intel_pstate: Improve accuracy by not truncating until final result
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <trace/events/power.h>
29
30 #include <asm/div64.h>
31 #include <asm/msr.h>
32 #include <asm/cpu_device_id.h>
33
34 #define SAMPLE_COUNT 3
35
36 #define FRAC_BITS 8
37 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
38 #define fp_toint(X) ((X) >> FRAC_BITS)
39
40 static inline int32_t mul_fp(int32_t x, int32_t y)
41 {
42 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
43 }
44
45 static inline int32_t div_fp(int32_t x, int32_t y)
46 {
47 return div_s64((int64_t)x << FRAC_BITS, (int64_t)y);
48 }
49
50 struct sample {
51 int32_t core_pct_busy;
52 u64 aperf;
53 u64 mperf;
54 int freq;
55 };
56
57 struct pstate_data {
58 int current_pstate;
59 int min_pstate;
60 int max_pstate;
61 int turbo_pstate;
62 };
63
64 struct _pid {
65 int setpoint;
66 int32_t integral;
67 int32_t p_gain;
68 int32_t i_gain;
69 int32_t d_gain;
70 int deadband;
71 int32_t last_err;
72 };
73
74 struct cpudata {
75 int cpu;
76
77 char name[64];
78
79 struct timer_list timer;
80
81 struct pstate_adjust_policy *pstate_policy;
82 struct pstate_data pstate;
83 struct _pid pid;
84
85 int min_pstate_count;
86
87 u64 prev_aperf;
88 u64 prev_mperf;
89 int sample_ptr;
90 struct sample samples[SAMPLE_COUNT];
91 };
92
93 static struct cpudata **all_cpu_data;
94 struct pstate_adjust_policy {
95 int sample_rate_ms;
96 int deadband;
97 int setpoint;
98 int p_gain_pct;
99 int d_gain_pct;
100 int i_gain_pct;
101 };
102
103 static struct pstate_adjust_policy default_policy = {
104 .sample_rate_ms = 10,
105 .deadband = 0,
106 .setpoint = 97,
107 .p_gain_pct = 20,
108 .d_gain_pct = 0,
109 .i_gain_pct = 0,
110 };
111
112 struct perf_limits {
113 int no_turbo;
114 int max_perf_pct;
115 int min_perf_pct;
116 int32_t max_perf;
117 int32_t min_perf;
118 int max_policy_pct;
119 int max_sysfs_pct;
120 };
121
122 static struct perf_limits limits = {
123 .no_turbo = 0,
124 .max_perf_pct = 100,
125 .max_perf = int_tofp(1),
126 .min_perf_pct = 0,
127 .min_perf = 0,
128 .max_policy_pct = 100,
129 .max_sysfs_pct = 100,
130 };
131
132 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
133 int deadband, int integral) {
134 pid->setpoint = setpoint;
135 pid->deadband = deadband;
136 pid->integral = int_tofp(integral);
137 pid->last_err = setpoint - busy;
138 }
139
140 static inline void pid_p_gain_set(struct _pid *pid, int percent)
141 {
142 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
143 }
144
145 static inline void pid_i_gain_set(struct _pid *pid, int percent)
146 {
147 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
148 }
149
150 static inline void pid_d_gain_set(struct _pid *pid, int percent)
151 {
152
153 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
154 }
155
156 static signed int pid_calc(struct _pid *pid, int32_t busy)
157 {
158 signed int result;
159 int32_t pterm, dterm, fp_error;
160 int32_t integral_limit;
161
162 fp_error = int_tofp(pid->setpoint) - busy;
163
164 if (abs(fp_error) <= int_tofp(pid->deadband))
165 return 0;
166
167 pterm = mul_fp(pid->p_gain, fp_error);
168
169 pid->integral += fp_error;
170
171 /* limit the integral term */
172 integral_limit = int_tofp(30);
173 if (pid->integral > integral_limit)
174 pid->integral = integral_limit;
175 if (pid->integral < -integral_limit)
176 pid->integral = -integral_limit;
177
178 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
179 pid->last_err = fp_error;
180
181 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
182
183 return (signed int)fp_toint(result);
184 }
185
186 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
187 {
188 pid_p_gain_set(&cpu->pid, cpu->pstate_policy->p_gain_pct);
189 pid_d_gain_set(&cpu->pid, cpu->pstate_policy->d_gain_pct);
190 pid_i_gain_set(&cpu->pid, cpu->pstate_policy->i_gain_pct);
191
192 pid_reset(&cpu->pid,
193 cpu->pstate_policy->setpoint,
194 100,
195 cpu->pstate_policy->deadband,
196 0);
197 }
198
199 static inline void intel_pstate_reset_all_pid(void)
200 {
201 unsigned int cpu;
202 for_each_online_cpu(cpu) {
203 if (all_cpu_data[cpu])
204 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
205 }
206 }
207
208 /************************** debugfs begin ************************/
209 static int pid_param_set(void *data, u64 val)
210 {
211 *(u32 *)data = val;
212 intel_pstate_reset_all_pid();
213 return 0;
214 }
215 static int pid_param_get(void *data, u64 *val)
216 {
217 *val = *(u32 *)data;
218 return 0;
219 }
220 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get,
221 pid_param_set, "%llu\n");
222
223 struct pid_param {
224 char *name;
225 void *value;
226 };
227
228 static struct pid_param pid_files[] = {
229 {"sample_rate_ms", &default_policy.sample_rate_ms},
230 {"d_gain_pct", &default_policy.d_gain_pct},
231 {"i_gain_pct", &default_policy.i_gain_pct},
232 {"deadband", &default_policy.deadband},
233 {"setpoint", &default_policy.setpoint},
234 {"p_gain_pct", &default_policy.p_gain_pct},
235 {NULL, NULL}
236 };
237
238 static struct dentry *debugfs_parent;
239 static void intel_pstate_debug_expose_params(void)
240 {
241 int i = 0;
242
243 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
244 if (IS_ERR_OR_NULL(debugfs_parent))
245 return;
246 while (pid_files[i].name) {
247 debugfs_create_file(pid_files[i].name, 0660,
248 debugfs_parent, pid_files[i].value,
249 &fops_pid_param);
250 i++;
251 }
252 }
253
254 /************************** debugfs end ************************/
255
256 /************************** sysfs begin ************************/
257 #define show_one(file_name, object) \
258 static ssize_t show_##file_name \
259 (struct kobject *kobj, struct attribute *attr, char *buf) \
260 { \
261 return sprintf(buf, "%u\n", limits.object); \
262 }
263
264 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
265 const char *buf, size_t count)
266 {
267 unsigned int input;
268 int ret;
269 ret = sscanf(buf, "%u", &input);
270 if (ret != 1)
271 return -EINVAL;
272 limits.no_turbo = clamp_t(int, input, 0 , 1);
273
274 return count;
275 }
276
277 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
278 const char *buf, size_t count)
279 {
280 unsigned int input;
281 int ret;
282 ret = sscanf(buf, "%u", &input);
283 if (ret != 1)
284 return -EINVAL;
285
286 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
287 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
288 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
289 return count;
290 }
291
292 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
293 const char *buf, size_t count)
294 {
295 unsigned int input;
296 int ret;
297 ret = sscanf(buf, "%u", &input);
298 if (ret != 1)
299 return -EINVAL;
300 limits.min_perf_pct = clamp_t(int, input, 0 , 100);
301 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
302
303 return count;
304 }
305
306 show_one(no_turbo, no_turbo);
307 show_one(max_perf_pct, max_perf_pct);
308 show_one(min_perf_pct, min_perf_pct);
309
310 define_one_global_rw(no_turbo);
311 define_one_global_rw(max_perf_pct);
312 define_one_global_rw(min_perf_pct);
313
314 static struct attribute *intel_pstate_attributes[] = {
315 &no_turbo.attr,
316 &max_perf_pct.attr,
317 &min_perf_pct.attr,
318 NULL
319 };
320
321 static struct attribute_group intel_pstate_attr_group = {
322 .attrs = intel_pstate_attributes,
323 };
324 static struct kobject *intel_pstate_kobject;
325
326 static void intel_pstate_sysfs_expose_params(void)
327 {
328 int rc;
329
330 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
331 &cpu_subsys.dev_root->kobj);
332 BUG_ON(!intel_pstate_kobject);
333 rc = sysfs_create_group(intel_pstate_kobject,
334 &intel_pstate_attr_group);
335 BUG_ON(rc);
336 }
337
338 /************************** sysfs end ************************/
339
340 static int intel_pstate_min_pstate(void)
341 {
342 u64 value;
343 rdmsrl(MSR_PLATFORM_INFO, value);
344 return (value >> 40) & 0xFF;
345 }
346
347 static int intel_pstate_max_pstate(void)
348 {
349 u64 value;
350 rdmsrl(MSR_PLATFORM_INFO, value);
351 return (value >> 8) & 0xFF;
352 }
353
354 static int intel_pstate_turbo_pstate(void)
355 {
356 u64 value;
357 int nont, ret;
358 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
359 nont = intel_pstate_max_pstate();
360 ret = ((value) & 255);
361 if (ret <= nont)
362 ret = nont;
363 return ret;
364 }
365
366 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
367 {
368 int max_perf = cpu->pstate.turbo_pstate;
369 int min_perf;
370 if (limits.no_turbo)
371 max_perf = cpu->pstate.max_pstate;
372
373 max_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
374 *max = clamp_t(int, max_perf,
375 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
376
377 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
378 *min = clamp_t(int, min_perf,
379 cpu->pstate.min_pstate, max_perf);
380 }
381
382 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
383 {
384 int max_perf, min_perf;
385 u64 val;
386
387 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
388
389 pstate = clamp_t(int, pstate, min_perf, max_perf);
390
391 if (pstate == cpu->pstate.current_pstate)
392 return;
393
394 trace_cpu_frequency(pstate * 100000, cpu->cpu);
395
396 cpu->pstate.current_pstate = pstate;
397 val = pstate << 8;
398 if (limits.no_turbo)
399 val |= (u64)1 << 32;
400
401 wrmsrl(MSR_IA32_PERF_CTL, val);
402 }
403
404 static inline void intel_pstate_pstate_increase(struct cpudata *cpu, int steps)
405 {
406 int target;
407 target = cpu->pstate.current_pstate + steps;
408
409 intel_pstate_set_pstate(cpu, target);
410 }
411
412 static inline void intel_pstate_pstate_decrease(struct cpudata *cpu, int steps)
413 {
414 int target;
415 target = cpu->pstate.current_pstate - steps;
416 intel_pstate_set_pstate(cpu, target);
417 }
418
419 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
420 {
421 sprintf(cpu->name, "Intel 2nd generation core");
422
423 cpu->pstate.min_pstate = intel_pstate_min_pstate();
424 cpu->pstate.max_pstate = intel_pstate_max_pstate();
425 cpu->pstate.turbo_pstate = intel_pstate_turbo_pstate();
426
427 /*
428 * goto max pstate so we don't slow up boot if we are built-in if we are
429 * a module we will take care of it during normal operation
430 */
431 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
432 }
433
434 static inline void intel_pstate_calc_busy(struct cpudata *cpu,
435 struct sample *sample)
436 {
437 u64 core_pct;
438 core_pct = div64_u64(int_tofp(sample->aperf * 100),
439 sample->mperf);
440 sample->freq = fp_toint(cpu->pstate.max_pstate * core_pct * 1000);
441
442 sample->core_pct_busy = core_pct;
443 }
444
445 static inline void intel_pstate_sample(struct cpudata *cpu)
446 {
447 u64 aperf, mperf;
448
449 rdmsrl(MSR_IA32_APERF, aperf);
450 rdmsrl(MSR_IA32_MPERF, mperf);
451 cpu->sample_ptr = (cpu->sample_ptr + 1) % SAMPLE_COUNT;
452 cpu->samples[cpu->sample_ptr].aperf = aperf;
453 cpu->samples[cpu->sample_ptr].mperf = mperf;
454 cpu->samples[cpu->sample_ptr].aperf -= cpu->prev_aperf;
455 cpu->samples[cpu->sample_ptr].mperf -= cpu->prev_mperf;
456
457 intel_pstate_calc_busy(cpu, &cpu->samples[cpu->sample_ptr]);
458
459 cpu->prev_aperf = aperf;
460 cpu->prev_mperf = mperf;
461 }
462
463 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
464 {
465 int sample_time, delay;
466
467 sample_time = cpu->pstate_policy->sample_rate_ms;
468 delay = msecs_to_jiffies(sample_time);
469 mod_timer_pinned(&cpu->timer, jiffies + delay);
470 }
471
472 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
473 {
474 int32_t core_busy, max_pstate, current_pstate;
475
476 core_busy = cpu->samples[cpu->sample_ptr].core_pct_busy;
477 max_pstate = int_tofp(cpu->pstate.max_pstate);
478 current_pstate = int_tofp(cpu->pstate.current_pstate);
479 return mul_fp(core_busy, div_fp(max_pstate, current_pstate));
480 }
481
482 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
483 {
484 int32_t busy_scaled;
485 struct _pid *pid;
486 signed int ctl = 0;
487 int steps;
488
489 pid = &cpu->pid;
490 busy_scaled = intel_pstate_get_scaled_busy(cpu);
491
492 ctl = pid_calc(pid, busy_scaled);
493
494 steps = abs(ctl);
495 if (ctl < 0)
496 intel_pstate_pstate_increase(cpu, steps);
497 else
498 intel_pstate_pstate_decrease(cpu, steps);
499 }
500
501 static void intel_pstate_timer_func(unsigned long __data)
502 {
503 struct cpudata *cpu = (struct cpudata *) __data;
504
505 intel_pstate_sample(cpu);
506 intel_pstate_adjust_busy_pstate(cpu);
507
508 if (cpu->pstate.current_pstate == cpu->pstate.min_pstate) {
509 cpu->min_pstate_count++;
510 if (!(cpu->min_pstate_count % 5)) {
511 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
512 }
513 } else
514 cpu->min_pstate_count = 0;
515
516 intel_pstate_set_sample_time(cpu);
517 }
518
519 #define ICPU(model, policy) \
520 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_ANY, (unsigned long)&policy }
521
522 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
523 ICPU(0x2a, default_policy),
524 ICPU(0x2d, default_policy),
525 ICPU(0x3a, default_policy),
526 ICPU(0x3c, default_policy),
527 ICPU(0x3e, default_policy),
528 ICPU(0x3f, default_policy),
529 ICPU(0x45, default_policy),
530 ICPU(0x46, default_policy),
531 {}
532 };
533 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
534
535 static int intel_pstate_init_cpu(unsigned int cpunum)
536 {
537
538 const struct x86_cpu_id *id;
539 struct cpudata *cpu;
540
541 id = x86_match_cpu(intel_pstate_cpu_ids);
542 if (!id)
543 return -ENODEV;
544
545 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata), GFP_KERNEL);
546 if (!all_cpu_data[cpunum])
547 return -ENOMEM;
548
549 cpu = all_cpu_data[cpunum];
550
551 intel_pstate_get_cpu_pstates(cpu);
552
553 cpu->cpu = cpunum;
554 cpu->pstate_policy =
555 (struct pstate_adjust_policy *)id->driver_data;
556 init_timer_deferrable(&cpu->timer);
557 cpu->timer.function = intel_pstate_timer_func;
558 cpu->timer.data =
559 (unsigned long)cpu;
560 cpu->timer.expires = jiffies + HZ/100;
561 intel_pstate_busy_pid_reset(cpu);
562 intel_pstate_sample(cpu);
563 intel_pstate_set_pstate(cpu, cpu->pstate.max_pstate);
564
565 add_timer_on(&cpu->timer, cpunum);
566
567 pr_info("Intel pstate controlling: cpu %d\n", cpunum);
568
569 return 0;
570 }
571
572 static unsigned int intel_pstate_get(unsigned int cpu_num)
573 {
574 struct sample *sample;
575 struct cpudata *cpu;
576
577 cpu = all_cpu_data[cpu_num];
578 if (!cpu)
579 return 0;
580 sample = &cpu->samples[cpu->sample_ptr];
581 return sample->freq;
582 }
583
584 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
585 {
586 struct cpudata *cpu;
587
588 cpu = all_cpu_data[policy->cpu];
589
590 if (!policy->cpuinfo.max_freq)
591 return -ENODEV;
592
593 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
594 limits.min_perf_pct = 100;
595 limits.min_perf = int_tofp(1);
596 limits.max_perf_pct = 100;
597 limits.max_perf = int_tofp(1);
598 limits.no_turbo = 0;
599 return 0;
600 }
601 limits.min_perf_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
602 limits.min_perf_pct = clamp_t(int, limits.min_perf_pct, 0 , 100);
603 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
604
605 limits.max_policy_pct = policy->max * 100 / policy->cpuinfo.max_freq;
606 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
607 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
608 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
609
610 return 0;
611 }
612
613 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
614 {
615 cpufreq_verify_within_limits(policy,
616 policy->cpuinfo.min_freq,
617 policy->cpuinfo.max_freq);
618
619 if ((policy->policy != CPUFREQ_POLICY_POWERSAVE) &&
620 (policy->policy != CPUFREQ_POLICY_PERFORMANCE))
621 return -EINVAL;
622
623 return 0;
624 }
625
626 static int intel_pstate_cpu_exit(struct cpufreq_policy *policy)
627 {
628 int cpu = policy->cpu;
629
630 del_timer(&all_cpu_data[cpu]->timer);
631 kfree(all_cpu_data[cpu]);
632 all_cpu_data[cpu] = NULL;
633 return 0;
634 }
635
636 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
637 {
638 struct cpudata *cpu;
639 int rc;
640
641 rc = intel_pstate_init_cpu(policy->cpu);
642 if (rc)
643 return rc;
644
645 cpu = all_cpu_data[policy->cpu];
646
647 if (!limits.no_turbo &&
648 limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
649 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
650 else
651 policy->policy = CPUFREQ_POLICY_POWERSAVE;
652
653 policy->min = cpu->pstate.min_pstate * 100000;
654 policy->max = cpu->pstate.turbo_pstate * 100000;
655
656 /* cpuinfo and default policy values */
657 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * 100000;
658 policy->cpuinfo.max_freq = cpu->pstate.turbo_pstate * 100000;
659 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
660 cpumask_set_cpu(policy->cpu, policy->cpus);
661
662 return 0;
663 }
664
665 static struct cpufreq_driver intel_pstate_driver = {
666 .flags = CPUFREQ_CONST_LOOPS,
667 .verify = intel_pstate_verify_policy,
668 .setpolicy = intel_pstate_set_policy,
669 .get = intel_pstate_get,
670 .init = intel_pstate_cpu_init,
671 .exit = intel_pstate_cpu_exit,
672 .name = "intel_pstate",
673 };
674
675 static int __initdata no_load;
676
677 static int intel_pstate_msrs_not_valid(void)
678 {
679 /* Check that all the msr's we are using are valid. */
680 u64 aperf, mperf, tmp;
681
682 rdmsrl(MSR_IA32_APERF, aperf);
683 rdmsrl(MSR_IA32_MPERF, mperf);
684
685 if (!intel_pstate_min_pstate() ||
686 !intel_pstate_max_pstate() ||
687 !intel_pstate_turbo_pstate())
688 return -ENODEV;
689
690 rdmsrl(MSR_IA32_APERF, tmp);
691 if (!(tmp - aperf))
692 return -ENODEV;
693
694 rdmsrl(MSR_IA32_MPERF, tmp);
695 if (!(tmp - mperf))
696 return -ENODEV;
697
698 return 0;
699 }
700 static int __init intel_pstate_init(void)
701 {
702 int cpu, rc = 0;
703 const struct x86_cpu_id *id;
704
705 if (no_load)
706 return -ENODEV;
707
708 id = x86_match_cpu(intel_pstate_cpu_ids);
709 if (!id)
710 return -ENODEV;
711
712 if (intel_pstate_msrs_not_valid())
713 return -ENODEV;
714
715 pr_info("Intel P-state driver initializing.\n");
716
717 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
718 if (!all_cpu_data)
719 return -ENOMEM;
720
721 rc = cpufreq_register_driver(&intel_pstate_driver);
722 if (rc)
723 goto out;
724
725 intel_pstate_debug_expose_params();
726 intel_pstate_sysfs_expose_params();
727 return rc;
728 out:
729 get_online_cpus();
730 for_each_online_cpu(cpu) {
731 if (all_cpu_data[cpu]) {
732 del_timer_sync(&all_cpu_data[cpu]->timer);
733 kfree(all_cpu_data[cpu]);
734 }
735 }
736
737 put_online_cpus();
738 vfree(all_cpu_data);
739 return -ENODEV;
740 }
741 device_initcall(intel_pstate_init);
742
743 static int __init intel_pstate_setup(char *str)
744 {
745 if (!str)
746 return -EINVAL;
747
748 if (!strcmp(str, "disable"))
749 no_load = 1;
750 return 0;
751 }
752 early_param("intel_pstate", intel_pstate_setup);
753
754 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
755 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
756 MODULE_LICENSE("GPL");
This page took 0.046705 seconds and 6 git commands to generate.