has its own power management modes.
933 */
934 if (intel_pstate_platform_pwr_mgmt_exists())
935 return -ENODEV;
936
937 cpu_info = (struct cpu_defaults *)id->driver_data;
938
939 copy_pid_params(&cpu_info->pid_policy);
940 copy_cpu_funcs(&cpu_info->funcs);
941
942 if (intel_pstate_msrs_not_valid())
943 return -ENODEV;
944
945 pr_info("Intel P-state driver initializing.\n");
946
947 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
948 if (!all_cpu_data)
949 return -ENOMEM;
950
951 rc = cpufreq_register_driver(&intel_pstate_driver);
952 if (rc)
953 goto out;
954
955 intel_pstate_debug_expose_params();
956 intel_pstate_sysfs_expose_params();
957
958 return rc;
959 out:
960 get_online_cpus();
961 for_each_online_cpu(cpu) {
962 if (all_cpu_data[cpu]) {
963 del_timer_sync(&all_cpu_data[cpu]->timer);
964 kfree(all_cpu_data[cpu]);
965 }
966 }
967
968 put_online_cpus();
969 vfree(all_cpu_data);
970 return -ENODEV;
971 }
972 device_initcall(intel_pstate_init);
973
974 static int __init intel_pstate_setup(char *str)
975 {
976 if (!str)
977 return -EINVAL;
978
979 if (!strcmp(str, "disable"))
980 no_load = 1;
981 return 0;
982 }
983 early_param("intel_pstate", intel_pstate_setup);
984
985 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
986 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
987 MODULE_LICENSE("GPL");
This page took 0.055006 seconds and 4 git commands to generate.