Merge branch 'for-4.4/hotplug' into libnvdimm-for-next
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define BYT_RATIOS 0x66a
38 #define BYT_VIDS 0x66b
39 #define BYT_TURBO_RATIOS 0x66c
40 #define BYT_TURBO_VIDS 0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(s64 x, s64 y)
53 {
54 return div64_s64((int64_t)x << FRAC_BITS, y);
55 }
56
57 static inline int ceiling_fp(int32_t x)
58 {
59 int mask, ret;
60
61 ret = fp_toint(x);
62 mask = (1 << FRAC_BITS) - 1;
63 if (x & mask)
64 ret += 1;
65 return ret;
66 }
67
68 struct sample {
69 int32_t core_pct_busy;
70 u64 aperf;
71 u64 mperf;
72 u64 tsc;
73 int freq;
74 ktime_t time;
75 };
76
77 struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
81 int scaling;
82 int turbo_pstate;
83 };
84
85 struct vid_data {
86 int min;
87 int max;
88 int turbo;
89 int32_t ratio;
90 };
91
92 struct _pid {
93 int setpoint;
94 int32_t integral;
95 int32_t p_gain;
96 int32_t i_gain;
97 int32_t d_gain;
98 int deadband;
99 int32_t last_err;
100 };
101
102 struct cpudata {
103 int cpu;
104
105 struct timer_list timer;
106
107 struct pstate_data pstate;
108 struct vid_data vid;
109 struct _pid pid;
110
111 ktime_t last_sample_time;
112 u64 prev_aperf;
113 u64 prev_mperf;
114 u64 prev_tsc;
115 struct sample sample;
116 };
117
118 static struct cpudata **all_cpu_data;
119 struct pstate_adjust_policy {
120 int sample_rate_ms;
121 int deadband;
122 int setpoint;
123 int p_gain_pct;
124 int d_gain_pct;
125 int i_gain_pct;
126 };
127
128 struct pstate_funcs {
129 int (*get_max)(void);
130 int (*get_min)(void);
131 int (*get_turbo)(void);
132 int (*get_scaling)(void);
133 void (*set)(struct cpudata*, int pstate);
134 void (*get_vid)(struct cpudata *);
135 };
136
137 struct cpu_defaults {
138 struct pstate_adjust_policy pid_policy;
139 struct pstate_funcs funcs;
140 };
141
142 static struct pstate_adjust_policy pid_params;
143 static struct pstate_funcs pstate_funcs;
144 static int hwp_active;
145
146 struct perf_limits {
147 int no_turbo;
148 int turbo_disabled;
149 int max_perf_pct;
150 int min_perf_pct;
151 int32_t max_perf;
152 int32_t min_perf;
153 int max_policy_pct;
154 int max_sysfs_pct;
155 int min_policy_pct;
156 int min_sysfs_pct;
157 };
158
159 static struct perf_limits limits = {
160 .no_turbo = 0,
161 .turbo_disabled = 0,
162 .max_perf_pct = 100,
163 .max_perf = int_tofp(1),
164 .min_perf_pct = 0,
165 .min_perf = 0,
166 .max_policy_pct = 100,
167 .max_sysfs_pct = 100,
168 .min_policy_pct = 0,
169 .min_sysfs_pct = 0,
170 };
171
172 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
173 int deadband, int integral) {
174 pid->setpoint = setpoint;
175 pid->deadband = deadband;
176 pid->integral = int_tofp(integral);
177 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
178 }
179
180 static inline void pid_p_gain_set(struct _pid *pid, int percent)
181 {
182 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
183 }
184
185 static inline void pid_i_gain_set(struct _pid *pid, int percent)
186 {
187 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
188 }
189
190 static inline void pid_d_gain_set(struct _pid *pid, int percent)
191 {
192 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
193 }
194
195 static signed int pid_calc(struct _pid *pid, int32_t busy)
196 {
197 signed int result;
198 int32_t pterm, dterm, fp_error;
199 int32_t integral_limit;
200
201 fp_error = int_tofp(pid->setpoint) - busy;
202
203 if (abs(fp_error) <= int_tofp(pid->deadband))
204 return 0;
205
206 pterm = mul_fp(pid->p_gain, fp_error);
207
208 pid->integral += fp_error;
209
210 /*
211 * We limit the integral here so that it will never
212 * get higher than 30. This prevents it from becoming
213 * too large an input over long periods of time and allows
214 * it to get factored out sooner.
215 *
216 * The value of 30 was chosen through experimentation.
217 */
218 integral_limit = int_tofp(30);
219 if (pid->integral > integral_limit)
220 pid->integral = integral_limit;
221 if (pid->integral < -integral_limit)
222 pid->integral = -integral_limit;
223
224 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
225 pid->last_err = fp_error;
226
227 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
228 result = result + (1 << (FRAC_BITS-1));
229 return (signed int)fp_toint(result);
230 }
231
232 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
233 {
234 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
235 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
236 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
237
238 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
239 }
240
241 static inline void intel_pstate_reset_all_pid(void)
242 {
243 unsigned int cpu;
244
245 for_each_online_cpu(cpu) {
246 if (all_cpu_data[cpu])
247 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
248 }
249 }
250
251 static inline void update_turbo_state(void)
252 {
253 u64 misc_en;
254 struct cpudata *cpu;
255
256 cpu = all_cpu_data[0];
257 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
258 limits.turbo_disabled =
259 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
260 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
261 }
262
263 static void intel_pstate_hwp_set(void)
264 {
265 int min, hw_min, max, hw_max, cpu, range, adj_range;
266 u64 value, cap;
267
268 rdmsrl(MSR_HWP_CAPABILITIES, cap);
269 hw_min = HWP_LOWEST_PERF(cap);
270 hw_max = HWP_HIGHEST_PERF(cap);
271 range = hw_max - hw_min;
272
273 get_online_cpus();
274
275 for_each_online_cpu(cpu) {
276 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
277 adj_range = limits.min_perf_pct * range / 100;
278 min = hw_min + adj_range;
279 value &= ~HWP_MIN_PERF(~0L);
280 value |= HWP_MIN_PERF(min);
281
282 adj_range = limits.max_perf_pct * range / 100;
283 max = hw_min + adj_range;
284 if (limits.no_turbo) {
285 hw_max = HWP_GUARANTEED_PERF(cap);
286 if (hw_max < max)
287 max = hw_max;
288 }
289
290 value &= ~HWP_MAX_PERF(~0L);
291 value |= HWP_MAX_PERF(max);
292 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
293 }
294
295 put_online_cpus();
296 }
297
298 /************************** debugfs begin ************************/
299 static int pid_param_set(void *data, u64 val)
300 {
301 *(u32 *)data = val;
302 intel_pstate_reset_all_pid();
303 return 0;
304 }
305
306 static int pid_param_get(void *data, u64 *val)
307 {
308 *val = *(u32 *)data;
309 return 0;
310 }
311 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
312
313 struct pid_param {
314 char *name;
315 void *value;
316 };
317
318 static struct pid_param pid_files[] = {
319 {"sample_rate_ms", &pid_params.sample_rate_ms},
320 {"d_gain_pct", &pid_params.d_gain_pct},
321 {"i_gain_pct", &pid_params.i_gain_pct},
322 {"deadband", &pid_params.deadband},
323 {"setpoint", &pid_params.setpoint},
324 {"p_gain_pct", &pid_params.p_gain_pct},
325 {NULL, NULL}
326 };
327
328 static void __init intel_pstate_debug_expose_params(void)
329 {
330 struct dentry *debugfs_parent;
331 int i = 0;
332
333 if (hwp_active)
334 return;
335 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
336 if (IS_ERR_OR_NULL(debugfs_parent))
337 return;
338 while (pid_files[i].name) {
339 debugfs_create_file(pid_files[i].name, 0660,
340 debugfs_parent, pid_files[i].value,
341 &fops_pid_param);
342 i++;
343 }
344 }
345
346 /************************** debugfs end ************************/
347
348 /************************** sysfs begin ************************/
349 #define show_one(file_name, object) \
350 static ssize_t show_##file_name \
351 (struct kobject *kobj, struct attribute *attr, char *buf) \
352 { \
353 return sprintf(buf, "%u\n", limits.object); \
354 }
355
356 static ssize_t show_turbo_pct(struct kobject *kobj,
357 struct attribute *attr, char *buf)
358 {
359 struct cpudata *cpu;
360 int total, no_turbo, turbo_pct;
361 uint32_t turbo_fp;
362
363 cpu = all_cpu_data[0];
364
365 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
366 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
367 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
368 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
369 return sprintf(buf, "%u\n", turbo_pct);
370 }
371
372 static ssize_t show_num_pstates(struct kobject *kobj,
373 struct attribute *attr, char *buf)
374 {
375 struct cpudata *cpu;
376 int total;
377
378 cpu = all_cpu_data[0];
379 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
380 return sprintf(buf, "%u\n", total);
381 }
382
383 static ssize_t show_no_turbo(struct kobject *kobj,
384 struct attribute *attr, char *buf)
385 {
386 ssize_t ret;
387
388 update_turbo_state();
389 if (limits.turbo_disabled)
390 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
391 else
392 ret = sprintf(buf, "%u\n", limits.no_turbo);
393
394 return ret;
395 }
396
397 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
398 const char *buf, size_t count)
399 {
400 unsigned int input;
401 int ret;
402
403 ret = sscanf(buf, "%u", &input);
404 if (ret != 1)
405 return -EINVAL;
406
407 update_turbo_state();
408 if (limits.turbo_disabled) {
409 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
410 return -EPERM;
411 }
412
413 limits.no_turbo = clamp_t(int, input, 0, 1);
414
415 if (hwp_active)
416 intel_pstate_hwp_set();
417
418 return count;
419 }
420
421 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
422 const char *buf, size_t count)
423 {
424 unsigned int input;
425 int ret;
426
427 ret = sscanf(buf, "%u", &input);
428 if (ret != 1)
429 return -EINVAL;
430
431 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
432 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
433 limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
434 limits.max_perf_pct = max(limits.min_perf_pct, limits.max_perf_pct);
435 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
436
437 if (hwp_active)
438 intel_pstate_hwp_set();
439 return count;
440 }
441
442 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
443 const char *buf, size_t count)
444 {
445 unsigned int input;
446 int ret;
447
448 ret = sscanf(buf, "%u", &input);
449 if (ret != 1)
450 return -EINVAL;
451
452 limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
453 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
454 limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
455 limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
456 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
457
458 if (hwp_active)
459 intel_pstate_hwp_set();
460 return count;
461 }
462
463 show_one(max_perf_pct, max_perf_pct);
464 show_one(min_perf_pct, min_perf_pct);
465
466 define_one_global_rw(no_turbo);
467 define_one_global_rw(max_perf_pct);
468 define_one_global_rw(min_perf_pct);
469 define_one_global_ro(turbo_pct);
470 define_one_global_ro(num_pstates);
471
472 static struct attribute *intel_pstate_attributes[] = {
473 &no_turbo.attr,
474 &max_perf_pct.attr,
475 &min_perf_pct.attr,
476 &turbo_pct.attr,
477 &num_pstates.attr,
478 NULL
479 };
480
481 static struct attribute_group intel_pstate_attr_group = {
482 .attrs = intel_pstate_attributes,
483 };
484
485 static void __init intel_pstate_sysfs_expose_params(void)
486 {
487 struct kobject *intel_pstate_kobject;
488 int rc;
489
490 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
491 &cpu_subsys.dev_root->kobj);
492 BUG_ON(!intel_pstate_kobject);
493 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
494 BUG_ON(rc);
495 }
496 /************************** sysfs end ************************/
497
498 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
499 {
500 pr_info("intel_pstate: HWP enabled\n");
501
502 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
503 }
504
505 static int byt_get_min_pstate(void)
506 {
507 u64 value;
508
509 rdmsrl(BYT_RATIOS, value);
510 return (value >> 8) & 0x7F;
511 }
512
513 static int byt_get_max_pstate(void)
514 {
515 u64 value;
516
517 rdmsrl(BYT_RATIOS, value);
518 return (value >> 16) & 0x7F;
519 }
520
521 static int byt_get_turbo_pstate(void)
522 {
523 u64 value;
524
525 rdmsrl(BYT_TURBO_RATIOS, value);
526 return value & 0x7F;
527 }
528
529 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
530 {
531 u64 val;
532 int32_t vid_fp;
533 u32 vid;
534
535 val = (u64)pstate << 8;
536 if (limits.no_turbo && !limits.turbo_disabled)
537 val |= (u64)1 << 32;
538
539 vid_fp = cpudata->vid.min + mul_fp(
540 int_tofp(pstate - cpudata->pstate.min_pstate),
541 cpudata->vid.ratio);
542
543 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
544 vid = ceiling_fp(vid_fp);
545
546 if (pstate > cpudata->pstate.max_pstate)
547 vid = cpudata->vid.turbo;
548
549 val |= vid;
550
551 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
552 }
553
554 #define BYT_BCLK_FREQS 5
555 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
556
557 static int byt_get_scaling(void)
558 {
559 u64 value;
560 int i;
561
562 rdmsrl(MSR_FSB_FREQ, value);
563 i = value & 0x3;
564
565 BUG_ON(i > BYT_BCLK_FREQS);
566
567 return byt_freq_table[i] * 100;
568 }
569
570 static void byt_get_vid(struct cpudata *cpudata)
571 {
572 u64 value;
573
574 rdmsrl(BYT_VIDS, value);
575 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
576 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
577 cpudata->vid.ratio = div_fp(
578 cpudata->vid.max - cpudata->vid.min,
579 int_tofp(cpudata->pstate.max_pstate -
580 cpudata->pstate.min_pstate));
581
582 rdmsrl(BYT_TURBO_VIDS, value);
583 cpudata->vid.turbo = value & 0x7f;
584 }
585
586 static int core_get_min_pstate(void)
587 {
588 u64 value;
589
590 rdmsrl(MSR_PLATFORM_INFO, value);
591 return (value >> 40) & 0xFF;
592 }
593
594 static int core_get_max_pstate(void)
595 {
596 u64 value;
597
598 rdmsrl(MSR_PLATFORM_INFO, value);
599 return (value >> 8) & 0xFF;
600 }
601
602 static int core_get_turbo_pstate(void)
603 {
604 u64 value;
605 int nont, ret;
606
607 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
608 nont = core_get_max_pstate();
609 ret = (value) & 255;
610 if (ret <= nont)
611 ret = nont;
612 return ret;
613 }
614
615 static inline int core_get_scaling(void)
616 {
617 return 100000;
618 }
619
620 static void core_set_pstate(struct cpudata *cpudata, int pstate)
621 {
622 u64 val;
623
624 val = (u64)pstate << 8;
625 if (limits.no_turbo && !limits.turbo_disabled)
626 val |= (u64)1 << 32;
627
628 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
629 }
630
631 static int knl_get_turbo_pstate(void)
632 {
633 u64 value;
634 int nont, ret;
635
636 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
637 nont = core_get_max_pstate();
638 ret = (((value) >> 8) & 0xFF);
639 if (ret <= nont)
640 ret = nont;
641 return ret;
642 }
643
644 static struct cpu_defaults core_params = {
645 .pid_policy = {
646 .sample_rate_ms = 10,
647 .deadband = 0,
648 .setpoint = 97,
649 .p_gain_pct = 20,
650 .d_gain_pct = 0,
651 .i_gain_pct = 0,
652 },
653 .funcs = {
654 .get_max = core_get_max_pstate,
655 .get_min = core_get_min_pstate,
656 .get_turbo = core_get_turbo_pstate,
657 .get_scaling = core_get_scaling,
658 .set = core_set_pstate,
659 },
660 };
661
662 static struct cpu_defaults byt_params = {
663 .pid_policy = {
664 .sample_rate_ms = 10,
665 .deadband = 0,
666 .setpoint = 60,
667 .p_gain_pct = 14,
668 .d_gain_pct = 0,
669 .i_gain_pct = 4,
670 },
671 .funcs = {
672 .get_max = byt_get_max_pstate,
673 .get_min = byt_get_min_pstate,
674 .get_turbo = byt_get_turbo_pstate,
675 .set = byt_set_pstate,
676 .get_scaling = byt_get_scaling,
677 .get_vid = byt_get_vid,
678 },
679 };
680
681 static struct cpu_defaults knl_params = {
682 .pid_policy = {
683 .sample_rate_ms = 10,
684 .deadband = 0,
685 .setpoint = 97,
686 .p_gain_pct = 20,
687 .d_gain_pct = 0,
688 .i_gain_pct = 0,
689 },
690 .funcs = {
691 .get_max = core_get_max_pstate,
692 .get_min = core_get_min_pstate,
693 .get_turbo = knl_get_turbo_pstate,
694 .get_scaling = core_get_scaling,
695 .set = core_set_pstate,
696 },
697 };
698
699 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
700 {
701 int max_perf = cpu->pstate.turbo_pstate;
702 int max_perf_adj;
703 int min_perf;
704
705 if (limits.no_turbo || limits.turbo_disabled)
706 max_perf = cpu->pstate.max_pstate;
707
708 /*
709 * performance can be limited by user through sysfs, by cpufreq
710 * policy, or by cpu specific default values determined through
711 * experimentation.
712 */
713 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
714 *max = clamp_t(int, max_perf_adj,
715 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
716
717 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
718 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
719 }
720
721 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
722 {
723 int max_perf, min_perf;
724
725 if (force) {
726 update_turbo_state();
727
728 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
729
730 pstate = clamp_t(int, pstate, min_perf, max_perf);
731
732 if (pstate == cpu->pstate.current_pstate)
733 return;
734 }
735 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
736
737 cpu->pstate.current_pstate = pstate;
738
739 pstate_funcs.set(cpu, pstate);
740 }
741
742 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
743 {
744 cpu->pstate.min_pstate = pstate_funcs.get_min();
745 cpu->pstate.max_pstate = pstate_funcs.get_max();
746 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
747 cpu->pstate.scaling = pstate_funcs.get_scaling();
748
749 if (pstate_funcs.get_vid)
750 pstate_funcs.get_vid(cpu);
751 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
752 }
753
754 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
755 {
756 struct sample *sample = &cpu->sample;
757 int64_t core_pct;
758
759 core_pct = int_tofp(sample->aperf) * int_tofp(100);
760 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
761
762 sample->freq = fp_toint(
763 mul_fp(int_tofp(
764 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
765 core_pct));
766
767 sample->core_pct_busy = (int32_t)core_pct;
768 }
769
770 static inline void intel_pstate_sample(struct cpudata *cpu)
771 {
772 u64 aperf, mperf;
773 unsigned long flags;
774 u64 tsc;
775
776 local_irq_save(flags);
777 rdmsrl(MSR_IA32_APERF, aperf);
778 rdmsrl(MSR_IA32_MPERF, mperf);
779 if (cpu->prev_mperf == mperf) {
780 local_irq_restore(flags);
781 return;
782 }
783
784 tsc = rdtsc();
785 local_irq_restore(flags);
786
787 cpu->last_sample_time = cpu->sample.time;
788 cpu->sample.time = ktime_get();
789 cpu->sample.aperf = aperf;
790 cpu->sample.mperf = mperf;
791 cpu->sample.tsc = tsc;
792 cpu->sample.aperf -= cpu->prev_aperf;
793 cpu->sample.mperf -= cpu->prev_mperf;
794 cpu->sample.tsc -= cpu->prev_tsc;
795
796 intel_pstate_calc_busy(cpu);
797
798 cpu->prev_aperf = aperf;
799 cpu->prev_mperf = mperf;
800 cpu->prev_tsc = tsc;
801 }
802
803 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
804 {
805 int delay;
806
807 delay = msecs_to_jiffies(50);
808 mod_timer_pinned(&cpu->timer, jiffies + delay);
809 }
810
811 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
812 {
813 int delay;
814
815 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
816 mod_timer_pinned(&cpu->timer, jiffies + delay);
817 }
818
819 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
820 {
821 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
822 s64 duration_us;
823 u32 sample_time;
824
825 /*
826 * core_busy is the ratio of actual performance to max
827 * max_pstate is the max non turbo pstate available
828 * current_pstate was the pstate that was requested during
829 * the last sample period.
830 *
831 * We normalize core_busy, which was our actual percent
832 * performance to what we requested during the last sample
833 * period. The result will be a percentage of busy at a
834 * specified pstate.
835 */
836 core_busy = cpu->sample.core_pct_busy;
837 max_pstate = int_tofp(cpu->pstate.max_pstate);
838 current_pstate = int_tofp(cpu->pstate.current_pstate);
839 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
840
841 /*
842 * Since we have a deferred timer, it will not fire unless
843 * we are in C0. So, determine if the actual elapsed time
844 * is significantly greater (3x) than our sample interval. If it
845 * is, then we were idle for a long enough period of time
846 * to adjust our busyness.
847 */
848 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
849 duration_us = ktime_us_delta(cpu->sample.time,
850 cpu->last_sample_time);
851 if (duration_us > sample_time * 3) {
852 sample_ratio = div_fp(int_tofp(sample_time),
853 int_tofp(duration_us));
854 core_busy = mul_fp(core_busy, sample_ratio);
855 }
856
857 return core_busy;
858 }
859
860 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
861 {
862 int32_t busy_scaled;
863 struct _pid *pid;
864 signed int ctl;
865 int from;
866 struct sample *sample;
867
868 from = cpu->pstate.current_pstate;
869
870 pid = &cpu->pid;
871 busy_scaled = intel_pstate_get_scaled_busy(cpu);
872
873 ctl = pid_calc(pid, busy_scaled);
874
875 /* Negative values of ctl increase the pstate and vice versa */
876 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl, true);
877
878 sample = &cpu->sample;
879 trace_pstate_sample(fp_toint(sample->core_pct_busy),
880 fp_toint(busy_scaled),
881 from,
882 cpu->pstate.current_pstate,
883 sample->mperf,
884 sample->aperf,
885 sample->tsc,
886 sample->freq);
887 }
888
889 static void intel_hwp_timer_func(unsigned long __data)
890 {
891 struct cpudata *cpu = (struct cpudata *) __data;
892
893 intel_pstate_sample(cpu);
894 intel_hwp_set_sample_time(cpu);
895 }
896
897 static void intel_pstate_timer_func(unsigned long __data)
898 {
899 struct cpudata *cpu = (struct cpudata *) __data;
900
901 intel_pstate_sample(cpu);
902
903 intel_pstate_adjust_busy_pstate(cpu);
904
905 intel_pstate_set_sample_time(cpu);
906 }
907
908 #define ICPU(model, policy) \
909 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
910 (unsigned long)&policy }
911
912 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
913 ICPU(0x2a, core_params),
914 ICPU(0x2d, core_params),
915 ICPU(0x37, byt_params),
916 ICPU(0x3a, core_params),
917 ICPU(0x3c, core_params),
918 ICPU(0x3d, core_params),
919 ICPU(0x3e, core_params),
920 ICPU(0x3f, core_params),
921 ICPU(0x45, core_params),
922 ICPU(0x46, core_params),
923 ICPU(0x47, core_params),
924 ICPU(0x4c, byt_params),
925 ICPU(0x4e, core_params),
926 ICPU(0x4f, core_params),
927 ICPU(0x5e, core_params),
928 ICPU(0x56, core_params),
929 ICPU(0x57, knl_params),
930 {}
931 };
932 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
933
934 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
935 ICPU(0x56, core_params),
936 {}
937 };
938
939 static int intel_pstate_init_cpu(unsigned int cpunum)
940 {
941 struct cpudata *cpu;
942
943 if (!all_cpu_data[cpunum])
944 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
945 GFP_KERNEL);
946 if (!all_cpu_data[cpunum])
947 return -ENOMEM;
948
949 cpu = all_cpu_data[cpunum];
950
951 cpu->cpu = cpunum;
952
953 if (hwp_active)
954 intel_pstate_hwp_enable(cpu);
955
956 intel_pstate_get_cpu_pstates(cpu);
957
958 init_timer_deferrable(&cpu->timer);
959 cpu->timer.data = (unsigned long)cpu;
960 cpu->timer.expires = jiffies + HZ/100;
961
962 if (!hwp_active)
963 cpu->timer.function = intel_pstate_timer_func;
964 else
965 cpu->timer.function = intel_hwp_timer_func;
966
967 intel_pstate_busy_pid_reset(cpu);
968 intel_pstate_sample(cpu);
969
970 add_timer_on(&cpu->timer, cpunum);
971
972 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
973
974 return 0;
975 }
976
977 static unsigned int intel_pstate_get(unsigned int cpu_num)
978 {
979 struct sample *sample;
980 struct cpudata *cpu;
981
982 cpu = all_cpu_data[cpu_num];
983 if (!cpu)
984 return 0;
985 sample = &cpu->sample;
986 return sample->freq;
987 }
988
989 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
990 {
991 if (!policy->cpuinfo.max_freq)
992 return -ENODEV;
993
994 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
995 policy->max >= policy->cpuinfo.max_freq) {
996 limits.min_policy_pct = 100;
997 limits.min_perf_pct = 100;
998 limits.min_perf = int_tofp(1);
999 limits.max_policy_pct = 100;
1000 limits.max_perf_pct = 100;
1001 limits.max_perf = int_tofp(1);
1002 limits.no_turbo = 0;
1003 return 0;
1004 }
1005
1006 limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1007 limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
1008 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
1009 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
1010
1011 /* Normalize user input to [min_policy_pct, max_policy_pct] */
1012 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
1013 limits.min_perf_pct = min(limits.max_policy_pct, limits.min_perf_pct);
1014 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
1015 limits.max_perf_pct = max(limits.min_policy_pct, limits.max_perf_pct);
1016
1017 /* Make sure min_perf_pct <= max_perf_pct */
1018 limits.min_perf_pct = min(limits.max_perf_pct, limits.min_perf_pct);
1019
1020 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
1021 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
1022
1023 if (hwp_active)
1024 intel_pstate_hwp_set();
1025
1026 return 0;
1027 }
1028
1029 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1030 {
1031 cpufreq_verify_within_cpu_limits(policy);
1032
1033 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
1034 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
1035 return -EINVAL;
1036
1037 return 0;
1038 }
1039
1040 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1041 {
1042 int cpu_num = policy->cpu;
1043 struct cpudata *cpu = all_cpu_data[cpu_num];
1044
1045 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
1046
1047 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1048 if (hwp_active)
1049 return;
1050
1051 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
1052 }
1053
1054 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1055 {
1056 struct cpudata *cpu;
1057 int rc;
1058
1059 rc = intel_pstate_init_cpu(policy->cpu);
1060 if (rc)
1061 return rc;
1062
1063 cpu = all_cpu_data[policy->cpu];
1064
1065 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1066 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1067 else
1068 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1069
1070 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1071 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1072
1073 /* cpuinfo and default policy values */
1074 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1075 policy->cpuinfo.max_freq =
1076 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1077 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1078 cpumask_set_cpu(policy->cpu, policy->cpus);
1079
1080 return 0;
1081 }
1082
1083 static struct cpufreq_driver intel_pstate_driver = {
1084 .flags = CPUFREQ_CONST_LOOPS,
1085 .verify = intel_pstate_verify_policy,
1086 .setpolicy = intel_pstate_set_policy,
1087 .get = intel_pstate_get,
1088 .init = intel_pstate_cpu_init,
1089 .stop_cpu = intel_pstate_stop_cpu,
1090 .name = "intel_pstate",
1091 };
1092
1093 static int __initdata no_load;
1094 static int __initdata no_hwp;
1095 static int __initdata hwp_only;
1096 static unsigned int force_load;
1097
1098 static int intel_pstate_msrs_not_valid(void)
1099 {
1100 if (!pstate_funcs.get_max() ||
1101 !pstate_funcs.get_min() ||
1102 !pstate_funcs.get_turbo())
1103 return -ENODEV;
1104
1105 return 0;
1106 }
1107
1108 static void copy_pid_params(struct pstate_adjust_policy *policy)
1109 {
1110 pid_params.sample_rate_ms = policy->sample_rate_ms;
1111 pid_params.p_gain_pct = policy->p_gain_pct;
1112 pid_params.i_gain_pct = policy->i_gain_pct;
1113 pid_params.d_gain_pct = policy->d_gain_pct;
1114 pid_params.deadband = policy->deadband;
1115 pid_params.setpoint = policy->setpoint;
1116 }
1117
1118 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1119 {
1120 pstate_funcs.get_max = funcs->get_max;
1121 pstate_funcs.get_min = funcs->get_min;
1122 pstate_funcs.get_turbo = funcs->get_turbo;
1123 pstate_funcs.get_scaling = funcs->get_scaling;
1124 pstate_funcs.set = funcs->set;
1125 pstate_funcs.get_vid = funcs->get_vid;
1126 }
1127
1128 #if IS_ENABLED(CONFIG_ACPI)
1129 #include <acpi/processor.h>
1130
1131 static bool intel_pstate_no_acpi_pss(void)
1132 {
1133 int i;
1134
1135 for_each_possible_cpu(i) {
1136 acpi_status status;
1137 union acpi_object *pss;
1138 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1139 struct acpi_processor *pr = per_cpu(processors, i);
1140
1141 if (!pr)
1142 continue;
1143
1144 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1145 if (ACPI_FAILURE(status))
1146 continue;
1147
1148 pss = buffer.pointer;
1149 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1150 kfree(pss);
1151 return false;
1152 }
1153
1154 kfree(pss);
1155 }
1156
1157 return true;
1158 }
1159
1160 static bool intel_pstate_has_acpi_ppc(void)
1161 {
1162 int i;
1163
1164 for_each_possible_cpu(i) {
1165 struct acpi_processor *pr = per_cpu(processors, i);
1166
1167 if (!pr)
1168 continue;
1169 if (acpi_has_method(pr->handle, "_PPC"))
1170 return true;
1171 }
1172 return false;
1173 }
1174
1175 enum {
1176 PSS,
1177 PPC,
1178 };
1179
1180 struct hw_vendor_info {
1181 u16 valid;
1182 char oem_id[ACPI_OEM_ID_SIZE];
1183 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1184 int oem_pwr_table;
1185 };
1186
1187 /* Hardware vendor-specific info that has its own power management modes */
1188 static struct hw_vendor_info vendor_info[] = {
1189 {1, "HP ", "ProLiant", PSS},
1190 {1, "ORACLE", "X4-2 ", PPC},
1191 {1, "ORACLE", "X4-2L ", PPC},
1192 {1, "ORACLE", "X4-2B ", PPC},
1193 {1, "ORACLE", "X3-2 ", PPC},
1194 {1, "ORACLE", "X3-2L ", PPC},
1195 {1, "ORACLE", "X3-2B ", PPC},
1196 {1, "ORACLE", "X4470M2 ", PPC},
1197 {1, "ORACLE", "X4270M3 ", PPC},
1198 {1, "ORACLE", "X4270M2 ", PPC},
1199 {1, "ORACLE", "X4170M2 ", PPC},
1200 {1, "ORACLE", "X4170 M3", PPC},
1201 {1, "ORACLE", "X4275 M3", PPC},
1202 {1, "ORACLE", "X6-2 ", PPC},
1203 {1, "ORACLE", "Sudbury ", PPC},
1204 {0, "", ""},
1205 };
1206
1207 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1208 {
1209 struct acpi_table_header hdr;
1210 struct hw_vendor_info *v_info;
1211 const struct x86_cpu_id *id;
1212 u64 misc_pwr;
1213
1214 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1215 if (id) {
1216 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1217 if ( misc_pwr & (1 << 8))
1218 return true;
1219 }
1220
1221 if (acpi_disabled ||
1222 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1223 return false;
1224
1225 for (v_info = vendor_info; v_info->valid; v_info++) {
1226 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1227 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1228 ACPI_OEM_TABLE_ID_SIZE))
1229 switch (v_info->oem_pwr_table) {
1230 case PSS:
1231 return intel_pstate_no_acpi_pss();
1232 case PPC:
1233 return intel_pstate_has_acpi_ppc() &&
1234 (!force_load);
1235 }
1236 }
1237
1238 return false;
1239 }
1240 #else /* CONFIG_ACPI not enabled */
1241 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1242 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1243 #endif /* CONFIG_ACPI */
1244
1245 static int __init intel_pstate_init(void)
1246 {
1247 int cpu, rc = 0;
1248 const struct x86_cpu_id *id;
1249 struct cpu_defaults *cpu_def;
1250
1251 if (no_load)
1252 return -ENODEV;
1253
1254 id = x86_match_cpu(intel_pstate_cpu_ids);
1255 if (!id)
1256 return -ENODEV;
1257
1258 /*
1259 * The Intel pstate driver will be ignored if the platform
1260 * firmware has its own power management modes.
1261 */
1262 if (intel_pstate_platform_pwr_mgmt_exists())
1263 return -ENODEV;
1264
1265 cpu_def = (struct cpu_defaults *)id->driver_data;
1266
1267 copy_pid_params(&cpu_def->pid_policy);
1268 copy_cpu_funcs(&cpu_def->funcs);
1269
1270 if (intel_pstate_msrs_not_valid())
1271 return -ENODEV;
1272
1273 pr_info("Intel P-state driver initializing.\n");
1274
1275 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1276 if (!all_cpu_data)
1277 return -ENOMEM;
1278
1279 if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1280 hwp_active++;
1281
1282 if (!hwp_active && hwp_only)
1283 goto out;
1284
1285 rc = cpufreq_register_driver(&intel_pstate_driver);
1286 if (rc)
1287 goto out;
1288
1289 intel_pstate_debug_expose_params();
1290 intel_pstate_sysfs_expose_params();
1291
1292 return rc;
1293 out:
1294 get_online_cpus();
1295 for_each_online_cpu(cpu) {
1296 if (all_cpu_data[cpu]) {
1297 del_timer_sync(&all_cpu_data[cpu]->timer);
1298 kfree(all_cpu_data[cpu]);
1299 }
1300 }
1301
1302 put_online_cpus();
1303 vfree(all_cpu_data);
1304 return -ENODEV;
1305 }
1306 device_initcall(intel_pstate_init);
1307
1308 static int __init intel_pstate_setup(char *str)
1309 {
1310 if (!str)
1311 return -EINVAL;
1312
1313 if (!strcmp(str, "disable"))
1314 no_load = 1;
1315 if (!strcmp(str, "no_hwp"))
1316 no_hwp = 1;
1317 if (!strcmp(str, "force"))
1318 force_load = 1;
1319 if (!strcmp(str, "hwp_only"))
1320 hwp_only = 1;
1321 return 0;
1322 }
1323 early_param("intel_pstate", intel_pstate_setup);
1324
1325 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1326 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1327 MODULE_LICENSE("GPL");
This page took 0.060181 seconds and 6 git commands to generate.