PM / hibernate: Restore processor state before using per-CPU variables
[deliverable/linux.git] / drivers / cpufreq / powernv-cpufreq.c
1 /*
2 * POWERNV cpufreq driver for the IBM POWER processors
3 *
4 * (C) Copyright IBM 2014
5 *
6 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 */
19
20 #define pr_fmt(fmt) "powernv-cpufreq: " fmt
21
22 #include <linux/kernel.h>
23 #include <linux/sysfs.h>
24 #include <linux/cpumask.h>
25 #include <linux/module.h>
26 #include <linux/cpufreq.h>
27 #include <linux/smp.h>
28 #include <linux/of.h>
29 #include <linux/reboot.h>
30 #include <linux/slab.h>
31 #include <linux/cpu.h>
32 #include <trace/events/power.h>
33
34 #include <asm/cputhreads.h>
35 #include <asm/firmware.h>
36 #include <asm/reg.h>
37 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
38 #include <asm/opal.h>
39 #include <linux/timer.h>
40
41 #define POWERNV_MAX_PSTATES 256
42 #define PMSR_PSAFE_ENABLE (1UL << 30)
43 #define PMSR_SPR_EM_DISABLE (1UL << 31)
44 #define PMSR_MAX(x) ((x >> 32) & 0xFF)
45
46 #define MAX_RAMP_DOWN_TIME 5120
47 /*
48 * On an idle system we want the global pstate to ramp-down from max value to
49 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
50 * then ramp-down rapidly later on.
51 *
52 * This gives a percentage rampdown for time elapsed in milliseconds.
53 * ramp_down_percentage = ((ms * ms) >> 18)
54 * ~= 3.8 * (sec * sec)
55 *
56 * At 0 ms ramp_down_percent = 0
57 * At 5120 ms ramp_down_percent = 100
58 */
59 #define ramp_down_percent(time) ((time * time) >> 18)
60
61 /* Interval after which the timer is queued to bring down global pstate */
62 #define GPSTATE_TIMER_INTERVAL 2000
63
64 /**
65 * struct global_pstate_info - Per policy data structure to maintain history of
66 * global pstates
67 * @highest_lpstate: The local pstate from which we are ramping down
68 * @elapsed_time: Time in ms spent in ramping down from
69 * highest_lpstate
70 * @last_sampled_time: Time from boot in ms when global pstates were
71 * last set
72 * @last_lpstate,last_gpstate: Last set values for local and global pstates
73 * @timer: Is used for ramping down if cpu goes idle for
74 * a long time with global pstate held high
75 * @gpstate_lock: A spinlock to maintain synchronization between
76 * routines called by the timer handler and
77 * governer's target_index calls
78 */
79 struct global_pstate_info {
80 int highest_lpstate;
81 unsigned int elapsed_time;
82 unsigned int last_sampled_time;
83 int last_lpstate;
84 int last_gpstate;
85 spinlock_t gpstate_lock;
86 struct timer_list timer;
87 };
88
89 static struct cpufreq_frequency_table powernv_freqs[POWERNV_MAX_PSTATES+1];
90 static bool rebooting, throttled, occ_reset;
91
92 static const char * const throttle_reason[] = {
93 "No throttling",
94 "Power Cap",
95 "Processor Over Temperature",
96 "Power Supply Failure",
97 "Over Current",
98 "OCC Reset"
99 };
100
101 enum throttle_reason_type {
102 NO_THROTTLE = 0,
103 POWERCAP,
104 CPU_OVERTEMP,
105 POWER_SUPPLY_FAILURE,
106 OVERCURRENT,
107 OCC_RESET_THROTTLE,
108 OCC_MAX_REASON
109 };
110
111 static struct chip {
112 unsigned int id;
113 bool throttled;
114 bool restore;
115 u8 throttle_reason;
116 cpumask_t mask;
117 struct work_struct throttle;
118 int throttle_turbo;
119 int throttle_sub_turbo;
120 int reason[OCC_MAX_REASON];
121 } *chips;
122
123 static int nr_chips;
124 static DEFINE_PER_CPU(struct chip *, chip_info);
125
126 /*
127 * Note: The set of pstates consists of contiguous integers, the
128 * smallest of which is indicated by powernv_pstate_info.min, the
129 * largest of which is indicated by powernv_pstate_info.max.
130 *
131 * The nominal pstate is the highest non-turbo pstate in this
132 * platform. This is indicated by powernv_pstate_info.nominal.
133 */
134 static struct powernv_pstate_info {
135 int min;
136 int max;
137 int nominal;
138 int nr_pstates;
139 } powernv_pstate_info;
140
141 static inline void reset_gpstates(struct cpufreq_policy *policy)
142 {
143 struct global_pstate_info *gpstates = policy->driver_data;
144
145 gpstates->highest_lpstate = 0;
146 gpstates->elapsed_time = 0;
147 gpstates->last_sampled_time = 0;
148 gpstates->last_lpstate = 0;
149 gpstates->last_gpstate = 0;
150 }
151
152 /*
153 * Initialize the freq table based on data obtained
154 * from the firmware passed via device-tree
155 */
156 static int init_powernv_pstates(void)
157 {
158 struct device_node *power_mgt;
159 int i, pstate_min, pstate_max, pstate_nominal, nr_pstates = 0;
160 const __be32 *pstate_ids, *pstate_freqs;
161 u32 len_ids, len_freqs;
162
163 power_mgt = of_find_node_by_path("/ibm,opal/power-mgt");
164 if (!power_mgt) {
165 pr_warn("power-mgt node not found\n");
166 return -ENODEV;
167 }
168
169 if (of_property_read_u32(power_mgt, "ibm,pstate-min", &pstate_min)) {
170 pr_warn("ibm,pstate-min node not found\n");
171 return -ENODEV;
172 }
173
174 if (of_property_read_u32(power_mgt, "ibm,pstate-max", &pstate_max)) {
175 pr_warn("ibm,pstate-max node not found\n");
176 return -ENODEV;
177 }
178
179 if (of_property_read_u32(power_mgt, "ibm,pstate-nominal",
180 &pstate_nominal)) {
181 pr_warn("ibm,pstate-nominal not found\n");
182 return -ENODEV;
183 }
184 pr_info("cpufreq pstate min %d nominal %d max %d\n", pstate_min,
185 pstate_nominal, pstate_max);
186
187 pstate_ids = of_get_property(power_mgt, "ibm,pstate-ids", &len_ids);
188 if (!pstate_ids) {
189 pr_warn("ibm,pstate-ids not found\n");
190 return -ENODEV;
191 }
192
193 pstate_freqs = of_get_property(power_mgt, "ibm,pstate-frequencies-mhz",
194 &len_freqs);
195 if (!pstate_freqs) {
196 pr_warn("ibm,pstate-frequencies-mhz not found\n");
197 return -ENODEV;
198 }
199
200 if (len_ids != len_freqs) {
201 pr_warn("Entries in ibm,pstate-ids and "
202 "ibm,pstate-frequencies-mhz does not match\n");
203 }
204
205 nr_pstates = min(len_ids, len_freqs) / sizeof(u32);
206 if (!nr_pstates) {
207 pr_warn("No PStates found\n");
208 return -ENODEV;
209 }
210
211 pr_debug("NR PStates %d\n", nr_pstates);
212 for (i = 0; i < nr_pstates; i++) {
213 u32 id = be32_to_cpu(pstate_ids[i]);
214 u32 freq = be32_to_cpu(pstate_freqs[i]);
215
216 pr_debug("PState id %d freq %d MHz\n", id, freq);
217 powernv_freqs[i].frequency = freq * 1000; /* kHz */
218 powernv_freqs[i].driver_data = id;
219 }
220 /* End of list marker entry */
221 powernv_freqs[i].frequency = CPUFREQ_TABLE_END;
222
223 powernv_pstate_info.min = pstate_min;
224 powernv_pstate_info.max = pstate_max;
225 powernv_pstate_info.nominal = pstate_nominal;
226 powernv_pstate_info.nr_pstates = nr_pstates;
227
228 return 0;
229 }
230
231 /* Returns the CPU frequency corresponding to the pstate_id. */
232 static unsigned int pstate_id_to_freq(int pstate_id)
233 {
234 int i;
235
236 i = powernv_pstate_info.max - pstate_id;
237 if (i >= powernv_pstate_info.nr_pstates || i < 0) {
238 pr_warn("PState id %d outside of PState table, "
239 "reporting nominal id %d instead\n",
240 pstate_id, powernv_pstate_info.nominal);
241 i = powernv_pstate_info.max - powernv_pstate_info.nominal;
242 }
243
244 return powernv_freqs[i].frequency;
245 }
246
247 /*
248 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
249 * the firmware
250 */
251 static ssize_t cpuinfo_nominal_freq_show(struct cpufreq_policy *policy,
252 char *buf)
253 {
254 return sprintf(buf, "%u\n",
255 pstate_id_to_freq(powernv_pstate_info.nominal));
256 }
257
258 struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq =
259 __ATTR_RO(cpuinfo_nominal_freq);
260
261 static struct freq_attr *powernv_cpu_freq_attr[] = {
262 &cpufreq_freq_attr_scaling_available_freqs,
263 &cpufreq_freq_attr_cpuinfo_nominal_freq,
264 NULL,
265 };
266
267 #define throttle_attr(name, member) \
268 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
269 { \
270 struct chip *chip = per_cpu(chip_info, policy->cpu); \
271 \
272 return sprintf(buf, "%u\n", chip->member); \
273 } \
274 \
275 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
276
277 throttle_attr(unthrottle, reason[NO_THROTTLE]);
278 throttle_attr(powercap, reason[POWERCAP]);
279 throttle_attr(overtemp, reason[CPU_OVERTEMP]);
280 throttle_attr(supply_fault, reason[POWER_SUPPLY_FAILURE]);
281 throttle_attr(overcurrent, reason[OVERCURRENT]);
282 throttle_attr(occ_reset, reason[OCC_RESET_THROTTLE]);
283 throttle_attr(turbo_stat, throttle_turbo);
284 throttle_attr(sub_turbo_stat, throttle_sub_turbo);
285
286 static struct attribute *throttle_attrs[] = {
287 &throttle_attr_unthrottle.attr,
288 &throttle_attr_powercap.attr,
289 &throttle_attr_overtemp.attr,
290 &throttle_attr_supply_fault.attr,
291 &throttle_attr_overcurrent.attr,
292 &throttle_attr_occ_reset.attr,
293 &throttle_attr_turbo_stat.attr,
294 &throttle_attr_sub_turbo_stat.attr,
295 NULL,
296 };
297
298 static const struct attribute_group throttle_attr_grp = {
299 .name = "throttle_stats",
300 .attrs = throttle_attrs,
301 };
302
303 /* Helper routines */
304
305 /* Access helpers to power mgt SPR */
306
307 static inline unsigned long get_pmspr(unsigned long sprn)
308 {
309 switch (sprn) {
310 case SPRN_PMCR:
311 return mfspr(SPRN_PMCR);
312
313 case SPRN_PMICR:
314 return mfspr(SPRN_PMICR);
315
316 case SPRN_PMSR:
317 return mfspr(SPRN_PMSR);
318 }
319 BUG();
320 }
321
322 static inline void set_pmspr(unsigned long sprn, unsigned long val)
323 {
324 switch (sprn) {
325 case SPRN_PMCR:
326 mtspr(SPRN_PMCR, val);
327 return;
328
329 case SPRN_PMICR:
330 mtspr(SPRN_PMICR, val);
331 return;
332 }
333 BUG();
334 }
335
336 /*
337 * Use objects of this type to query/update
338 * pstates on a remote CPU via smp_call_function.
339 */
340 struct powernv_smp_call_data {
341 unsigned int freq;
342 int pstate_id;
343 int gpstate_id;
344 };
345
346 /*
347 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
348 *
349 * Called via smp_call_function.
350 *
351 * Note: The caller of the smp_call_function should pass an argument of
352 * the type 'struct powernv_smp_call_data *' along with this function.
353 *
354 * The current frequency on this CPU will be returned via
355 * ((struct powernv_smp_call_data *)arg)->freq;
356 */
357 static void powernv_read_cpu_freq(void *arg)
358 {
359 unsigned long pmspr_val;
360 s8 local_pstate_id;
361 struct powernv_smp_call_data *freq_data = arg;
362
363 pmspr_val = get_pmspr(SPRN_PMSR);
364
365 /*
366 * The local pstate id corresponds bits 48..55 in the PMSR.
367 * Note: Watch out for the sign!
368 */
369 local_pstate_id = (pmspr_val >> 48) & 0xFF;
370 freq_data->pstate_id = local_pstate_id;
371 freq_data->freq = pstate_id_to_freq(freq_data->pstate_id);
372
373 pr_debug("cpu %d pmsr %016lX pstate_id %d frequency %d kHz\n",
374 raw_smp_processor_id(), pmspr_val, freq_data->pstate_id,
375 freq_data->freq);
376 }
377
378 /*
379 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
380 * firmware for CPU 'cpu'. This value is reported through the sysfs
381 * file cpuinfo_cur_freq.
382 */
383 static unsigned int powernv_cpufreq_get(unsigned int cpu)
384 {
385 struct powernv_smp_call_data freq_data;
386
387 smp_call_function_any(cpu_sibling_mask(cpu), powernv_read_cpu_freq,
388 &freq_data, 1);
389
390 return freq_data.freq;
391 }
392
393 /*
394 * set_pstate: Sets the pstate on this CPU.
395 *
396 * This is called via an smp_call_function.
397 *
398 * The caller must ensure that freq_data is of the type
399 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
400 * on this CPU should be present in freq_data->pstate_id.
401 */
402 static void set_pstate(void *data)
403 {
404 unsigned long val;
405 struct powernv_smp_call_data *freq_data = data;
406 unsigned long pstate_ul = freq_data->pstate_id;
407 unsigned long gpstate_ul = freq_data->gpstate_id;
408
409 val = get_pmspr(SPRN_PMCR);
410 val = val & 0x0000FFFFFFFFFFFFULL;
411
412 pstate_ul = pstate_ul & 0xFF;
413 gpstate_ul = gpstate_ul & 0xFF;
414
415 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
416 val = val | (gpstate_ul << 56) | (pstate_ul << 48);
417
418 pr_debug("Setting cpu %d pmcr to %016lX\n",
419 raw_smp_processor_id(), val);
420 set_pmspr(SPRN_PMCR, val);
421 }
422
423 /*
424 * get_nominal_index: Returns the index corresponding to the nominal
425 * pstate in the cpufreq table
426 */
427 static inline unsigned int get_nominal_index(void)
428 {
429 return powernv_pstate_info.max - powernv_pstate_info.nominal;
430 }
431
432 static void powernv_cpufreq_throttle_check(void *data)
433 {
434 struct chip *chip;
435 unsigned int cpu = smp_processor_id();
436 unsigned long pmsr;
437 int pmsr_pmax;
438
439 pmsr = get_pmspr(SPRN_PMSR);
440 chip = this_cpu_read(chip_info);
441
442 /* Check for Pmax Capping */
443 pmsr_pmax = (s8)PMSR_MAX(pmsr);
444 if (pmsr_pmax != powernv_pstate_info.max) {
445 if (chip->throttled)
446 goto next;
447 chip->throttled = true;
448 if (pmsr_pmax < powernv_pstate_info.nominal) {
449 pr_warn_once("CPU %d on Chip %u has Pmax reduced below nominal frequency (%d < %d)\n",
450 cpu, chip->id, pmsr_pmax,
451 powernv_pstate_info.nominal);
452 chip->throttle_sub_turbo++;
453 } else {
454 chip->throttle_turbo++;
455 }
456 trace_powernv_throttle(chip->id,
457 throttle_reason[chip->throttle_reason],
458 pmsr_pmax);
459 } else if (chip->throttled) {
460 chip->throttled = false;
461 trace_powernv_throttle(chip->id,
462 throttle_reason[chip->throttle_reason],
463 pmsr_pmax);
464 }
465
466 /* Check if Psafe_mode_active is set in PMSR. */
467 next:
468 if (pmsr & PMSR_PSAFE_ENABLE) {
469 throttled = true;
470 pr_info("Pstate set to safe frequency\n");
471 }
472
473 /* Check if SPR_EM_DISABLE is set in PMSR */
474 if (pmsr & PMSR_SPR_EM_DISABLE) {
475 throttled = true;
476 pr_info("Frequency Control disabled from OS\n");
477 }
478
479 if (throttled) {
480 pr_info("PMSR = %16lx\n", pmsr);
481 pr_warn("CPU Frequency could be throttled\n");
482 }
483 }
484
485 /**
486 * calc_global_pstate - Calculate global pstate
487 * @elapsed_time: Elapsed time in milliseconds
488 * @local_pstate: New local pstate
489 * @highest_lpstate: pstate from which its ramping down
490 *
491 * Finds the appropriate global pstate based on the pstate from which its
492 * ramping down and the time elapsed in ramping down. It follows a quadratic
493 * equation which ensures that it reaches ramping down to pmin in 5sec.
494 */
495 static inline int calc_global_pstate(unsigned int elapsed_time,
496 int highest_lpstate, int local_pstate)
497 {
498 int pstate_diff;
499
500 /*
501 * Using ramp_down_percent we get the percentage of rampdown
502 * that we are expecting to be dropping. Difference between
503 * highest_lpstate and powernv_pstate_info.min will give a absolute
504 * number of how many pstates we will drop eventually by the end of
505 * 5 seconds, then just scale it get the number pstates to be dropped.
506 */
507 pstate_diff = ((int)ramp_down_percent(elapsed_time) *
508 (highest_lpstate - powernv_pstate_info.min)) / 100;
509
510 /* Ensure that global pstate is >= to local pstate */
511 if (highest_lpstate - pstate_diff < local_pstate)
512 return local_pstate;
513 else
514 return highest_lpstate - pstate_diff;
515 }
516
517 static inline void queue_gpstate_timer(struct global_pstate_info *gpstates)
518 {
519 unsigned int timer_interval;
520
521 /*
522 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
523 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
524 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
525 * seconds of ramp down time.
526 */
527 if ((gpstates->elapsed_time + GPSTATE_TIMER_INTERVAL)
528 > MAX_RAMP_DOWN_TIME)
529 timer_interval = MAX_RAMP_DOWN_TIME - gpstates->elapsed_time;
530 else
531 timer_interval = GPSTATE_TIMER_INTERVAL;
532
533 mod_timer_pinned(&gpstates->timer, jiffies +
534 msecs_to_jiffies(timer_interval));
535 }
536
537 /**
538 * gpstate_timer_handler
539 *
540 * @data: pointer to cpufreq_policy on which timer was queued
541 *
542 * This handler brings down the global pstate closer to the local pstate
543 * according quadratic equation. Queues a new timer if it is still not equal
544 * to local pstate
545 */
546 void gpstate_timer_handler(unsigned long data)
547 {
548 struct cpufreq_policy *policy = (struct cpufreq_policy *)data;
549 struct global_pstate_info *gpstates = policy->driver_data;
550 int gpstate_id;
551 unsigned int time_diff = jiffies_to_msecs(jiffies)
552 - gpstates->last_sampled_time;
553 struct powernv_smp_call_data freq_data;
554
555 if (!spin_trylock(&gpstates->gpstate_lock))
556 return;
557
558 gpstates->last_sampled_time += time_diff;
559 gpstates->elapsed_time += time_diff;
560 freq_data.pstate_id = gpstates->last_lpstate;
561
562 if ((gpstates->last_gpstate == freq_data.pstate_id) ||
563 (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME)) {
564 gpstate_id = freq_data.pstate_id;
565 reset_gpstates(policy);
566 gpstates->highest_lpstate = freq_data.pstate_id;
567 } else {
568 gpstate_id = calc_global_pstate(gpstates->elapsed_time,
569 gpstates->highest_lpstate,
570 freq_data.pstate_id);
571 }
572
573 /*
574 * If local pstate is equal to global pstate, rampdown is over
575 * So timer is not required to be queued.
576 */
577 if (gpstate_id != freq_data.pstate_id)
578 queue_gpstate_timer(gpstates);
579
580 freq_data.gpstate_id = gpstate_id;
581 gpstates->last_gpstate = freq_data.gpstate_id;
582 gpstates->last_lpstate = freq_data.pstate_id;
583
584 spin_unlock(&gpstates->gpstate_lock);
585
586 /* Timer may get migrated to a different cpu on cpu hot unplug */
587 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
588 }
589
590 /*
591 * powernv_cpufreq_target_index: Sets the frequency corresponding to
592 * the cpufreq table entry indexed by new_index on the cpus in the
593 * mask policy->cpus
594 */
595 static int powernv_cpufreq_target_index(struct cpufreq_policy *policy,
596 unsigned int new_index)
597 {
598 struct powernv_smp_call_data freq_data;
599 unsigned int cur_msec, gpstate_id;
600 struct global_pstate_info *gpstates = policy->driver_data;
601
602 if (unlikely(rebooting) && new_index != get_nominal_index())
603 return 0;
604
605 if (!throttled)
606 powernv_cpufreq_throttle_check(NULL);
607
608 cur_msec = jiffies_to_msecs(get_jiffies_64());
609
610 spin_lock(&gpstates->gpstate_lock);
611 freq_data.pstate_id = powernv_freqs[new_index].driver_data;
612
613 if (!gpstates->last_sampled_time) {
614 gpstate_id = freq_data.pstate_id;
615 gpstates->highest_lpstate = freq_data.pstate_id;
616 goto gpstates_done;
617 }
618
619 if (gpstates->last_gpstate > freq_data.pstate_id) {
620 gpstates->elapsed_time += cur_msec -
621 gpstates->last_sampled_time;
622
623 /*
624 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
625 * we should be resetting all global pstate related data. Set it
626 * equal to local pstate to start fresh.
627 */
628 if (gpstates->elapsed_time > MAX_RAMP_DOWN_TIME) {
629 reset_gpstates(policy);
630 gpstates->highest_lpstate = freq_data.pstate_id;
631 gpstate_id = freq_data.pstate_id;
632 } else {
633 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
634 gpstate_id = calc_global_pstate(gpstates->elapsed_time,
635 gpstates->highest_lpstate,
636 freq_data.pstate_id);
637 }
638 } else {
639 reset_gpstates(policy);
640 gpstates->highest_lpstate = freq_data.pstate_id;
641 gpstate_id = freq_data.pstate_id;
642 }
643
644 /*
645 * If local pstate is equal to global pstate, rampdown is over
646 * So timer is not required to be queued.
647 */
648 if (gpstate_id != freq_data.pstate_id)
649 queue_gpstate_timer(gpstates);
650 else
651 del_timer_sync(&gpstates->timer);
652
653 gpstates_done:
654 freq_data.gpstate_id = gpstate_id;
655 gpstates->last_sampled_time = cur_msec;
656 gpstates->last_gpstate = freq_data.gpstate_id;
657 gpstates->last_lpstate = freq_data.pstate_id;
658
659 spin_unlock(&gpstates->gpstate_lock);
660
661 /*
662 * Use smp_call_function to send IPI and execute the
663 * mtspr on target CPU. We could do that without IPI
664 * if current CPU is within policy->cpus (core)
665 */
666 smp_call_function_any(policy->cpus, set_pstate, &freq_data, 1);
667 return 0;
668 }
669
670 static int powernv_cpufreq_cpu_init(struct cpufreq_policy *policy)
671 {
672 int base, i, ret;
673 struct kernfs_node *kn;
674 struct global_pstate_info *gpstates;
675
676 base = cpu_first_thread_sibling(policy->cpu);
677
678 for (i = 0; i < threads_per_core; i++)
679 cpumask_set_cpu(base + i, policy->cpus);
680
681 kn = kernfs_find_and_get(policy->kobj.sd, throttle_attr_grp.name);
682 if (!kn) {
683 int ret;
684
685 ret = sysfs_create_group(&policy->kobj, &throttle_attr_grp);
686 if (ret) {
687 pr_info("Failed to create throttle stats directory for cpu %d\n",
688 policy->cpu);
689 return ret;
690 }
691 } else {
692 kernfs_put(kn);
693 }
694
695 gpstates = kzalloc(sizeof(*gpstates), GFP_KERNEL);
696 if (!gpstates)
697 return -ENOMEM;
698
699 policy->driver_data = gpstates;
700
701 /* initialize timer */
702 init_timer_deferrable(&gpstates->timer);
703 gpstates->timer.data = (unsigned long)policy;
704 gpstates->timer.function = gpstate_timer_handler;
705 gpstates->timer.expires = jiffies +
706 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL);
707 spin_lock_init(&gpstates->gpstate_lock);
708 ret = cpufreq_table_validate_and_show(policy, powernv_freqs);
709
710 if (ret < 0)
711 kfree(policy->driver_data);
712
713 return ret;
714 }
715
716 static int powernv_cpufreq_cpu_exit(struct cpufreq_policy *policy)
717 {
718 /* timer is deleted in cpufreq_cpu_stop() */
719 kfree(policy->driver_data);
720
721 return 0;
722 }
723
724 static int powernv_cpufreq_reboot_notifier(struct notifier_block *nb,
725 unsigned long action, void *unused)
726 {
727 int cpu;
728 struct cpufreq_policy cpu_policy;
729
730 rebooting = true;
731 for_each_online_cpu(cpu) {
732 cpufreq_get_policy(&cpu_policy, cpu);
733 powernv_cpufreq_target_index(&cpu_policy, get_nominal_index());
734 }
735
736 return NOTIFY_DONE;
737 }
738
739 static struct notifier_block powernv_cpufreq_reboot_nb = {
740 .notifier_call = powernv_cpufreq_reboot_notifier,
741 };
742
743 void powernv_cpufreq_work_fn(struct work_struct *work)
744 {
745 struct chip *chip = container_of(work, struct chip, throttle);
746 unsigned int cpu;
747 cpumask_t mask;
748
749 get_online_cpus();
750 cpumask_and(&mask, &chip->mask, cpu_online_mask);
751 smp_call_function_any(&mask,
752 powernv_cpufreq_throttle_check, NULL, 0);
753
754 if (!chip->restore)
755 goto out;
756
757 chip->restore = false;
758 for_each_cpu(cpu, &mask) {
759 int index;
760 struct cpufreq_policy policy;
761
762 cpufreq_get_policy(&policy, cpu);
763 cpufreq_frequency_table_target(&policy, policy.freq_table,
764 policy.cur,
765 CPUFREQ_RELATION_C, &index);
766 powernv_cpufreq_target_index(&policy, index);
767 cpumask_andnot(&mask, &mask, policy.cpus);
768 }
769 out:
770 put_online_cpus();
771 }
772
773 static int powernv_cpufreq_occ_msg(struct notifier_block *nb,
774 unsigned long msg_type, void *_msg)
775 {
776 struct opal_msg *msg = _msg;
777 struct opal_occ_msg omsg;
778 int i;
779
780 if (msg_type != OPAL_MSG_OCC)
781 return 0;
782
783 omsg.type = be64_to_cpu(msg->params[0]);
784
785 switch (omsg.type) {
786 case OCC_RESET:
787 occ_reset = true;
788 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
789 /*
790 * powernv_cpufreq_throttle_check() is called in
791 * target() callback which can detect the throttle state
792 * for governors like ondemand.
793 * But static governors will not call target() often thus
794 * report throttling here.
795 */
796 if (!throttled) {
797 throttled = true;
798 pr_warn("CPU frequency is throttled for duration\n");
799 }
800
801 break;
802 case OCC_LOAD:
803 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
804 break;
805 case OCC_THROTTLE:
806 omsg.chip = be64_to_cpu(msg->params[1]);
807 omsg.throttle_status = be64_to_cpu(msg->params[2]);
808
809 if (occ_reset) {
810 occ_reset = false;
811 throttled = false;
812 pr_info("OCC Active, CPU frequency is no longer throttled\n");
813
814 for (i = 0; i < nr_chips; i++) {
815 chips[i].restore = true;
816 schedule_work(&chips[i].throttle);
817 }
818
819 return 0;
820 }
821
822 for (i = 0; i < nr_chips; i++)
823 if (chips[i].id == omsg.chip)
824 break;
825
826 if (omsg.throttle_status >= 0 &&
827 omsg.throttle_status <= OCC_MAX_THROTTLE_STATUS) {
828 chips[i].throttle_reason = omsg.throttle_status;
829 chips[i].reason[omsg.throttle_status]++;
830 }
831
832 if (!omsg.throttle_status)
833 chips[i].restore = true;
834
835 schedule_work(&chips[i].throttle);
836 }
837 return 0;
838 }
839
840 static struct notifier_block powernv_cpufreq_opal_nb = {
841 .notifier_call = powernv_cpufreq_occ_msg,
842 .next = NULL,
843 .priority = 0,
844 };
845
846 static void powernv_cpufreq_stop_cpu(struct cpufreq_policy *policy)
847 {
848 struct powernv_smp_call_data freq_data;
849 struct global_pstate_info *gpstates = policy->driver_data;
850
851 freq_data.pstate_id = powernv_pstate_info.min;
852 freq_data.gpstate_id = powernv_pstate_info.min;
853 smp_call_function_single(policy->cpu, set_pstate, &freq_data, 1);
854 del_timer_sync(&gpstates->timer);
855 }
856
857 static struct cpufreq_driver powernv_cpufreq_driver = {
858 .name = "powernv-cpufreq",
859 .flags = CPUFREQ_CONST_LOOPS,
860 .init = powernv_cpufreq_cpu_init,
861 .exit = powernv_cpufreq_cpu_exit,
862 .verify = cpufreq_generic_frequency_table_verify,
863 .target_index = powernv_cpufreq_target_index,
864 .get = powernv_cpufreq_get,
865 .stop_cpu = powernv_cpufreq_stop_cpu,
866 .attr = powernv_cpu_freq_attr,
867 };
868
869 static int init_chip_info(void)
870 {
871 unsigned int chip[256];
872 unsigned int cpu, i;
873 unsigned int prev_chip_id = UINT_MAX;
874
875 for_each_possible_cpu(cpu) {
876 unsigned int id = cpu_to_chip_id(cpu);
877
878 if (prev_chip_id != id) {
879 prev_chip_id = id;
880 chip[nr_chips++] = id;
881 }
882 }
883
884 chips = kcalloc(nr_chips, sizeof(struct chip), GFP_KERNEL);
885 if (!chips)
886 return -ENOMEM;
887
888 for (i = 0; i < nr_chips; i++) {
889 chips[i].id = chip[i];
890 cpumask_copy(&chips[i].mask, cpumask_of_node(chip[i]));
891 INIT_WORK(&chips[i].throttle, powernv_cpufreq_work_fn);
892 for_each_cpu(cpu, &chips[i].mask)
893 per_cpu(chip_info, cpu) = &chips[i];
894 }
895
896 return 0;
897 }
898
899 static inline void clean_chip_info(void)
900 {
901 kfree(chips);
902 }
903
904 static inline void unregister_all_notifiers(void)
905 {
906 opal_message_notifier_unregister(OPAL_MSG_OCC,
907 &powernv_cpufreq_opal_nb);
908 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb);
909 }
910
911 static int __init powernv_cpufreq_init(void)
912 {
913 int rc = 0;
914
915 /* Don't probe on pseries (guest) platforms */
916 if (!firmware_has_feature(FW_FEATURE_OPAL))
917 return -ENODEV;
918
919 /* Discover pstates from device tree and init */
920 rc = init_powernv_pstates();
921 if (rc)
922 goto out;
923
924 /* Populate chip info */
925 rc = init_chip_info();
926 if (rc)
927 goto out;
928
929 register_reboot_notifier(&powernv_cpufreq_reboot_nb);
930 opal_message_notifier_register(OPAL_MSG_OCC, &powernv_cpufreq_opal_nb);
931
932 rc = cpufreq_register_driver(&powernv_cpufreq_driver);
933 if (!rc)
934 return 0;
935
936 pr_info("Failed to register the cpufreq driver (%d)\n", rc);
937 unregister_all_notifiers();
938 clean_chip_info();
939 out:
940 pr_info("Platform driver disabled. System does not support PState control\n");
941 return rc;
942 }
943 module_init(powernv_cpufreq_init);
944
945 static void __exit powernv_cpufreq_exit(void)
946 {
947 cpufreq_unregister_driver(&powernv_cpufreq_driver);
948 unregister_all_notifiers();
949 clean_chip_info();
950 }
951 module_exit(powernv_cpufreq_exit);
952
953 MODULE_LICENSE("GPL");
954 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");
This page took 0.071145 seconds and 5 git commands to generate.