Merge branch 'x86/boot' into x86/urgent
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
1 /*
2 * intel_pstate.c: Native P state management for Intel processors
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/module.h>
16 #include <linux/ktime.h>
17 #include <linux/hrtimer.h>
18 #include <linux/tick.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/list.h>
22 #include <linux/cpu.h>
23 #include <linux/cpufreq.h>
24 #include <linux/sysfs.h>
25 #include <linux/types.h>
26 #include <linux/fs.h>
27 #include <linux/debugfs.h>
28 #include <linux/acpi.h>
29 #include <linux/vmalloc.h>
30 #include <trace/events/power.h>
31
32 #include <asm/div64.h>
33 #include <asm/msr.h>
34 #include <asm/cpu_device_id.h>
35 #include <asm/cpufeature.h>
36
37 #define BYT_RATIOS 0x66a
38 #define BYT_VIDS 0x66b
39 #define BYT_TURBO_RATIOS 0x66c
40 #define BYT_TURBO_VIDS 0x66d
41
42 #define FRAC_BITS 8
43 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44 #define fp_toint(X) ((X) >> FRAC_BITS)
45
46
47 static inline int32_t mul_fp(int32_t x, int32_t y)
48 {
49 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
50 }
51
52 static inline int32_t div_fp(int32_t x, int32_t y)
53 {
54 return div_s64((int64_t)x << FRAC_BITS, y);
55 }
56
57 static inline int ceiling_fp(int32_t x)
58 {
59 int mask, ret;
60
61 ret = fp_toint(x);
62 mask = (1 << FRAC_BITS) - 1;
63 if (x & mask)
64 ret += 1;
65 return ret;
66 }
67
68 struct sample {
69 int32_t core_pct_busy;
70 u64 aperf;
71 u64 mperf;
72 int freq;
73 ktime_t time;
74 };
75
76 struct pstate_data {
77 int current_pstate;
78 int min_pstate;
79 int max_pstate;
80 int scaling;
81 int turbo_pstate;
82 };
83
84 struct vid_data {
85 int min;
86 int max;
87 int turbo;
88 int32_t ratio;
89 };
90
91 struct _pid {
92 int setpoint;
93 int32_t integral;
94 int32_t p_gain;
95 int32_t i_gain;
96 int32_t d_gain;
97 int deadband;
98 int32_t last_err;
99 };
100
101 struct cpudata {
102 int cpu;
103
104 struct timer_list timer;
105
106 struct pstate_data pstate;
107 struct vid_data vid;
108 struct _pid pid;
109
110 ktime_t last_sample_time;
111 u64 prev_aperf;
112 u64 prev_mperf;
113 struct sample sample;
114 };
115
116 static struct cpudata **all_cpu_data;
117 struct pstate_adjust_policy {
118 int sample_rate_ms;
119 int deadband;
120 int setpoint;
121 int p_gain_pct;
122 int d_gain_pct;
123 int i_gain_pct;
124 };
125
126 struct pstate_funcs {
127 int (*get_max)(void);
128 int (*get_min)(void);
129 int (*get_turbo)(void);
130 int (*get_scaling)(void);
131 void (*set)(struct cpudata*, int pstate);
132 void (*get_vid)(struct cpudata *);
133 };
134
135 struct cpu_defaults {
136 struct pstate_adjust_policy pid_policy;
137 struct pstate_funcs funcs;
138 };
139
140 static struct pstate_adjust_policy pid_params;
141 static struct pstate_funcs pstate_funcs;
142 static int hwp_active;
143
144 struct perf_limits {
145 int no_turbo;
146 int turbo_disabled;
147 int max_perf_pct;
148 int min_perf_pct;
149 int32_t max_perf;
150 int32_t min_perf;
151 int max_policy_pct;
152 int max_sysfs_pct;
153 int min_policy_pct;
154 int min_sysfs_pct;
155 };
156
157 static struct perf_limits limits = {
158 .no_turbo = 0,
159 .turbo_disabled = 0,
160 .max_perf_pct = 100,
161 .max_perf = int_tofp(1),
162 .min_perf_pct = 0,
163 .min_perf = 0,
164 .max_policy_pct = 100,
165 .max_sysfs_pct = 100,
166 .min_policy_pct = 0,
167 .min_sysfs_pct = 0,
168 };
169
170 static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
171 int deadband, int integral) {
172 pid->setpoint = setpoint;
173 pid->deadband = deadband;
174 pid->integral = int_tofp(integral);
175 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
176 }
177
178 static inline void pid_p_gain_set(struct _pid *pid, int percent)
179 {
180 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
181 }
182
183 static inline void pid_i_gain_set(struct _pid *pid, int percent)
184 {
185 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
186 }
187
188 static inline void pid_d_gain_set(struct _pid *pid, int percent)
189 {
190 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
191 }
192
193 static signed int pid_calc(struct _pid *pid, int32_t busy)
194 {
195 signed int result;
196 int32_t pterm, dterm, fp_error;
197 int32_t integral_limit;
198
199 fp_error = int_tofp(pid->setpoint) - busy;
200
201 if (abs(fp_error) <= int_tofp(pid->deadband))
202 return 0;
203
204 pterm = mul_fp(pid->p_gain, fp_error);
205
206 pid->integral += fp_error;
207
208 /*
209 * We limit the integral here so that it will never
210 * get higher than 30. This prevents it from becoming
211 * too large an input over long periods of time and allows
212 * it to get factored out sooner.
213 *
214 * The value of 30 was chosen through experimentation.
215 */
216 integral_limit = int_tofp(30);
217 if (pid->integral > integral_limit)
218 pid->integral = integral_limit;
219 if (pid->integral < -integral_limit)
220 pid->integral = -integral_limit;
221
222 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
223 pid->last_err = fp_error;
224
225 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
226 result = result + (1 << (FRAC_BITS-1));
227 return (signed int)fp_toint(result);
228 }
229
230 static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
231 {
232 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
233 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
234 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
235
236 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
237 }
238
239 static inline void intel_pstate_reset_all_pid(void)
240 {
241 unsigned int cpu;
242
243 for_each_online_cpu(cpu) {
244 if (all_cpu_data[cpu])
245 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
246 }
247 }
248
249 static inline void update_turbo_state(void)
250 {
251 u64 misc_en;
252 struct cpudata *cpu;
253
254 cpu = all_cpu_data[0];
255 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
256 limits.turbo_disabled =
257 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
258 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
259 }
260
261 #define PCT_TO_HWP(x) (x * 255 / 100)
262 static void intel_pstate_hwp_set(void)
263 {
264 int min, max, cpu;
265 u64 value, freq;
266
267 get_online_cpus();
268
269 for_each_online_cpu(cpu) {
270 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
271 min = PCT_TO_HWP(limits.min_perf_pct);
272 value &= ~HWP_MIN_PERF(~0L);
273 value |= HWP_MIN_PERF(min);
274
275 max = PCT_TO_HWP(limits.max_perf_pct);
276 if (limits.no_turbo) {
277 rdmsrl( MSR_HWP_CAPABILITIES, freq);
278 max = HWP_GUARANTEED_PERF(freq);
279 }
280
281 value &= ~HWP_MAX_PERF(~0L);
282 value |= HWP_MAX_PERF(max);
283 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
284 }
285
286 put_online_cpus();
287 }
288
289 /************************** debugfs begin ************************/
290 static int pid_param_set(void *data, u64 val)
291 {
292 *(u32 *)data = val;
293 intel_pstate_reset_all_pid();
294 return 0;
295 }
296
297 static int pid_param_get(void *data, u64 *val)
298 {
299 *val = *(u32 *)data;
300 return 0;
301 }
302 DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
303
304 struct pid_param {
305 char *name;
306 void *value;
307 };
308
309 static struct pid_param pid_files[] = {
310 {"sample_rate_ms", &pid_params.sample_rate_ms},
311 {"d_gain_pct", &pid_params.d_gain_pct},
312 {"i_gain_pct", &pid_params.i_gain_pct},
313 {"deadband", &pid_params.deadband},
314 {"setpoint", &pid_params.setpoint},
315 {"p_gain_pct", &pid_params.p_gain_pct},
316 {NULL, NULL}
317 };
318
319 static void __init intel_pstate_debug_expose_params(void)
320 {
321 struct dentry *debugfs_parent;
322 int i = 0;
323
324 if (hwp_active)
325 return;
326 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
327 if (IS_ERR_OR_NULL(debugfs_parent))
328 return;
329 while (pid_files[i].name) {
330 debugfs_create_file(pid_files[i].name, 0660,
331 debugfs_parent, pid_files[i].value,
332 &fops_pid_param);
333 i++;
334 }
335 }
336
337 /************************** debugfs end ************************/
338
339 /************************** sysfs begin ************************/
340 #define show_one(file_name, object) \
341 static ssize_t show_##file_name \
342 (struct kobject *kobj, struct attribute *attr, char *buf) \
343 { \
344 return sprintf(buf, "%u\n", limits.object); \
345 }
346
347 static ssize_t show_turbo_pct(struct kobject *kobj,
348 struct attribute *attr, char *buf)
349 {
350 struct cpudata *cpu;
351 int total, no_turbo, turbo_pct;
352 uint32_t turbo_fp;
353
354 cpu = all_cpu_data[0];
355
356 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
357 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
358 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
359 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
360 return sprintf(buf, "%u\n", turbo_pct);
361 }
362
363 static ssize_t show_num_pstates(struct kobject *kobj,
364 struct attribute *attr, char *buf)
365 {
366 struct cpudata *cpu;
367 int total;
368
369 cpu = all_cpu_data[0];
370 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
371 return sprintf(buf, "%u\n", total);
372 }
373
374 static ssize_t show_no_turbo(struct kobject *kobj,
375 struct attribute *attr, char *buf)
376 {
377 ssize_t ret;
378
379 update_turbo_state();
380 if (limits.turbo_disabled)
381 ret = sprintf(buf, "%u\n", limits.turbo_disabled);
382 else
383 ret = sprintf(buf, "%u\n", limits.no_turbo);
384
385 return ret;
386 }
387
388 static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
389 const char *buf, size_t count)
390 {
391 unsigned int input;
392 int ret;
393
394 ret = sscanf(buf, "%u", &input);
395 if (ret != 1)
396 return -EINVAL;
397
398 update_turbo_state();
399 if (limits.turbo_disabled) {
400 pr_warn("Turbo disabled by BIOS or unavailable on processor\n");
401 return -EPERM;
402 }
403
404 limits.no_turbo = clamp_t(int, input, 0, 1);
405
406 if (hwp_active)
407 intel_pstate_hwp_set();
408
409 return count;
410 }
411
412 static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
413 const char *buf, size_t count)
414 {
415 unsigned int input;
416 int ret;
417
418 ret = sscanf(buf, "%u", &input);
419 if (ret != 1)
420 return -EINVAL;
421
422 limits.max_sysfs_pct = clamp_t(int, input, 0 , 100);
423 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
424 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
425
426 if (hwp_active)
427 intel_pstate_hwp_set();
428 return count;
429 }
430
431 static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
432 const char *buf, size_t count)
433 {
434 unsigned int input;
435 int ret;
436
437 ret = sscanf(buf, "%u", &input);
438 if (ret != 1)
439 return -EINVAL;
440
441 limits.min_sysfs_pct = clamp_t(int, input, 0 , 100);
442 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
443 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
444
445 if (hwp_active)
446 intel_pstate_hwp_set();
447 return count;
448 }
449
450 show_one(max_perf_pct, max_perf_pct);
451 show_one(min_perf_pct, min_perf_pct);
452
453 define_one_global_rw(no_turbo);
454 define_one_global_rw(max_perf_pct);
455 define_one_global_rw(min_perf_pct);
456 define_one_global_ro(turbo_pct);
457 define_one_global_ro(num_pstates);
458
459 static struct attribute *intel_pstate_attributes[] = {
460 &no_turbo.attr,
461 &max_perf_pct.attr,
462 &min_perf_pct.attr,
463 &turbo_pct.attr,
464 &num_pstates.attr,
465 NULL
466 };
467
468 static struct attribute_group intel_pstate_attr_group = {
469 .attrs = intel_pstate_attributes,
470 };
471
472 static void __init intel_pstate_sysfs_expose_params(void)
473 {
474 struct kobject *intel_pstate_kobject;
475 int rc;
476
477 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
478 &cpu_subsys.dev_root->kobj);
479 BUG_ON(!intel_pstate_kobject);
480 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
481 BUG_ON(rc);
482 }
483 /************************** sysfs end ************************/
484
485 static void intel_pstate_hwp_enable(void)
486 {
487 hwp_active++;
488 pr_info("intel_pstate HWP enabled\n");
489
490 wrmsrl( MSR_PM_ENABLE, 0x1);
491 }
492
493 static int byt_get_min_pstate(void)
494 {
495 u64 value;
496
497 rdmsrl(BYT_RATIOS, value);
498 return (value >> 8) & 0x7F;
499 }
500
501 static int byt_get_max_pstate(void)
502 {
503 u64 value;
504
505 rdmsrl(BYT_RATIOS, value);
506 return (value >> 16) & 0x7F;
507 }
508
509 static int byt_get_turbo_pstate(void)
510 {
511 u64 value;
512
513 rdmsrl(BYT_TURBO_RATIOS, value);
514 return value & 0x7F;
515 }
516
517 static void byt_set_pstate(struct cpudata *cpudata, int pstate)
518 {
519 u64 val;
520 int32_t vid_fp;
521 u32 vid;
522
523 val = pstate << 8;
524 if (limits.no_turbo && !limits.turbo_disabled)
525 val |= (u64)1 << 32;
526
527 vid_fp = cpudata->vid.min + mul_fp(
528 int_tofp(pstate - cpudata->pstate.min_pstate),
529 cpudata->vid.ratio);
530
531 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
532 vid = ceiling_fp(vid_fp);
533
534 if (pstate > cpudata->pstate.max_pstate)
535 vid = cpudata->vid.turbo;
536
537 val |= vid;
538
539 wrmsrl(MSR_IA32_PERF_CTL, val);
540 }
541
542 #define BYT_BCLK_FREQS 5
543 static int byt_freq_table[BYT_BCLK_FREQS] = { 833, 1000, 1333, 1167, 800};
544
545 static int byt_get_scaling(void)
546 {
547 u64 value;
548 int i;
549
550 rdmsrl(MSR_FSB_FREQ, value);
551 i = value & 0x3;
552
553 BUG_ON(i > BYT_BCLK_FREQS);
554
555 return byt_freq_table[i] * 100;
556 }
557
558 static void byt_get_vid(struct cpudata *cpudata)
559 {
560 u64 value;
561
562 rdmsrl(BYT_VIDS, value);
563 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
564 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
565 cpudata->vid.ratio = div_fp(
566 cpudata->vid.max - cpudata->vid.min,
567 int_tofp(cpudata->pstate.max_pstate -
568 cpudata->pstate.min_pstate));
569
570 rdmsrl(BYT_TURBO_VIDS, value);
571 cpudata->vid.turbo = value & 0x7f;
572 }
573
574 static int core_get_min_pstate(void)
575 {
576 u64 value;
577
578 rdmsrl(MSR_PLATFORM_INFO, value);
579 return (value >> 40) & 0xFF;
580 }
581
582 static int core_get_max_pstate(void)
583 {
584 u64 value;
585
586 rdmsrl(MSR_PLATFORM_INFO, value);
587 return (value >> 8) & 0xFF;
588 }
589
590 static int core_get_turbo_pstate(void)
591 {
592 u64 value;
593 int nont, ret;
594
595 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
596 nont = core_get_max_pstate();
597 ret = (value) & 255;
598 if (ret <= nont)
599 ret = nont;
600 return ret;
601 }
602
603 static inline int core_get_scaling(void)
604 {
605 return 100000;
606 }
607
608 static void core_set_pstate(struct cpudata *cpudata, int pstate)
609 {
610 u64 val;
611
612 val = pstate << 8;
613 if (limits.no_turbo && !limits.turbo_disabled)
614 val |= (u64)1 << 32;
615
616 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
617 }
618
619 static int knl_get_turbo_pstate(void)
620 {
621 u64 value;
622 int nont, ret;
623
624 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
625 nont = core_get_max_pstate();
626 ret = (((value) >> 8) & 0xFF);
627 if (ret <= nont)
628 ret = nont;
629 return ret;
630 }
631
632 static struct cpu_defaults core_params = {
633 .pid_policy = {
634 .sample_rate_ms = 10,
635 .deadband = 0,
636 .setpoint = 97,
637 .p_gain_pct = 20,
638 .d_gain_pct = 0,
639 .i_gain_pct = 0,
640 },
641 .funcs = {
642 .get_max = core_get_max_pstate,
643 .get_min = core_get_min_pstate,
644 .get_turbo = core_get_turbo_pstate,
645 .get_scaling = core_get_scaling,
646 .set = core_set_pstate,
647 },
648 };
649
650 static struct cpu_defaults byt_params = {
651 .pid_policy = {
652 .sample_rate_ms = 10,
653 .deadband = 0,
654 .setpoint = 60,
655 .p_gain_pct = 14,
656 .d_gain_pct = 0,
657 .i_gain_pct = 4,
658 },
659 .funcs = {
660 .get_max = byt_get_max_pstate,
661 .get_min = byt_get_min_pstate,
662 .get_turbo = byt_get_turbo_pstate,
663 .set = byt_set_pstate,
664 .get_scaling = byt_get_scaling,
665 .get_vid = byt_get_vid,
666 },
667 };
668
669 static struct cpu_defaults knl_params = {
670 .pid_policy = {
671 .sample_rate_ms = 10,
672 .deadband = 0,
673 .setpoint = 97,
674 .p_gain_pct = 20,
675 .d_gain_pct = 0,
676 .i_gain_pct = 0,
677 },
678 .funcs = {
679 .get_max = core_get_max_pstate,
680 .get_min = core_get_min_pstate,
681 .get_turbo = knl_get_turbo_pstate,
682 .set = core_set_pstate,
683 },
684 };
685
686 static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
687 {
688 int max_perf = cpu->pstate.turbo_pstate;
689 int max_perf_adj;
690 int min_perf;
691
692 if (limits.no_turbo || limits.turbo_disabled)
693 max_perf = cpu->pstate.max_pstate;
694
695 /*
696 * performance can be limited by user through sysfs, by cpufreq
697 * policy, or by cpu specific default values determined through
698 * experimentation.
699 */
700 max_perf_adj = fp_toint(mul_fp(int_tofp(max_perf), limits.max_perf));
701 *max = clamp_t(int, max_perf_adj,
702 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
703
704 min_perf = fp_toint(mul_fp(int_tofp(max_perf), limits.min_perf));
705 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
706 }
707
708 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
709 {
710 int max_perf, min_perf;
711
712 update_turbo_state();
713
714 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
715
716 pstate = clamp_t(int, pstate, min_perf, max_perf);
717
718 if (pstate == cpu->pstate.current_pstate)
719 return;
720
721 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
722
723 cpu->pstate.current_pstate = pstate;
724
725 pstate_funcs.set(cpu, pstate);
726 }
727
728 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
729 {
730 cpu->pstate.min_pstate = pstate_funcs.get_min();
731 cpu->pstate.max_pstate = pstate_funcs.get_max();
732 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
733 cpu->pstate.scaling = pstate_funcs.get_scaling();
734
735 if (pstate_funcs.get_vid)
736 pstate_funcs.get_vid(cpu);
737 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
738 }
739
740 static inline void intel_pstate_calc_busy(struct cpudata *cpu)
741 {
742 struct sample *sample = &cpu->sample;
743 int64_t core_pct;
744
745 core_pct = int_tofp(sample->aperf) * int_tofp(100);
746 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
747
748 sample->freq = fp_toint(
749 mul_fp(int_tofp(
750 cpu->pstate.max_pstate * cpu->pstate.scaling / 100),
751 core_pct));
752
753 sample->core_pct_busy = (int32_t)core_pct;
754 }
755
756 static inline void intel_pstate_sample(struct cpudata *cpu)
757 {
758 u64 aperf, mperf;
759 unsigned long flags;
760
761 local_irq_save(flags);
762 rdmsrl(MSR_IA32_APERF, aperf);
763 rdmsrl(MSR_IA32_MPERF, mperf);
764 local_irq_restore(flags);
765
766 cpu->last_sample_time = cpu->sample.time;
767 cpu->sample.time = ktime_get();
768 cpu->sample.aperf = aperf;
769 cpu->sample.mperf = mperf;
770 cpu->sample.aperf -= cpu->prev_aperf;
771 cpu->sample.mperf -= cpu->prev_mperf;
772
773 intel_pstate_calc_busy(cpu);
774
775 cpu->prev_aperf = aperf;
776 cpu->prev_mperf = mperf;
777 }
778
779 static inline void intel_hwp_set_sample_time(struct cpudata *cpu)
780 {
781 int delay;
782
783 delay = msecs_to_jiffies(50);
784 mod_timer_pinned(&cpu->timer, jiffies + delay);
785 }
786
787 static inline void intel_pstate_set_sample_time(struct cpudata *cpu)
788 {
789 int delay;
790
791 delay = msecs_to_jiffies(pid_params.sample_rate_ms);
792 mod_timer_pinned(&cpu->timer, jiffies + delay);
793 }
794
795 static inline int32_t intel_pstate_get_scaled_busy(struct cpudata *cpu)
796 {
797 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
798 u32 duration_us;
799 u32 sample_time;
800
801 /*
802 * core_busy is the ratio of actual performance to max
803 * max_pstate is the max non turbo pstate available
804 * current_pstate was the pstate that was requested during
805 * the last sample period.
806 *
807 * We normalize core_busy, which was our actual percent
808 * performance to what we requested during the last sample
809 * period. The result will be a percentage of busy at a
810 * specified pstate.
811 */
812 core_busy = cpu->sample.core_pct_busy;
813 max_pstate = int_tofp(cpu->pstate.max_pstate);
814 current_pstate = int_tofp(cpu->pstate.current_pstate);
815 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
816
817 /*
818 * Since we have a deferred timer, it will not fire unless
819 * we are in C0. So, determine if the actual elapsed time
820 * is significantly greater (3x) than our sample interval. If it
821 * is, then we were idle for a long enough period of time
822 * to adjust our busyness.
823 */
824 sample_time = pid_params.sample_rate_ms * USEC_PER_MSEC;
825 duration_us = (u32) ktime_us_delta(cpu->sample.time,
826 cpu->last_sample_time);
827 if (duration_us > sample_time * 3) {
828 sample_ratio = div_fp(int_tofp(sample_time),
829 int_tofp(duration_us));
830 core_busy = mul_fp(core_busy, sample_ratio);
831 }
832
833 return core_busy;
834 }
835
836 static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
837 {
838 int32_t busy_scaled;
839 struct _pid *pid;
840 signed int ctl;
841
842 pid = &cpu->pid;
843 busy_scaled = intel_pstate_get_scaled_busy(cpu);
844
845 ctl = pid_calc(pid, busy_scaled);
846
847 /* Negative values of ctl increase the pstate and vice versa */
848 intel_pstate_set_pstate(cpu, cpu->pstate.current_pstate - ctl);
849 }
850
851 static void intel_hwp_timer_func(unsigned long __data)
852 {
853 struct cpudata *cpu = (struct cpudata *) __data;
854
855 intel_pstate_sample(cpu);
856 intel_hwp_set_sample_time(cpu);
857 }
858
859 static void intel_pstate_timer_func(unsigned long __data)
860 {
861 struct cpudata *cpu = (struct cpudata *) __data;
862 struct sample *sample;
863
864 intel_pstate_sample(cpu);
865
866 sample = &cpu->sample;
867
868 intel_pstate_adjust_busy_pstate(cpu);
869
870 trace_pstate_sample(fp_toint(sample->core_pct_busy),
871 fp_toint(intel_pstate_get_scaled_busy(cpu)),
872 cpu->pstate.current_pstate,
873 sample->mperf,
874 sample->aperf,
875 sample->freq);
876
877 intel_pstate_set_sample_time(cpu);
878 }
879
880 #define ICPU(model, policy) \
881 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
882 (unsigned long)&policy }
883
884 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
885 ICPU(0x2a, core_params),
886 ICPU(0x2d, core_params),
887 ICPU(0x37, byt_params),
888 ICPU(0x3a, core_params),
889 ICPU(0x3c, core_params),
890 ICPU(0x3d, core_params),
891 ICPU(0x3e, core_params),
892 ICPU(0x3f, core_params),
893 ICPU(0x45, core_params),
894 ICPU(0x46, core_params),
895 ICPU(0x47, core_params),
896 ICPU(0x4c, byt_params),
897 ICPU(0x4e, core_params),
898 ICPU(0x4f, core_params),
899 ICPU(0x56, core_params),
900 ICPU(0x57, knl_params),
901 {}
902 };
903 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
904
905 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
906 ICPU(0x56, core_params),
907 {}
908 };
909
910 static int intel_pstate_init_cpu(unsigned int cpunum)
911 {
912 struct cpudata *cpu;
913
914 if (!all_cpu_data[cpunum])
915 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
916 GFP_KERNEL);
917 if (!all_cpu_data[cpunum])
918 return -ENOMEM;
919
920 cpu = all_cpu_data[cpunum];
921
922 cpu->cpu = cpunum;
923 intel_pstate_get_cpu_pstates(cpu);
924
925 init_timer_deferrable(&cpu->timer);
926 cpu->timer.data = (unsigned long)cpu;
927 cpu->timer.expires = jiffies + HZ/100;
928
929 if (!hwp_active)
930 cpu->timer.function = intel_pstate_timer_func;
931 else
932 cpu->timer.function = intel_hwp_timer_func;
933
934 intel_pstate_busy_pid_reset(cpu);
935 intel_pstate_sample(cpu);
936
937 add_timer_on(&cpu->timer, cpunum);
938
939 pr_debug("Intel pstate controlling: cpu %d\n", cpunum);
940
941 return 0;
942 }
943
944 static unsigned int intel_pstate_get(unsigned int cpu_num)
945 {
946 struct sample *sample;
947 struct cpudata *cpu;
948
949 cpu = all_cpu_data[cpu_num];
950 if (!cpu)
951 return 0;
952 sample = &cpu->sample;
953 return sample->freq;
954 }
955
956 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
957 {
958 if (!policy->cpuinfo.max_freq)
959 return -ENODEV;
960
961 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
962 policy->max >= policy->cpuinfo.max_freq) {
963 limits.min_policy_pct = 100;
964 limits.min_perf_pct = 100;
965 limits.min_perf = int_tofp(1);
966 limits.max_policy_pct = 100;
967 limits.max_perf_pct = 100;
968 limits.max_perf = int_tofp(1);
969 limits.no_turbo = 0;
970 return 0;
971 }
972
973 limits.min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
974 limits.min_policy_pct = clamp_t(int, limits.min_policy_pct, 0 , 100);
975 limits.min_perf_pct = max(limits.min_policy_pct, limits.min_sysfs_pct);
976 limits.min_perf = div_fp(int_tofp(limits.min_perf_pct), int_tofp(100));
977
978 limits.max_policy_pct = (policy->max * 100) / policy->cpuinfo.max_freq;
979 limits.max_policy_pct = clamp_t(int, limits.max_policy_pct, 0 , 100);
980 limits.max_perf_pct = min(limits.max_policy_pct, limits.max_sysfs_pct);
981 limits.max_perf = div_fp(int_tofp(limits.max_perf_pct), int_tofp(100));
982
983 if (hwp_active)
984 intel_pstate_hwp_set();
985
986 return 0;
987 }
988
989 static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
990 {
991 cpufreq_verify_within_cpu_limits(policy);
992
993 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
994 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
995 return -EINVAL;
996
997 return 0;
998 }
999
1000 static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
1001 {
1002 int cpu_num = policy->cpu;
1003 struct cpudata *cpu = all_cpu_data[cpu_num];
1004
1005 pr_info("intel_pstate CPU %d exiting\n", cpu_num);
1006
1007 del_timer_sync(&all_cpu_data[cpu_num]->timer);
1008 if (hwp_active)
1009 return;
1010
1011 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
1012 }
1013
1014 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
1015 {
1016 struct cpudata *cpu;
1017 int rc;
1018
1019 rc = intel_pstate_init_cpu(policy->cpu);
1020 if (rc)
1021 return rc;
1022
1023 cpu = all_cpu_data[policy->cpu];
1024
1025 if (limits.min_perf_pct == 100 && limits.max_perf_pct == 100)
1026 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1027 else
1028 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1029
1030 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1031 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1032
1033 /* cpuinfo and default policy values */
1034 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1035 policy->cpuinfo.max_freq =
1036 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
1037 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1038 cpumask_set_cpu(policy->cpu, policy->cpus);
1039
1040 return 0;
1041 }
1042
1043 static struct cpufreq_driver intel_pstate_driver = {
1044 .flags = CPUFREQ_CONST_LOOPS,
1045 .verify = intel_pstate_verify_policy,
1046 .setpolicy = intel_pstate_set_policy,
1047 .get = intel_pstate_get,
1048 .init = intel_pstate_cpu_init,
1049 .stop_cpu = intel_pstate_stop_cpu,
1050 .name = "intel_pstate",
1051 };
1052
1053 static int __initdata no_load;
1054 static int __initdata no_hwp;
1055 static int __initdata hwp_only;
1056 static unsigned int force_load;
1057
1058 static int intel_pstate_msrs_not_valid(void)
1059 {
1060 if (!pstate_funcs.get_max() ||
1061 !pstate_funcs.get_min() ||
1062 !pstate_funcs.get_turbo())
1063 return -ENODEV;
1064
1065 return 0;
1066 }
1067
1068 static void copy_pid_params(struct pstate_adjust_policy *policy)
1069 {
1070 pid_params.sample_rate_ms = policy->sample_rate_ms;
1071 pid_params.p_gain_pct = policy->p_gain_pct;
1072 pid_params.i_gain_pct = policy->i_gain_pct;
1073 pid_params.d_gain_pct = policy->d_gain_pct;
1074 pid_params.deadband = policy->deadband;
1075 pid_params.setpoint = policy->setpoint;
1076 }
1077
1078 static void copy_cpu_funcs(struct pstate_funcs *funcs)
1079 {
1080 pstate_funcs.get_max = funcs->get_max;
1081 pstate_funcs.get_min = funcs->get_min;
1082 pstate_funcs.get_turbo = funcs->get_turbo;
1083 pstate_funcs.get_scaling = funcs->get_scaling;
1084 pstate_funcs.set = funcs->set;
1085 pstate_funcs.get_vid = funcs->get_vid;
1086 }
1087
1088 #if IS_ENABLED(CONFIG_ACPI)
1089 #include <acpi/processor.h>
1090
1091 static bool intel_pstate_no_acpi_pss(void)
1092 {
1093 int i;
1094
1095 for_each_possible_cpu(i) {
1096 acpi_status status;
1097 union acpi_object *pss;
1098 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1099 struct acpi_processor *pr = per_cpu(processors, i);
1100
1101 if (!pr)
1102 continue;
1103
1104 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1105 if (ACPI_FAILURE(status))
1106 continue;
1107
1108 pss = buffer.pointer;
1109 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1110 kfree(pss);
1111 return false;
1112 }
1113
1114 kfree(pss);
1115 }
1116
1117 return true;
1118 }
1119
1120 static bool intel_pstate_has_acpi_ppc(void)
1121 {
1122 int i;
1123
1124 for_each_possible_cpu(i) {
1125 struct acpi_processor *pr = per_cpu(processors, i);
1126
1127 if (!pr)
1128 continue;
1129 if (acpi_has_method(pr->handle, "_PPC"))
1130 return true;
1131 }
1132 return false;
1133 }
1134
1135 enum {
1136 PSS,
1137 PPC,
1138 };
1139
1140 struct hw_vendor_info {
1141 u16 valid;
1142 char oem_id[ACPI_OEM_ID_SIZE];
1143 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
1144 int oem_pwr_table;
1145 };
1146
1147 /* Hardware vendor-specific info that has its own power management modes */
1148 static struct hw_vendor_info vendor_info[] = {
1149 {1, "HP ", "ProLiant", PSS},
1150 {1, "ORACLE", "X4-2 ", PPC},
1151 {1, "ORACLE", "X4-2L ", PPC},
1152 {1, "ORACLE", "X4-2B ", PPC},
1153 {1, "ORACLE", "X3-2 ", PPC},
1154 {1, "ORACLE", "X3-2L ", PPC},
1155 {1, "ORACLE", "X3-2B ", PPC},
1156 {1, "ORACLE", "X4470M2 ", PPC},
1157 {1, "ORACLE", "X4270M3 ", PPC},
1158 {1, "ORACLE", "X4270M2 ", PPC},
1159 {1, "ORACLE", "X4170M2 ", PPC},
1160 {0, "", ""},
1161 };
1162
1163 static bool intel_pstate_platform_pwr_mgmt_exists(void)
1164 {
1165 struct acpi_table_header hdr;
1166 struct hw_vendor_info *v_info;
1167 const struct x86_cpu_id *id;
1168 u64 misc_pwr;
1169
1170 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1171 if (id) {
1172 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1173 if ( misc_pwr & (1 << 8))
1174 return true;
1175 }
1176
1177 if (acpi_disabled ||
1178 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
1179 return false;
1180
1181 for (v_info = vendor_info; v_info->valid; v_info++) {
1182 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
1183 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1184 ACPI_OEM_TABLE_ID_SIZE))
1185 switch (v_info->oem_pwr_table) {
1186 case PSS:
1187 return intel_pstate_no_acpi_pss();
1188 case PPC:
1189 return intel_pstate_has_acpi_ppc() &&
1190 (!force_load);
1191 }
1192 }
1193
1194 return false;
1195 }
1196 #else /* CONFIG_ACPI not enabled */
1197 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
1198 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
1199 #endif /* CONFIG_ACPI */
1200
1201 static int __init intel_pstate_init(void)
1202 {
1203 int cpu, rc = 0;
1204 const struct x86_cpu_id *id;
1205 struct cpu_defaults *cpu_def;
1206
1207 if (no_load)
1208 return -ENODEV;
1209
1210 id = x86_match_cpu(intel_pstate_cpu_ids);
1211 if (!id)
1212 return -ENODEV;
1213
1214 /*
1215 * The Intel pstate driver will be ignored if the platform
1216 * firmware has its own power management modes.
1217 */
1218 if (intel_pstate_platform_pwr_mgmt_exists())
1219 return -ENODEV;
1220
1221 cpu_def = (struct cpu_defaults *)id->driver_data;
1222
1223 copy_pid_params(&cpu_def->pid_policy);
1224 copy_cpu_funcs(&cpu_def->funcs);
1225
1226 if (intel_pstate_msrs_not_valid())
1227 return -ENODEV;
1228
1229 pr_info("Intel P-state driver initializing.\n");
1230
1231 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
1232 if (!all_cpu_data)
1233 return -ENOMEM;
1234
1235 if (static_cpu_has_safe(X86_FEATURE_HWP) && !no_hwp)
1236 intel_pstate_hwp_enable();
1237
1238 if (!hwp_active && hwp_only)
1239 goto out;
1240
1241 rc = cpufreq_register_driver(&intel_pstate_driver);
1242 if (rc)
1243 goto out;
1244
1245 intel_pstate_debug_expose_params();
1246 intel_pstate_sysfs_expose_params();
1247
1248 return rc;
1249 out:
1250 get_online_cpus();
1251 for_each_online_cpu(cpu) {
1252 if (all_cpu_data[cpu]) {
1253 del_timer_sync(&all_cpu_data[cpu]->timer);
1254 kfree(all_cpu_data[cpu]);
1255 }
1256 }
1257
1258 put_online_cpus();
1259 vfree(all_cpu_data);
1260 return -ENODEV;
1261 }
1262 device_initcall(intel_pstate_init);
1263
1264 static int __init intel_pstate_setup(char *str)
1265 {
1266 if (!str)
1267 return -EINVAL;
1268
1269 if (!strcmp(str, "disable"))
1270 no_load = 1;
1271 if (!strcmp(str, "no_hwp"))
1272 no_hwp = 1;
1273 if (!strcmp(str, "force"))
1274 force_load = 1;
1275 if (!strcmp(str, "hwp_only"))
1276 hwp_only = 1;
1277 return 0;
1278 }
1279 early_param("intel_pstate", intel_pstate_setup);
1280
1281 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1282 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1283 MODULE_LICENSE("GPL");
This page took 0.057852 seconds and 6 git commands to generate.