mfd: cs5535-mfd: Add missing line spacing and make local array static
[deliverable/linux.git] / drivers / crypto / hifn_795x.c
1 /*
2 * 2007+ Copyright (c) Evgeniy Polyakov <johnpol@2ka.mipt.ru>
3 * All rights reserved.
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/interrupt.h>
25 #include <linux/pci.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/mm.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/scatterlist.h>
31 #include <linux/highmem.h>
32 #include <linux/crypto.h>
33 #include <linux/hw_random.h>
34 #include <linux/ktime.h>
35
36 #include <crypto/algapi.h>
37 #include <crypto/des.h>
38
39 //#define HIFN_DEBUG
40
41 #ifdef HIFN_DEBUG
42 #define dprintk(f, a...) printk(f, ##a)
43 #else
44 #define dprintk(f, a...) do {} while (0)
45 #endif
46
47 static char hifn_pll_ref[sizeof("extNNN")] = "ext";
48 module_param_string(hifn_pll_ref, hifn_pll_ref, sizeof(hifn_pll_ref), 0444);
49 MODULE_PARM_DESC(hifn_pll_ref,
50 "PLL reference clock (pci[freq] or ext[freq], default ext)");
51
52 static atomic_t hifn_dev_number;
53
54 #define ACRYPTO_OP_DECRYPT 0
55 #define ACRYPTO_OP_ENCRYPT 1
56 #define ACRYPTO_OP_HMAC 2
57 #define ACRYPTO_OP_RNG 3
58
59 #define ACRYPTO_MODE_ECB 0
60 #define ACRYPTO_MODE_CBC 1
61 #define ACRYPTO_MODE_CFB 2
62 #define ACRYPTO_MODE_OFB 3
63
64 #define ACRYPTO_TYPE_AES_128 0
65 #define ACRYPTO_TYPE_AES_192 1
66 #define ACRYPTO_TYPE_AES_256 2
67 #define ACRYPTO_TYPE_3DES 3
68 #define ACRYPTO_TYPE_DES 4
69
70 #define PCI_VENDOR_ID_HIFN 0x13A3
71 #define PCI_DEVICE_ID_HIFN_7955 0x0020
72 #define PCI_DEVICE_ID_HIFN_7956 0x001d
73
74 /* I/O region sizes */
75
76 #define HIFN_BAR0_SIZE 0x1000
77 #define HIFN_BAR1_SIZE 0x2000
78 #define HIFN_BAR2_SIZE 0x8000
79
80 /* DMA registres */
81
82 #define HIFN_DMA_CRA 0x0C /* DMA Command Ring Address */
83 #define HIFN_DMA_SDRA 0x1C /* DMA Source Data Ring Address */
84 #define HIFN_DMA_RRA 0x2C /* DMA Result Ring Address */
85 #define HIFN_DMA_DDRA 0x3C /* DMA Destination Data Ring Address */
86 #define HIFN_DMA_STCTL 0x40 /* DMA Status and Control */
87 #define HIFN_DMA_INTREN 0x44 /* DMA Interrupt Enable */
88 #define HIFN_DMA_CFG1 0x48 /* DMA Configuration #1 */
89 #define HIFN_DMA_CFG2 0x6C /* DMA Configuration #2 */
90 #define HIFN_CHIP_ID 0x98 /* Chip ID */
91
92 /*
93 * Processing Unit Registers (offset from BASEREG0)
94 */
95 #define HIFN_0_PUDATA 0x00 /* Processing Unit Data */
96 #define HIFN_0_PUCTRL 0x04 /* Processing Unit Control */
97 #define HIFN_0_PUISR 0x08 /* Processing Unit Interrupt Status */
98 #define HIFN_0_PUCNFG 0x0c /* Processing Unit Configuration */
99 #define HIFN_0_PUIER 0x10 /* Processing Unit Interrupt Enable */
100 #define HIFN_0_PUSTAT 0x14 /* Processing Unit Status/Chip ID */
101 #define HIFN_0_FIFOSTAT 0x18 /* FIFO Status */
102 #define HIFN_0_FIFOCNFG 0x1c /* FIFO Configuration */
103 #define HIFN_0_SPACESIZE 0x20 /* Register space size */
104
105 /* Processing Unit Control Register (HIFN_0_PUCTRL) */
106 #define HIFN_PUCTRL_CLRSRCFIFO 0x0010 /* clear source fifo */
107 #define HIFN_PUCTRL_STOP 0x0008 /* stop pu */
108 #define HIFN_PUCTRL_LOCKRAM 0x0004 /* lock ram */
109 #define HIFN_PUCTRL_DMAENA 0x0002 /* enable dma */
110 #define HIFN_PUCTRL_RESET 0x0001 /* Reset processing unit */
111
112 /* Processing Unit Interrupt Status Register (HIFN_0_PUISR) */
113 #define HIFN_PUISR_CMDINVAL 0x8000 /* Invalid command interrupt */
114 #define HIFN_PUISR_DATAERR 0x4000 /* Data error interrupt */
115 #define HIFN_PUISR_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
116 #define HIFN_PUISR_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
117 #define HIFN_PUISR_DSTOVER 0x0200 /* Destination overrun interrupt */
118 #define HIFN_PUISR_SRCCMD 0x0080 /* Source command interrupt */
119 #define HIFN_PUISR_SRCCTX 0x0040 /* Source context interrupt */
120 #define HIFN_PUISR_SRCDATA 0x0020 /* Source data interrupt */
121 #define HIFN_PUISR_DSTDATA 0x0010 /* Destination data interrupt */
122 #define HIFN_PUISR_DSTRESULT 0x0004 /* Destination result interrupt */
123
124 /* Processing Unit Configuration Register (HIFN_0_PUCNFG) */
125 #define HIFN_PUCNFG_DRAMMASK 0xe000 /* DRAM size mask */
126 #define HIFN_PUCNFG_DSZ_256K 0x0000 /* 256k dram */
127 #define HIFN_PUCNFG_DSZ_512K 0x2000 /* 512k dram */
128 #define HIFN_PUCNFG_DSZ_1M 0x4000 /* 1m dram */
129 #define HIFN_PUCNFG_DSZ_2M 0x6000 /* 2m dram */
130 #define HIFN_PUCNFG_DSZ_4M 0x8000 /* 4m dram */
131 #define HIFN_PUCNFG_DSZ_8M 0xa000 /* 8m dram */
132 #define HIFN_PUNCFG_DSZ_16M 0xc000 /* 16m dram */
133 #define HIFN_PUCNFG_DSZ_32M 0xe000 /* 32m dram */
134 #define HIFN_PUCNFG_DRAMREFRESH 0x1800 /* DRAM refresh rate mask */
135 #define HIFN_PUCNFG_DRFR_512 0x0000 /* 512 divisor of ECLK */
136 #define HIFN_PUCNFG_DRFR_256 0x0800 /* 256 divisor of ECLK */
137 #define HIFN_PUCNFG_DRFR_128 0x1000 /* 128 divisor of ECLK */
138 #define HIFN_PUCNFG_TCALLPHASES 0x0200 /* your guess is as good as mine... */
139 #define HIFN_PUCNFG_TCDRVTOTEM 0x0100 /* your guess is as good as mine... */
140 #define HIFN_PUCNFG_BIGENDIAN 0x0080 /* DMA big endian mode */
141 #define HIFN_PUCNFG_BUS32 0x0040 /* Bus width 32bits */
142 #define HIFN_PUCNFG_BUS16 0x0000 /* Bus width 16 bits */
143 #define HIFN_PUCNFG_CHIPID 0x0020 /* Allow chipid from PUSTAT */
144 #define HIFN_PUCNFG_DRAM 0x0010 /* Context RAM is DRAM */
145 #define HIFN_PUCNFG_SRAM 0x0000 /* Context RAM is SRAM */
146 #define HIFN_PUCNFG_COMPSING 0x0004 /* Enable single compression context */
147 #define HIFN_PUCNFG_ENCCNFG 0x0002 /* Encryption configuration */
148
149 /* Processing Unit Interrupt Enable Register (HIFN_0_PUIER) */
150 #define HIFN_PUIER_CMDINVAL 0x8000 /* Invalid command interrupt */
151 #define HIFN_PUIER_DATAERR 0x4000 /* Data error interrupt */
152 #define HIFN_PUIER_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
153 #define HIFN_PUIER_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
154 #define HIFN_PUIER_DSTOVER 0x0200 /* Destination overrun interrupt */
155 #define HIFN_PUIER_SRCCMD 0x0080 /* Source command interrupt */
156 #define HIFN_PUIER_SRCCTX 0x0040 /* Source context interrupt */
157 #define HIFN_PUIER_SRCDATA 0x0020 /* Source data interrupt */
158 #define HIFN_PUIER_DSTDATA 0x0010 /* Destination data interrupt */
159 #define HIFN_PUIER_DSTRESULT 0x0004 /* Destination result interrupt */
160
161 /* Processing Unit Status Register/Chip ID (HIFN_0_PUSTAT) */
162 #define HIFN_PUSTAT_CMDINVAL 0x8000 /* Invalid command interrupt */
163 #define HIFN_PUSTAT_DATAERR 0x4000 /* Data error interrupt */
164 #define HIFN_PUSTAT_SRCFIFO 0x2000 /* Source FIFO ready interrupt */
165 #define HIFN_PUSTAT_DSTFIFO 0x1000 /* Destination FIFO ready interrupt */
166 #define HIFN_PUSTAT_DSTOVER 0x0200 /* Destination overrun interrupt */
167 #define HIFN_PUSTAT_SRCCMD 0x0080 /* Source command interrupt */
168 #define HIFN_PUSTAT_SRCCTX 0x0040 /* Source context interrupt */
169 #define HIFN_PUSTAT_SRCDATA 0x0020 /* Source data interrupt */
170 #define HIFN_PUSTAT_DSTDATA 0x0010 /* Destination data interrupt */
171 #define HIFN_PUSTAT_DSTRESULT 0x0004 /* Destination result interrupt */
172 #define HIFN_PUSTAT_CHIPREV 0x00ff /* Chip revision mask */
173 #define HIFN_PUSTAT_CHIPENA 0xff00 /* Chip enabled mask */
174 #define HIFN_PUSTAT_ENA_2 0x1100 /* Level 2 enabled */
175 #define HIFN_PUSTAT_ENA_1 0x1000 /* Level 1 enabled */
176 #define HIFN_PUSTAT_ENA_0 0x3000 /* Level 0 enabled */
177 #define HIFN_PUSTAT_REV_2 0x0020 /* 7751 PT6/2 */
178 #define HIFN_PUSTAT_REV_3 0x0030 /* 7751 PT6/3 */
179
180 /* FIFO Status Register (HIFN_0_FIFOSTAT) */
181 #define HIFN_FIFOSTAT_SRC 0x7f00 /* Source FIFO available */
182 #define HIFN_FIFOSTAT_DST 0x007f /* Destination FIFO available */
183
184 /* FIFO Configuration Register (HIFN_0_FIFOCNFG) */
185 #define HIFN_FIFOCNFG_THRESHOLD 0x0400 /* must be written as 1 */
186
187 /*
188 * DMA Interface Registers (offset from BASEREG1)
189 */
190 #define HIFN_1_DMA_CRAR 0x0c /* DMA Command Ring Address */
191 #define HIFN_1_DMA_SRAR 0x1c /* DMA Source Ring Address */
192 #define HIFN_1_DMA_RRAR 0x2c /* DMA Result Ring Address */
193 #define HIFN_1_DMA_DRAR 0x3c /* DMA Destination Ring Address */
194 #define HIFN_1_DMA_CSR 0x40 /* DMA Status and Control */
195 #define HIFN_1_DMA_IER 0x44 /* DMA Interrupt Enable */
196 #define HIFN_1_DMA_CNFG 0x48 /* DMA Configuration */
197 #define HIFN_1_PLL 0x4c /* 795x: PLL config */
198 #define HIFN_1_7811_RNGENA 0x60 /* 7811: rng enable */
199 #define HIFN_1_7811_RNGCFG 0x64 /* 7811: rng config */
200 #define HIFN_1_7811_RNGDAT 0x68 /* 7811: rng data */
201 #define HIFN_1_7811_RNGSTS 0x6c /* 7811: rng status */
202 #define HIFN_1_7811_MIPSRST 0x94 /* 7811: MIPS reset */
203 #define HIFN_1_REVID 0x98 /* Revision ID */
204 #define HIFN_1_UNLOCK_SECRET1 0xf4
205 #define HIFN_1_UNLOCK_SECRET2 0xfc
206 #define HIFN_1_PUB_RESET 0x204 /* Public/RNG Reset */
207 #define HIFN_1_PUB_BASE 0x300 /* Public Base Address */
208 #define HIFN_1_PUB_OPLEN 0x304 /* Public Operand Length */
209 #define HIFN_1_PUB_OP 0x308 /* Public Operand */
210 #define HIFN_1_PUB_STATUS 0x30c /* Public Status */
211 #define HIFN_1_PUB_IEN 0x310 /* Public Interrupt enable */
212 #define HIFN_1_RNG_CONFIG 0x314 /* RNG config */
213 #define HIFN_1_RNG_DATA 0x318 /* RNG data */
214 #define HIFN_1_PUB_MEM 0x400 /* start of Public key memory */
215 #define HIFN_1_PUB_MEMEND 0xbff /* end of Public key memory */
216
217 /* DMA Status and Control Register (HIFN_1_DMA_CSR) */
218 #define HIFN_DMACSR_D_CTRLMASK 0xc0000000 /* Destinition Ring Control */
219 #define HIFN_DMACSR_D_CTRL_NOP 0x00000000 /* Dest. Control: no-op */
220 #define HIFN_DMACSR_D_CTRL_DIS 0x40000000 /* Dest. Control: disable */
221 #define HIFN_DMACSR_D_CTRL_ENA 0x80000000 /* Dest. Control: enable */
222 #define HIFN_DMACSR_D_ABORT 0x20000000 /* Destinition Ring PCIAbort */
223 #define HIFN_DMACSR_D_DONE 0x10000000 /* Destinition Ring Done */
224 #define HIFN_DMACSR_D_LAST 0x08000000 /* Destinition Ring Last */
225 #define HIFN_DMACSR_D_WAIT 0x04000000 /* Destinition Ring Waiting */
226 #define HIFN_DMACSR_D_OVER 0x02000000 /* Destinition Ring Overflow */
227 #define HIFN_DMACSR_R_CTRL 0x00c00000 /* Result Ring Control */
228 #define HIFN_DMACSR_R_CTRL_NOP 0x00000000 /* Result Control: no-op */
229 #define HIFN_DMACSR_R_CTRL_DIS 0x00400000 /* Result Control: disable */
230 #define HIFN_DMACSR_R_CTRL_ENA 0x00800000 /* Result Control: enable */
231 #define HIFN_DMACSR_R_ABORT 0x00200000 /* Result Ring PCI Abort */
232 #define HIFN_DMACSR_R_DONE 0x00100000 /* Result Ring Done */
233 #define HIFN_DMACSR_R_LAST 0x00080000 /* Result Ring Last */
234 #define HIFN_DMACSR_R_WAIT 0x00040000 /* Result Ring Waiting */
235 #define HIFN_DMACSR_R_OVER 0x00020000 /* Result Ring Overflow */
236 #define HIFN_DMACSR_S_CTRL 0x0000c000 /* Source Ring Control */
237 #define HIFN_DMACSR_S_CTRL_NOP 0x00000000 /* Source Control: no-op */
238 #define HIFN_DMACSR_S_CTRL_DIS 0x00004000 /* Source Control: disable */
239 #define HIFN_DMACSR_S_CTRL_ENA 0x00008000 /* Source Control: enable */
240 #define HIFN_DMACSR_S_ABORT 0x00002000 /* Source Ring PCI Abort */
241 #define HIFN_DMACSR_S_DONE 0x00001000 /* Source Ring Done */
242 #define HIFN_DMACSR_S_LAST 0x00000800 /* Source Ring Last */
243 #define HIFN_DMACSR_S_WAIT 0x00000400 /* Source Ring Waiting */
244 #define HIFN_DMACSR_ILLW 0x00000200 /* Illegal write (7811 only) */
245 #define HIFN_DMACSR_ILLR 0x00000100 /* Illegal read (7811 only) */
246 #define HIFN_DMACSR_C_CTRL 0x000000c0 /* Command Ring Control */
247 #define HIFN_DMACSR_C_CTRL_NOP 0x00000000 /* Command Control: no-op */
248 #define HIFN_DMACSR_C_CTRL_DIS 0x00000040 /* Command Control: disable */
249 #define HIFN_DMACSR_C_CTRL_ENA 0x00000080 /* Command Control: enable */
250 #define HIFN_DMACSR_C_ABORT 0x00000020 /* Command Ring PCI Abort */
251 #define HIFN_DMACSR_C_DONE 0x00000010 /* Command Ring Done */
252 #define HIFN_DMACSR_C_LAST 0x00000008 /* Command Ring Last */
253 #define HIFN_DMACSR_C_WAIT 0x00000004 /* Command Ring Waiting */
254 #define HIFN_DMACSR_PUBDONE 0x00000002 /* Public op done (7951 only) */
255 #define HIFN_DMACSR_ENGINE 0x00000001 /* Command Ring Engine IRQ */
256
257 /* DMA Interrupt Enable Register (HIFN_1_DMA_IER) */
258 #define HIFN_DMAIER_D_ABORT 0x20000000 /* Destination Ring PCIAbort */
259 #define HIFN_DMAIER_D_DONE 0x10000000 /* Destination Ring Done */
260 #define HIFN_DMAIER_D_LAST 0x08000000 /* Destination Ring Last */
261 #define HIFN_DMAIER_D_WAIT 0x04000000 /* Destination Ring Waiting */
262 #define HIFN_DMAIER_D_OVER 0x02000000 /* Destination Ring Overflow */
263 #define HIFN_DMAIER_R_ABORT 0x00200000 /* Result Ring PCI Abort */
264 #define HIFN_DMAIER_R_DONE 0x00100000 /* Result Ring Done */
265 #define HIFN_DMAIER_R_LAST 0x00080000 /* Result Ring Last */
266 #define HIFN_DMAIER_R_WAIT 0x00040000 /* Result Ring Waiting */
267 #define HIFN_DMAIER_R_OVER 0x00020000 /* Result Ring Overflow */
268 #define HIFN_DMAIER_S_ABORT 0x00002000 /* Source Ring PCI Abort */
269 #define HIFN_DMAIER_S_DONE 0x00001000 /* Source Ring Done */
270 #define HIFN_DMAIER_S_LAST 0x00000800 /* Source Ring Last */
271 #define HIFN_DMAIER_S_WAIT 0x00000400 /* Source Ring Waiting */
272 #define HIFN_DMAIER_ILLW 0x00000200 /* Illegal write (7811 only) */
273 #define HIFN_DMAIER_ILLR 0x00000100 /* Illegal read (7811 only) */
274 #define HIFN_DMAIER_C_ABORT 0x00000020 /* Command Ring PCI Abort */
275 #define HIFN_DMAIER_C_DONE 0x00000010 /* Command Ring Done */
276 #define HIFN_DMAIER_C_LAST 0x00000008 /* Command Ring Last */
277 #define HIFN_DMAIER_C_WAIT 0x00000004 /* Command Ring Waiting */
278 #define HIFN_DMAIER_PUBDONE 0x00000002 /* public op done (7951 only) */
279 #define HIFN_DMAIER_ENGINE 0x00000001 /* Engine IRQ */
280
281 /* DMA Configuration Register (HIFN_1_DMA_CNFG) */
282 #define HIFN_DMACNFG_BIGENDIAN 0x10000000 /* big endian mode */
283 #define HIFN_DMACNFG_POLLFREQ 0x00ff0000 /* Poll frequency mask */
284 #define HIFN_DMACNFG_UNLOCK 0x00000800
285 #define HIFN_DMACNFG_POLLINVAL 0x00000700 /* Invalid Poll Scalar */
286 #define HIFN_DMACNFG_LAST 0x00000010 /* Host control LAST bit */
287 #define HIFN_DMACNFG_MODE 0x00000004 /* DMA mode */
288 #define HIFN_DMACNFG_DMARESET 0x00000002 /* DMA Reset # */
289 #define HIFN_DMACNFG_MSTRESET 0x00000001 /* Master Reset # */
290
291 /* PLL configuration register */
292 #define HIFN_PLL_REF_CLK_HBI 0x00000000 /* HBI reference clock */
293 #define HIFN_PLL_REF_CLK_PLL 0x00000001 /* PLL reference clock */
294 #define HIFN_PLL_BP 0x00000002 /* Reference clock bypass */
295 #define HIFN_PLL_PK_CLK_HBI 0x00000000 /* PK engine HBI clock */
296 #define HIFN_PLL_PK_CLK_PLL 0x00000008 /* PK engine PLL clock */
297 #define HIFN_PLL_PE_CLK_HBI 0x00000000 /* PE engine HBI clock */
298 #define HIFN_PLL_PE_CLK_PLL 0x00000010 /* PE engine PLL clock */
299 #define HIFN_PLL_RESERVED_1 0x00000400 /* Reserved bit, must be 1 */
300 #define HIFN_PLL_ND_SHIFT 11 /* Clock multiplier shift */
301 #define HIFN_PLL_ND_MULT_2 0x00000000 /* PLL clock multiplier 2 */
302 #define HIFN_PLL_ND_MULT_4 0x00000800 /* PLL clock multiplier 4 */
303 #define HIFN_PLL_ND_MULT_6 0x00001000 /* PLL clock multiplier 6 */
304 #define HIFN_PLL_ND_MULT_8 0x00001800 /* PLL clock multiplier 8 */
305 #define HIFN_PLL_ND_MULT_10 0x00002000 /* PLL clock multiplier 10 */
306 #define HIFN_PLL_ND_MULT_12 0x00002800 /* PLL clock multiplier 12 */
307 #define HIFN_PLL_IS_1_8 0x00000000 /* charge pump (mult. 1-8) */
308 #define HIFN_PLL_IS_9_12 0x00010000 /* charge pump (mult. 9-12) */
309
310 #define HIFN_PLL_FCK_MAX 266 /* Maximum PLL frequency */
311
312 /* Public key reset register (HIFN_1_PUB_RESET) */
313 #define HIFN_PUBRST_RESET 0x00000001 /* reset public/rng unit */
314
315 /* Public base address register (HIFN_1_PUB_BASE) */
316 #define HIFN_PUBBASE_ADDR 0x00003fff /* base address */
317
318 /* Public operand length register (HIFN_1_PUB_OPLEN) */
319 #define HIFN_PUBOPLEN_MOD_M 0x0000007f /* modulus length mask */
320 #define HIFN_PUBOPLEN_MOD_S 0 /* modulus length shift */
321 #define HIFN_PUBOPLEN_EXP_M 0x0003ff80 /* exponent length mask */
322 #define HIFN_PUBOPLEN_EXP_S 7 /* exponent length shift */
323 #define HIFN_PUBOPLEN_RED_M 0x003c0000 /* reducend length mask */
324 #define HIFN_PUBOPLEN_RED_S 18 /* reducend length shift */
325
326 /* Public operation register (HIFN_1_PUB_OP) */
327 #define HIFN_PUBOP_AOFFSET_M 0x0000007f /* A offset mask */
328 #define HIFN_PUBOP_AOFFSET_S 0 /* A offset shift */
329 #define HIFN_PUBOP_BOFFSET_M 0x00000f80 /* B offset mask */
330 #define HIFN_PUBOP_BOFFSET_S 7 /* B offset shift */
331 #define HIFN_PUBOP_MOFFSET_M 0x0003f000 /* M offset mask */
332 #define HIFN_PUBOP_MOFFSET_S 12 /* M offset shift */
333 #define HIFN_PUBOP_OP_MASK 0x003c0000 /* Opcode: */
334 #define HIFN_PUBOP_OP_NOP 0x00000000 /* NOP */
335 #define HIFN_PUBOP_OP_ADD 0x00040000 /* ADD */
336 #define HIFN_PUBOP_OP_ADDC 0x00080000 /* ADD w/carry */
337 #define HIFN_PUBOP_OP_SUB 0x000c0000 /* SUB */
338 #define HIFN_PUBOP_OP_SUBC 0x00100000 /* SUB w/carry */
339 #define HIFN_PUBOP_OP_MODADD 0x00140000 /* Modular ADD */
340 #define HIFN_PUBOP_OP_MODSUB 0x00180000 /* Modular SUB */
341 #define HIFN_PUBOP_OP_INCA 0x001c0000 /* INC A */
342 #define HIFN_PUBOP_OP_DECA 0x00200000 /* DEC A */
343 #define HIFN_PUBOP_OP_MULT 0x00240000 /* MULT */
344 #define HIFN_PUBOP_OP_MODMULT 0x00280000 /* Modular MULT */
345 #define HIFN_PUBOP_OP_MODRED 0x002c0000 /* Modular RED */
346 #define HIFN_PUBOP_OP_MODEXP 0x00300000 /* Modular EXP */
347
348 /* Public status register (HIFN_1_PUB_STATUS) */
349 #define HIFN_PUBSTS_DONE 0x00000001 /* operation done */
350 #define HIFN_PUBSTS_CARRY 0x00000002 /* carry */
351
352 /* Public interrupt enable register (HIFN_1_PUB_IEN) */
353 #define HIFN_PUBIEN_DONE 0x00000001 /* operation done interrupt */
354
355 /* Random number generator config register (HIFN_1_RNG_CONFIG) */
356 #define HIFN_RNGCFG_ENA 0x00000001 /* enable rng */
357
358 #define HIFN_NAMESIZE 32
359 #define HIFN_MAX_RESULT_ORDER 5
360
361 #define HIFN_D_CMD_RSIZE 24*1
362 #define HIFN_D_SRC_RSIZE 80*1
363 #define HIFN_D_DST_RSIZE 80*1
364 #define HIFN_D_RES_RSIZE 24*1
365
366 #define HIFN_D_DST_DALIGN 4
367
368 #define HIFN_QUEUE_LENGTH (HIFN_D_CMD_RSIZE - 1)
369
370 #define AES_MIN_KEY_SIZE 16
371 #define AES_MAX_KEY_SIZE 32
372
373 #define HIFN_DES_KEY_LENGTH 8
374 #define HIFN_3DES_KEY_LENGTH 24
375 #define HIFN_MAX_CRYPT_KEY_LENGTH AES_MAX_KEY_SIZE
376 #define HIFN_IV_LENGTH 8
377 #define HIFN_AES_IV_LENGTH 16
378 #define HIFN_MAX_IV_LENGTH HIFN_AES_IV_LENGTH
379
380 #define HIFN_MAC_KEY_LENGTH 64
381 #define HIFN_MD5_LENGTH 16
382 #define HIFN_SHA1_LENGTH 20
383 #define HIFN_MAC_TRUNC_LENGTH 12
384
385 #define HIFN_MAX_COMMAND (8 + 8 + 8 + 64 + 260)
386 #define HIFN_MAX_RESULT (8 + 4 + 4 + 20 + 4)
387 #define HIFN_USED_RESULT 12
388
389 struct hifn_desc
390 {
391 volatile __le32 l;
392 volatile __le32 p;
393 };
394
395 struct hifn_dma {
396 struct hifn_desc cmdr[HIFN_D_CMD_RSIZE+1];
397 struct hifn_desc srcr[HIFN_D_SRC_RSIZE+1];
398 struct hifn_desc dstr[HIFN_D_DST_RSIZE+1];
399 struct hifn_desc resr[HIFN_D_RES_RSIZE+1];
400
401 u8 command_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_COMMAND];
402 u8 result_bufs[HIFN_D_CMD_RSIZE][HIFN_MAX_RESULT];
403
404 /*
405 * Our current positions for insertion and removal from the descriptor
406 * rings.
407 */
408 volatile int cmdi, srci, dsti, resi;
409 volatile int cmdu, srcu, dstu, resu;
410 int cmdk, srck, dstk, resk;
411 };
412
413 #define HIFN_FLAG_CMD_BUSY (1<<0)
414 #define HIFN_FLAG_SRC_BUSY (1<<1)
415 #define HIFN_FLAG_DST_BUSY (1<<2)
416 #define HIFN_FLAG_RES_BUSY (1<<3)
417 #define HIFN_FLAG_OLD_KEY (1<<4)
418
419 #define HIFN_DEFAULT_ACTIVE_NUM 5
420
421 struct hifn_device
422 {
423 char name[HIFN_NAMESIZE];
424
425 int irq;
426
427 struct pci_dev *pdev;
428 void __iomem *bar[3];
429
430 void *desc_virt;
431 dma_addr_t desc_dma;
432
433 u32 dmareg;
434
435 void *sa[HIFN_D_RES_RSIZE];
436
437 spinlock_t lock;
438
439 u32 flags;
440 int active, started;
441 struct delayed_work work;
442 unsigned long reset;
443 unsigned long success;
444 unsigned long prev_success;
445
446 u8 snum;
447
448 struct tasklet_struct tasklet;
449
450 struct crypto_queue queue;
451 struct list_head alg_list;
452
453 unsigned int pk_clk_freq;
454
455 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
456 unsigned int rng_wait_time;
457 ktime_t rngtime;
458 struct hwrng rng;
459 #endif
460 };
461
462 #define HIFN_D_LENGTH 0x0000ffff
463 #define HIFN_D_NOINVALID 0x01000000
464 #define HIFN_D_MASKDONEIRQ 0x02000000
465 #define HIFN_D_DESTOVER 0x04000000
466 #define HIFN_D_OVER 0x08000000
467 #define HIFN_D_LAST 0x20000000
468 #define HIFN_D_JUMP 0x40000000
469 #define HIFN_D_VALID 0x80000000
470
471 struct hifn_base_command
472 {
473 volatile __le16 masks;
474 volatile __le16 session_num;
475 volatile __le16 total_source_count;
476 volatile __le16 total_dest_count;
477 };
478
479 #define HIFN_BASE_CMD_COMP 0x0100 /* enable compression engine */
480 #define HIFN_BASE_CMD_PAD 0x0200 /* enable padding engine */
481 #define HIFN_BASE_CMD_MAC 0x0400 /* enable MAC engine */
482 #define HIFN_BASE_CMD_CRYPT 0x0800 /* enable crypt engine */
483 #define HIFN_BASE_CMD_DECODE 0x2000
484 #define HIFN_BASE_CMD_SRCLEN_M 0xc000
485 #define HIFN_BASE_CMD_SRCLEN_S 14
486 #define HIFN_BASE_CMD_DSTLEN_M 0x3000
487 #define HIFN_BASE_CMD_DSTLEN_S 12
488 #define HIFN_BASE_CMD_LENMASK_HI 0x30000
489 #define HIFN_BASE_CMD_LENMASK_LO 0x0ffff
490
491 /*
492 * Structure to help build up the command data structure.
493 */
494 struct hifn_crypt_command
495 {
496 volatile __le16 masks;
497 volatile __le16 header_skip;
498 volatile __le16 source_count;
499 volatile __le16 reserved;
500 };
501
502 #define HIFN_CRYPT_CMD_ALG_MASK 0x0003 /* algorithm: */
503 #define HIFN_CRYPT_CMD_ALG_DES 0x0000 /* DES */
504 #define HIFN_CRYPT_CMD_ALG_3DES 0x0001 /* 3DES */
505 #define HIFN_CRYPT_CMD_ALG_RC4 0x0002 /* RC4 */
506 #define HIFN_CRYPT_CMD_ALG_AES 0x0003 /* AES */
507 #define HIFN_CRYPT_CMD_MODE_MASK 0x0018 /* Encrypt mode: */
508 #define HIFN_CRYPT_CMD_MODE_ECB 0x0000 /* ECB */
509 #define HIFN_CRYPT_CMD_MODE_CBC 0x0008 /* CBC */
510 #define HIFN_CRYPT_CMD_MODE_CFB 0x0010 /* CFB */
511 #define HIFN_CRYPT_CMD_MODE_OFB 0x0018 /* OFB */
512 #define HIFN_CRYPT_CMD_CLR_CTX 0x0040 /* clear context */
513 #define HIFN_CRYPT_CMD_KSZ_MASK 0x0600 /* AES key size: */
514 #define HIFN_CRYPT_CMD_KSZ_128 0x0000 /* 128 bit */
515 #define HIFN_CRYPT_CMD_KSZ_192 0x0200 /* 192 bit */
516 #define HIFN_CRYPT_CMD_KSZ_256 0x0400 /* 256 bit */
517 #define HIFN_CRYPT_CMD_NEW_KEY 0x0800 /* expect new key */
518 #define HIFN_CRYPT_CMD_NEW_IV 0x1000 /* expect new iv */
519 #define HIFN_CRYPT_CMD_SRCLEN_M 0xc000
520 #define HIFN_CRYPT_CMD_SRCLEN_S 14
521
522 /*
523 * Structure to help build up the command data structure.
524 */
525 struct hifn_mac_command
526 {
527 volatile __le16 masks;
528 volatile __le16 header_skip;
529 volatile __le16 source_count;
530 volatile __le16 reserved;
531 };
532
533 #define HIFN_MAC_CMD_ALG_MASK 0x0001
534 #define HIFN_MAC_CMD_ALG_SHA1 0x0000
535 #define HIFN_MAC_CMD_ALG_MD5 0x0001
536 #define HIFN_MAC_CMD_MODE_MASK 0x000c
537 #define HIFN_MAC_CMD_MODE_HMAC 0x0000
538 #define HIFN_MAC_CMD_MODE_SSL_MAC 0x0004
539 #define HIFN_MAC_CMD_MODE_HASH 0x0008
540 #define HIFN_MAC_CMD_MODE_FULL 0x0004
541 #define HIFN_MAC_CMD_TRUNC 0x0010
542 #define HIFN_MAC_CMD_RESULT 0x0020
543 #define HIFN_MAC_CMD_APPEND 0x0040
544 #define HIFN_MAC_CMD_SRCLEN_M 0xc000
545 #define HIFN_MAC_CMD_SRCLEN_S 14
546
547 /*
548 * MAC POS IPsec initiates authentication after encryption on encodes
549 * and before decryption on decodes.
550 */
551 #define HIFN_MAC_CMD_POS_IPSEC 0x0200
552 #define HIFN_MAC_CMD_NEW_KEY 0x0800
553
554 struct hifn_comp_command
555 {
556 volatile __le16 masks;
557 volatile __le16 header_skip;
558 volatile __le16 source_count;
559 volatile __le16 reserved;
560 };
561
562 #define HIFN_COMP_CMD_SRCLEN_M 0xc000
563 #define HIFN_COMP_CMD_SRCLEN_S 14
564 #define HIFN_COMP_CMD_ONE 0x0100 /* must be one */
565 #define HIFN_COMP_CMD_CLEARHIST 0x0010 /* clear history */
566 #define HIFN_COMP_CMD_UPDATEHIST 0x0008 /* update history */
567 #define HIFN_COMP_CMD_LZS_STRIP0 0x0004 /* LZS: strip zero */
568 #define HIFN_COMP_CMD_MPPC_RESTART 0x0004 /* MPPC: restart */
569 #define HIFN_COMP_CMD_ALG_MASK 0x0001 /* compression mode: */
570 #define HIFN_COMP_CMD_ALG_MPPC 0x0001 /* MPPC */
571 #define HIFN_COMP_CMD_ALG_LZS 0x0000 /* LZS */
572
573 struct hifn_base_result
574 {
575 volatile __le16 flags;
576 volatile __le16 session;
577 volatile __le16 src_cnt; /* 15:0 of source count */
578 volatile __le16 dst_cnt; /* 15:0 of dest count */
579 };
580
581 #define HIFN_BASE_RES_DSTOVERRUN 0x0200 /* destination overrun */
582 #define HIFN_BASE_RES_SRCLEN_M 0xc000 /* 17:16 of source count */
583 #define HIFN_BASE_RES_SRCLEN_S 14
584 #define HIFN_BASE_RES_DSTLEN_M 0x3000 /* 17:16 of dest count */
585 #define HIFN_BASE_RES_DSTLEN_S 12
586
587 struct hifn_comp_result
588 {
589 volatile __le16 flags;
590 volatile __le16 crc;
591 };
592
593 #define HIFN_COMP_RES_LCB_M 0xff00 /* longitudinal check byte */
594 #define HIFN_COMP_RES_LCB_S 8
595 #define HIFN_COMP_RES_RESTART 0x0004 /* MPPC: restart */
596 #define HIFN_COMP_RES_ENDMARKER 0x0002 /* LZS: end marker seen */
597 #define HIFN_COMP_RES_SRC_NOTZERO 0x0001 /* source expired */
598
599 struct hifn_mac_result
600 {
601 volatile __le16 flags;
602 volatile __le16 reserved;
603 /* followed by 0, 6, 8, or 10 u16's of the MAC, then crypt */
604 };
605
606 #define HIFN_MAC_RES_MISCOMPARE 0x0002 /* compare failed */
607 #define HIFN_MAC_RES_SRC_NOTZERO 0x0001 /* source expired */
608
609 struct hifn_crypt_result
610 {
611 volatile __le16 flags;
612 volatile __le16 reserved;
613 };
614
615 #define HIFN_CRYPT_RES_SRC_NOTZERO 0x0001 /* source expired */
616
617 #ifndef HIFN_POLL_FREQUENCY
618 #define HIFN_POLL_FREQUENCY 0x1
619 #endif
620
621 #ifndef HIFN_POLL_SCALAR
622 #define HIFN_POLL_SCALAR 0x0
623 #endif
624
625 #define HIFN_MAX_SEGLEN 0xffff /* maximum dma segment len */
626 #define HIFN_MAX_DMALEN 0x3ffff /* maximum dma length */
627
628 struct hifn_crypto_alg
629 {
630 struct list_head entry;
631 struct crypto_alg alg;
632 struct hifn_device *dev;
633 };
634
635 #define ASYNC_SCATTERLIST_CACHE 16
636
637 #define ASYNC_FLAGS_MISALIGNED (1<<0)
638
639 struct hifn_cipher_walk
640 {
641 struct scatterlist cache[ASYNC_SCATTERLIST_CACHE];
642 u32 flags;
643 int num;
644 };
645
646 struct hifn_context
647 {
648 u8 key[HIFN_MAX_CRYPT_KEY_LENGTH];
649 struct hifn_device *dev;
650 unsigned int keysize;
651 };
652
653 struct hifn_request_context
654 {
655 u8 *iv;
656 unsigned int ivsize;
657 u8 op, type, mode, unused;
658 struct hifn_cipher_walk walk;
659 };
660
661 #define crypto_alg_to_hifn(a) container_of(a, struct hifn_crypto_alg, alg)
662
663 static inline u32 hifn_read_0(struct hifn_device *dev, u32 reg)
664 {
665 u32 ret;
666
667 ret = readl(dev->bar[0] + reg);
668
669 return ret;
670 }
671
672 static inline u32 hifn_read_1(struct hifn_device *dev, u32 reg)
673 {
674 u32 ret;
675
676 ret = readl(dev->bar[1] + reg);
677
678 return ret;
679 }
680
681 static inline void hifn_write_0(struct hifn_device *dev, u32 reg, u32 val)
682 {
683 writel((__force u32)cpu_to_le32(val), dev->bar[0] + reg);
684 }
685
686 static inline void hifn_write_1(struct hifn_device *dev, u32 reg, u32 val)
687 {
688 writel((__force u32)cpu_to_le32(val), dev->bar[1] + reg);
689 }
690
691 static void hifn_wait_puc(struct hifn_device *dev)
692 {
693 int i;
694 u32 ret;
695
696 for (i=10000; i > 0; --i) {
697 ret = hifn_read_0(dev, HIFN_0_PUCTRL);
698 if (!(ret & HIFN_PUCTRL_RESET))
699 break;
700
701 udelay(1);
702 }
703
704 if (!i)
705 dprintk("%s: Failed to reset PUC unit.\n", dev->name);
706 }
707
708 static void hifn_reset_puc(struct hifn_device *dev)
709 {
710 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
711 hifn_wait_puc(dev);
712 }
713
714 static void hifn_stop_device(struct hifn_device *dev)
715 {
716 hifn_write_1(dev, HIFN_1_DMA_CSR,
717 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
718 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS);
719 hifn_write_0(dev, HIFN_0_PUIER, 0);
720 hifn_write_1(dev, HIFN_1_DMA_IER, 0);
721 }
722
723 static void hifn_reset_dma(struct hifn_device *dev, int full)
724 {
725 hifn_stop_device(dev);
726
727 /*
728 * Setting poll frequency and others to 0.
729 */
730 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
731 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
732 mdelay(1);
733
734 /*
735 * Reset DMA.
736 */
737 if (full) {
738 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE);
739 mdelay(1);
740 } else {
741 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MODE |
742 HIFN_DMACNFG_MSTRESET);
743 hifn_reset_puc(dev);
744 }
745
746 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
747 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
748
749 hifn_reset_puc(dev);
750 }
751
752 static u32 hifn_next_signature(u_int32_t a, u_int cnt)
753 {
754 int i;
755 u32 v;
756
757 for (i = 0; i < cnt; i++) {
758
759 /* get the parity */
760 v = a & 0x80080125;
761 v ^= v >> 16;
762 v ^= v >> 8;
763 v ^= v >> 4;
764 v ^= v >> 2;
765 v ^= v >> 1;
766
767 a = (v & 1) ^ (a << 1);
768 }
769
770 return a;
771 }
772
773 static struct pci2id {
774 u_short pci_vendor;
775 u_short pci_prod;
776 char card_id[13];
777 } pci2id[] = {
778 {
779 PCI_VENDOR_ID_HIFN,
780 PCI_DEVICE_ID_HIFN_7955,
781 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
782 0x00, 0x00, 0x00, 0x00, 0x00 }
783 },
784 {
785 PCI_VENDOR_ID_HIFN,
786 PCI_DEVICE_ID_HIFN_7956,
787 { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
788 0x00, 0x00, 0x00, 0x00, 0x00 }
789 }
790 };
791
792 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
793 static int hifn_rng_data_present(struct hwrng *rng, int wait)
794 {
795 struct hifn_device *dev = (struct hifn_device *)rng->priv;
796 s64 nsec;
797
798 nsec = ktime_to_ns(ktime_sub(ktime_get(), dev->rngtime));
799 nsec -= dev->rng_wait_time;
800 if (nsec <= 0)
801 return 1;
802 if (!wait)
803 return 0;
804 ndelay(nsec);
805 return 1;
806 }
807
808 static int hifn_rng_data_read(struct hwrng *rng, u32 *data)
809 {
810 struct hifn_device *dev = (struct hifn_device *)rng->priv;
811
812 *data = hifn_read_1(dev, HIFN_1_RNG_DATA);
813 dev->rngtime = ktime_get();
814 return 4;
815 }
816
817 static int hifn_register_rng(struct hifn_device *dev)
818 {
819 /*
820 * We must wait at least 256 Pk_clk cycles between two reads of the rng.
821 */
822 dev->rng_wait_time = DIV_ROUND_UP_ULL(NSEC_PER_SEC,
823 dev->pk_clk_freq) * 256;
824
825 dev->rng.name = dev->name;
826 dev->rng.data_present = hifn_rng_data_present,
827 dev->rng.data_read = hifn_rng_data_read,
828 dev->rng.priv = (unsigned long)dev;
829
830 return hwrng_register(&dev->rng);
831 }
832
833 static void hifn_unregister_rng(struct hifn_device *dev)
834 {
835 hwrng_unregister(&dev->rng);
836 }
837 #else
838 #define hifn_register_rng(dev) 0
839 #define hifn_unregister_rng(dev)
840 #endif
841
842 static int hifn_init_pubrng(struct hifn_device *dev)
843 {
844 int i;
845
846 hifn_write_1(dev, HIFN_1_PUB_RESET, hifn_read_1(dev, HIFN_1_PUB_RESET) |
847 HIFN_PUBRST_RESET);
848
849 for (i=100; i > 0; --i) {
850 mdelay(1);
851
852 if ((hifn_read_1(dev, HIFN_1_PUB_RESET) & HIFN_PUBRST_RESET) == 0)
853 break;
854 }
855
856 if (!i)
857 dprintk("Chip %s: Failed to initialise public key engine.\n",
858 dev->name);
859 else {
860 hifn_write_1(dev, HIFN_1_PUB_IEN, HIFN_PUBIEN_DONE);
861 dev->dmareg |= HIFN_DMAIER_PUBDONE;
862 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
863
864 dprintk("Chip %s: Public key engine has been successfully "
865 "initialised.\n", dev->name);
866 }
867
868 /*
869 * Enable RNG engine.
870 */
871
872 hifn_write_1(dev, HIFN_1_RNG_CONFIG,
873 hifn_read_1(dev, HIFN_1_RNG_CONFIG) | HIFN_RNGCFG_ENA);
874 dprintk("Chip %s: RNG engine has been successfully initialised.\n",
875 dev->name);
876
877 #ifdef CONFIG_CRYPTO_DEV_HIFN_795X_RNG
878 /* First value must be discarded */
879 hifn_read_1(dev, HIFN_1_RNG_DATA);
880 dev->rngtime = ktime_get();
881 #endif
882 return 0;
883 }
884
885 static int hifn_enable_crypto(struct hifn_device *dev)
886 {
887 u32 dmacfg, addr;
888 char *offtbl = NULL;
889 int i;
890
891 for (i = 0; i < ARRAY_SIZE(pci2id); i++) {
892 if (pci2id[i].pci_vendor == dev->pdev->vendor &&
893 pci2id[i].pci_prod == dev->pdev->device) {
894 offtbl = pci2id[i].card_id;
895 break;
896 }
897 }
898
899 if (offtbl == NULL) {
900 dprintk("Chip %s: Unknown card!\n", dev->name);
901 return -ENODEV;
902 }
903
904 dmacfg = hifn_read_1(dev, HIFN_1_DMA_CNFG);
905
906 hifn_write_1(dev, HIFN_1_DMA_CNFG,
907 HIFN_DMACNFG_UNLOCK | HIFN_DMACNFG_MSTRESET |
908 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE);
909 mdelay(1);
910 addr = hifn_read_1(dev, HIFN_1_UNLOCK_SECRET1);
911 mdelay(1);
912 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, 0);
913 mdelay(1);
914
915 for (i=0; i<12; ++i) {
916 addr = hifn_next_signature(addr, offtbl[i] + 0x101);
917 hifn_write_1(dev, HIFN_1_UNLOCK_SECRET2, addr);
918
919 mdelay(1);
920 }
921 hifn_write_1(dev, HIFN_1_DMA_CNFG, dmacfg);
922
923 dprintk("Chip %s: %s.\n", dev->name, pci_name(dev->pdev));
924
925 return 0;
926 }
927
928 static void hifn_init_dma(struct hifn_device *dev)
929 {
930 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
931 u32 dptr = dev->desc_dma;
932 int i;
933
934 for (i=0; i<HIFN_D_CMD_RSIZE; ++i)
935 dma->cmdr[i].p = __cpu_to_le32(dptr +
936 offsetof(struct hifn_dma, command_bufs[i][0]));
937 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
938 dma->resr[i].p = __cpu_to_le32(dptr +
939 offsetof(struct hifn_dma, result_bufs[i][0]));
940
941 /*
942 * Setup LAST descriptors.
943 */
944 dma->cmdr[HIFN_D_CMD_RSIZE].p = __cpu_to_le32(dptr +
945 offsetof(struct hifn_dma, cmdr[0]));
946 dma->srcr[HIFN_D_SRC_RSIZE].p = __cpu_to_le32(dptr +
947 offsetof(struct hifn_dma, srcr[0]));
948 dma->dstr[HIFN_D_DST_RSIZE].p = __cpu_to_le32(dptr +
949 offsetof(struct hifn_dma, dstr[0]));
950 dma->resr[HIFN_D_RES_RSIZE].p = __cpu_to_le32(dptr +
951 offsetof(struct hifn_dma, resr[0]));
952
953 dma->cmdu = dma->srcu = dma->dstu = dma->resu = 0;
954 dma->cmdi = dma->srci = dma->dsti = dma->resi = 0;
955 dma->cmdk = dma->srck = dma->dstk = dma->resk = 0;
956 }
957
958 /*
959 * Initialize the PLL. We need to know the frequency of the reference clock
960 * to calculate the optimal multiplier. For PCI we assume 66MHz, since that
961 * allows us to operate without the risk of overclocking the chip. If it
962 * actually uses 33MHz, the chip will operate at half the speed, this can be
963 * overriden by specifying the frequency as module parameter (pci33).
964 *
965 * Unfortunately the PCI clock is not very suitable since the HIFN needs a
966 * stable clock and the PCI clock frequency may vary, so the default is the
967 * external clock. There is no way to find out its frequency, we default to
968 * 66MHz since according to Mike Ham of HiFn, almost every board in existence
969 * has an external crystal populated at 66MHz.
970 */
971 static void hifn_init_pll(struct hifn_device *dev)
972 {
973 unsigned int freq, m;
974 u32 pllcfg;
975
976 pllcfg = HIFN_1_PLL | HIFN_PLL_RESERVED_1;
977
978 if (strncmp(hifn_pll_ref, "ext", 3) == 0)
979 pllcfg |= HIFN_PLL_REF_CLK_PLL;
980 else
981 pllcfg |= HIFN_PLL_REF_CLK_HBI;
982
983 if (hifn_pll_ref[3] != '\0')
984 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
985 else {
986 freq = 66;
987 printk(KERN_INFO "hifn795x: assuming %uMHz clock speed, "
988 "override with hifn_pll_ref=%.3s<frequency>\n",
989 freq, hifn_pll_ref);
990 }
991
992 m = HIFN_PLL_FCK_MAX / freq;
993
994 pllcfg |= (m / 2 - 1) << HIFN_PLL_ND_SHIFT;
995 if (m <= 8)
996 pllcfg |= HIFN_PLL_IS_1_8;
997 else
998 pllcfg |= HIFN_PLL_IS_9_12;
999
1000 /* Select clock source and enable clock bypass */
1001 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1002 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI | HIFN_PLL_BP);
1003
1004 /* Let the chip lock to the input clock */
1005 mdelay(10);
1006
1007 /* Disable clock bypass */
1008 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1009 HIFN_PLL_PK_CLK_HBI | HIFN_PLL_PE_CLK_HBI);
1010
1011 /* Switch the engines to the PLL */
1012 hifn_write_1(dev, HIFN_1_PLL, pllcfg |
1013 HIFN_PLL_PK_CLK_PLL | HIFN_PLL_PE_CLK_PLL);
1014
1015 /*
1016 * The Fpk_clk runs at half the total speed. Its frequency is needed to
1017 * calculate the minimum time between two reads of the rng. Since 33MHz
1018 * is actually 33.333... we overestimate the frequency here, resulting
1019 * in slightly larger intervals.
1020 */
1021 dev->pk_clk_freq = 1000000 * (freq + 1) * m / 2;
1022 }
1023
1024 static void hifn_init_registers(struct hifn_device *dev)
1025 {
1026 u32 dptr = dev->desc_dma;
1027
1028 /* Initialization magic... */
1029 hifn_write_0(dev, HIFN_0_PUCTRL, HIFN_PUCTRL_DMAENA);
1030 hifn_write_0(dev, HIFN_0_FIFOCNFG, HIFN_FIFOCNFG_THRESHOLD);
1031 hifn_write_0(dev, HIFN_0_PUIER, HIFN_PUIER_DSTOVER);
1032
1033 /* write all 4 ring address registers */
1034 hifn_write_1(dev, HIFN_1_DMA_CRAR, dptr +
1035 offsetof(struct hifn_dma, cmdr[0]));
1036 hifn_write_1(dev, HIFN_1_DMA_SRAR, dptr +
1037 offsetof(struct hifn_dma, srcr[0]));
1038 hifn_write_1(dev, HIFN_1_DMA_DRAR, dptr +
1039 offsetof(struct hifn_dma, dstr[0]));
1040 hifn_write_1(dev, HIFN_1_DMA_RRAR, dptr +
1041 offsetof(struct hifn_dma, resr[0]));
1042
1043 mdelay(2);
1044 #if 0
1045 hifn_write_1(dev, HIFN_1_DMA_CSR,
1046 HIFN_DMACSR_D_CTRL_DIS | HIFN_DMACSR_R_CTRL_DIS |
1047 HIFN_DMACSR_S_CTRL_DIS | HIFN_DMACSR_C_CTRL_DIS |
1048 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1049 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1050 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1051 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1052 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1053 HIFN_DMACSR_S_WAIT |
1054 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1055 HIFN_DMACSR_C_WAIT |
1056 HIFN_DMACSR_ENGINE |
1057 HIFN_DMACSR_PUBDONE);
1058 #else
1059 hifn_write_1(dev, HIFN_1_DMA_CSR,
1060 HIFN_DMACSR_C_CTRL_ENA | HIFN_DMACSR_S_CTRL_ENA |
1061 HIFN_DMACSR_D_CTRL_ENA | HIFN_DMACSR_R_CTRL_ENA |
1062 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_D_DONE | HIFN_DMACSR_D_LAST |
1063 HIFN_DMACSR_D_WAIT | HIFN_DMACSR_D_OVER |
1064 HIFN_DMACSR_R_ABORT | HIFN_DMACSR_R_DONE | HIFN_DMACSR_R_LAST |
1065 HIFN_DMACSR_R_WAIT | HIFN_DMACSR_R_OVER |
1066 HIFN_DMACSR_S_ABORT | HIFN_DMACSR_S_DONE | HIFN_DMACSR_S_LAST |
1067 HIFN_DMACSR_S_WAIT |
1068 HIFN_DMACSR_C_ABORT | HIFN_DMACSR_C_DONE | HIFN_DMACSR_C_LAST |
1069 HIFN_DMACSR_C_WAIT |
1070 HIFN_DMACSR_ENGINE |
1071 HIFN_DMACSR_PUBDONE);
1072 #endif
1073 hifn_read_1(dev, HIFN_1_DMA_CSR);
1074
1075 dev->dmareg |= HIFN_DMAIER_R_DONE | HIFN_DMAIER_C_ABORT |
1076 HIFN_DMAIER_D_OVER | HIFN_DMAIER_R_OVER |
1077 HIFN_DMAIER_S_ABORT | HIFN_DMAIER_D_ABORT | HIFN_DMAIER_R_ABORT |
1078 HIFN_DMAIER_ENGINE;
1079 dev->dmareg &= ~HIFN_DMAIER_C_WAIT;
1080
1081 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1082 hifn_read_1(dev, HIFN_1_DMA_IER);
1083 #if 0
1084 hifn_write_0(dev, HIFN_0_PUCNFG, HIFN_PUCNFG_ENCCNFG |
1085 HIFN_PUCNFG_DRFR_128 | HIFN_PUCNFG_TCALLPHASES |
1086 HIFN_PUCNFG_TCDRVTOTEM | HIFN_PUCNFG_BUS32 |
1087 HIFN_PUCNFG_DRAM);
1088 #else
1089 hifn_write_0(dev, HIFN_0_PUCNFG, 0x10342);
1090 #endif
1091 hifn_init_pll(dev);
1092
1093 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1094 hifn_write_1(dev, HIFN_1_DMA_CNFG, HIFN_DMACNFG_MSTRESET |
1095 HIFN_DMACNFG_DMARESET | HIFN_DMACNFG_MODE | HIFN_DMACNFG_LAST |
1096 ((HIFN_POLL_FREQUENCY << 16 ) & HIFN_DMACNFG_POLLFREQ) |
1097 ((HIFN_POLL_SCALAR << 8) & HIFN_DMACNFG_POLLINVAL));
1098 }
1099
1100 static int hifn_setup_base_command(struct hifn_device *dev, u8 *buf,
1101 unsigned dlen, unsigned slen, u16 mask, u8 snum)
1102 {
1103 struct hifn_base_command *base_cmd;
1104 u8 *buf_pos = buf;
1105
1106 base_cmd = (struct hifn_base_command *)buf_pos;
1107 base_cmd->masks = __cpu_to_le16(mask);
1108 base_cmd->total_source_count =
1109 __cpu_to_le16(slen & HIFN_BASE_CMD_LENMASK_LO);
1110 base_cmd->total_dest_count =
1111 __cpu_to_le16(dlen & HIFN_BASE_CMD_LENMASK_LO);
1112
1113 dlen >>= 16;
1114 slen >>= 16;
1115 base_cmd->session_num = __cpu_to_le16(snum |
1116 ((slen << HIFN_BASE_CMD_SRCLEN_S) & HIFN_BASE_CMD_SRCLEN_M) |
1117 ((dlen << HIFN_BASE_CMD_DSTLEN_S) & HIFN_BASE_CMD_DSTLEN_M));
1118
1119 return sizeof(struct hifn_base_command);
1120 }
1121
1122 static int hifn_setup_crypto_command(struct hifn_device *dev,
1123 u8 *buf, unsigned dlen, unsigned slen,
1124 u8 *key, int keylen, u8 *iv, int ivsize, u16 mode)
1125 {
1126 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1127 struct hifn_crypt_command *cry_cmd;
1128 u8 *buf_pos = buf;
1129 u16 cmd_len;
1130
1131 cry_cmd = (struct hifn_crypt_command *)buf_pos;
1132
1133 cry_cmd->source_count = __cpu_to_le16(dlen & 0xffff);
1134 dlen >>= 16;
1135 cry_cmd->masks = __cpu_to_le16(mode |
1136 ((dlen << HIFN_CRYPT_CMD_SRCLEN_S) &
1137 HIFN_CRYPT_CMD_SRCLEN_M));
1138 cry_cmd->header_skip = 0;
1139 cry_cmd->reserved = 0;
1140
1141 buf_pos += sizeof(struct hifn_crypt_command);
1142
1143 dma->cmdu++;
1144 if (dma->cmdu > 1) {
1145 dev->dmareg |= HIFN_DMAIER_C_WAIT;
1146 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
1147 }
1148
1149 if (keylen) {
1150 memcpy(buf_pos, key, keylen);
1151 buf_pos += keylen;
1152 }
1153 if (ivsize) {
1154 memcpy(buf_pos, iv, ivsize);
1155 buf_pos += ivsize;
1156 }
1157
1158 cmd_len = buf_pos - buf;
1159
1160 return cmd_len;
1161 }
1162
1163 static int hifn_setup_cmd_desc(struct hifn_device *dev,
1164 struct hifn_context *ctx, struct hifn_request_context *rctx,
1165 void *priv, unsigned int nbytes)
1166 {
1167 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1168 int cmd_len, sa_idx;
1169 u8 *buf, *buf_pos;
1170 u16 mask;
1171
1172 sa_idx = dma->cmdi;
1173 buf_pos = buf = dma->command_bufs[dma->cmdi];
1174
1175 mask = 0;
1176 switch (rctx->op) {
1177 case ACRYPTO_OP_DECRYPT:
1178 mask = HIFN_BASE_CMD_CRYPT | HIFN_BASE_CMD_DECODE;
1179 break;
1180 case ACRYPTO_OP_ENCRYPT:
1181 mask = HIFN_BASE_CMD_CRYPT;
1182 break;
1183 case ACRYPTO_OP_HMAC:
1184 mask = HIFN_BASE_CMD_MAC;
1185 break;
1186 default:
1187 goto err_out;
1188 }
1189
1190 buf_pos += hifn_setup_base_command(dev, buf_pos, nbytes,
1191 nbytes, mask, dev->snum);
1192
1193 if (rctx->op == ACRYPTO_OP_ENCRYPT || rctx->op == ACRYPTO_OP_DECRYPT) {
1194 u16 md = 0;
1195
1196 if (ctx->keysize)
1197 md |= HIFN_CRYPT_CMD_NEW_KEY;
1198 if (rctx->iv && rctx->mode != ACRYPTO_MODE_ECB)
1199 md |= HIFN_CRYPT_CMD_NEW_IV;
1200
1201 switch (rctx->mode) {
1202 case ACRYPTO_MODE_ECB:
1203 md |= HIFN_CRYPT_CMD_MODE_ECB;
1204 break;
1205 case ACRYPTO_MODE_CBC:
1206 md |= HIFN_CRYPT_CMD_MODE_CBC;
1207 break;
1208 case ACRYPTO_MODE_CFB:
1209 md |= HIFN_CRYPT_CMD_MODE_CFB;
1210 break;
1211 case ACRYPTO_MODE_OFB:
1212 md |= HIFN_CRYPT_CMD_MODE_OFB;
1213 break;
1214 default:
1215 goto err_out;
1216 }
1217
1218 switch (rctx->type) {
1219 case ACRYPTO_TYPE_AES_128:
1220 if (ctx->keysize != 16)
1221 goto err_out;
1222 md |= HIFN_CRYPT_CMD_KSZ_128 |
1223 HIFN_CRYPT_CMD_ALG_AES;
1224 break;
1225 case ACRYPTO_TYPE_AES_192:
1226 if (ctx->keysize != 24)
1227 goto err_out;
1228 md |= HIFN_CRYPT_CMD_KSZ_192 |
1229 HIFN_CRYPT_CMD_ALG_AES;
1230 break;
1231 case ACRYPTO_TYPE_AES_256:
1232 if (ctx->keysize != 32)
1233 goto err_out;
1234 md |= HIFN_CRYPT_CMD_KSZ_256 |
1235 HIFN_CRYPT_CMD_ALG_AES;
1236 break;
1237 case ACRYPTO_TYPE_3DES:
1238 if (ctx->keysize != 24)
1239 goto err_out;
1240 md |= HIFN_CRYPT_CMD_ALG_3DES;
1241 break;
1242 case ACRYPTO_TYPE_DES:
1243 if (ctx->keysize != 8)
1244 goto err_out;
1245 md |= HIFN_CRYPT_CMD_ALG_DES;
1246 break;
1247 default:
1248 goto err_out;
1249 }
1250
1251 buf_pos += hifn_setup_crypto_command(dev, buf_pos,
1252 nbytes, nbytes, ctx->key, ctx->keysize,
1253 rctx->iv, rctx->ivsize, md);
1254 }
1255
1256 dev->sa[sa_idx] = priv;
1257 dev->started++;
1258
1259 cmd_len = buf_pos - buf;
1260 dma->cmdr[dma->cmdi].l = __cpu_to_le32(cmd_len | HIFN_D_VALID |
1261 HIFN_D_LAST | HIFN_D_MASKDONEIRQ);
1262
1263 if (++dma->cmdi == HIFN_D_CMD_RSIZE) {
1264 dma->cmdr[dma->cmdi].l = __cpu_to_le32(
1265 HIFN_D_VALID | HIFN_D_LAST |
1266 HIFN_D_MASKDONEIRQ | HIFN_D_JUMP);
1267 dma->cmdi = 0;
1268 } else
1269 dma->cmdr[dma->cmdi-1].l |= __cpu_to_le32(HIFN_D_VALID);
1270
1271 if (!(dev->flags & HIFN_FLAG_CMD_BUSY)) {
1272 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_C_CTRL_ENA);
1273 dev->flags |= HIFN_FLAG_CMD_BUSY;
1274 }
1275 return 0;
1276
1277 err_out:
1278 return -EINVAL;
1279 }
1280
1281 static int hifn_setup_src_desc(struct hifn_device *dev, struct page *page,
1282 unsigned int offset, unsigned int size, int last)
1283 {
1284 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1285 int idx;
1286 dma_addr_t addr;
1287
1288 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_TODEVICE);
1289
1290 idx = dma->srci;
1291
1292 dma->srcr[idx].p = __cpu_to_le32(addr);
1293 dma->srcr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1294 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1295
1296 if (++idx == HIFN_D_SRC_RSIZE) {
1297 dma->srcr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1298 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1299 (last ? HIFN_D_LAST : 0));
1300 idx = 0;
1301 }
1302
1303 dma->srci = idx;
1304 dma->srcu++;
1305
1306 if (!(dev->flags & HIFN_FLAG_SRC_BUSY)) {
1307 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_S_CTRL_ENA);
1308 dev->flags |= HIFN_FLAG_SRC_BUSY;
1309 }
1310
1311 return size;
1312 }
1313
1314 static void hifn_setup_res_desc(struct hifn_device *dev)
1315 {
1316 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1317
1318 dma->resr[dma->resi].l = __cpu_to_le32(HIFN_USED_RESULT |
1319 HIFN_D_VALID | HIFN_D_LAST);
1320 /*
1321 * dma->resr[dma->resi].l = __cpu_to_le32(HIFN_MAX_RESULT | HIFN_D_VALID |
1322 * HIFN_D_LAST);
1323 */
1324
1325 if (++dma->resi == HIFN_D_RES_RSIZE) {
1326 dma->resr[HIFN_D_RES_RSIZE].l = __cpu_to_le32(HIFN_D_VALID |
1327 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ | HIFN_D_LAST);
1328 dma->resi = 0;
1329 }
1330
1331 dma->resu++;
1332
1333 if (!(dev->flags & HIFN_FLAG_RES_BUSY)) {
1334 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_R_CTRL_ENA);
1335 dev->flags |= HIFN_FLAG_RES_BUSY;
1336 }
1337 }
1338
1339 static void hifn_setup_dst_desc(struct hifn_device *dev, struct page *page,
1340 unsigned offset, unsigned size, int last)
1341 {
1342 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1343 int idx;
1344 dma_addr_t addr;
1345
1346 addr = pci_map_page(dev->pdev, page, offset, size, PCI_DMA_FROMDEVICE);
1347
1348 idx = dma->dsti;
1349 dma->dstr[idx].p = __cpu_to_le32(addr);
1350 dma->dstr[idx].l = __cpu_to_le32(size | HIFN_D_VALID |
1351 HIFN_D_MASKDONEIRQ | (last ? HIFN_D_LAST : 0));
1352
1353 if (++idx == HIFN_D_DST_RSIZE) {
1354 dma->dstr[idx].l = __cpu_to_le32(HIFN_D_VALID |
1355 HIFN_D_JUMP | HIFN_D_MASKDONEIRQ |
1356 (last ? HIFN_D_LAST : 0));
1357 idx = 0;
1358 }
1359 dma->dsti = idx;
1360 dma->dstu++;
1361
1362 if (!(dev->flags & HIFN_FLAG_DST_BUSY)) {
1363 hifn_write_1(dev, HIFN_1_DMA_CSR, HIFN_DMACSR_D_CTRL_ENA);
1364 dev->flags |= HIFN_FLAG_DST_BUSY;
1365 }
1366 }
1367
1368 static int hifn_setup_dma(struct hifn_device *dev,
1369 struct hifn_context *ctx, struct hifn_request_context *rctx,
1370 struct scatterlist *src, struct scatterlist *dst,
1371 unsigned int nbytes, void *priv)
1372 {
1373 struct scatterlist *t;
1374 struct page *spage, *dpage;
1375 unsigned int soff, doff;
1376 unsigned int n, len;
1377
1378 n = nbytes;
1379 while (n) {
1380 spage = sg_page(src);
1381 soff = src->offset;
1382 len = min(src->length, n);
1383
1384 hifn_setup_src_desc(dev, spage, soff, len, n - len == 0);
1385
1386 src++;
1387 n -= len;
1388 }
1389
1390 t = &rctx->walk.cache[0];
1391 n = nbytes;
1392 while (n) {
1393 if (t->length && rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1394 BUG_ON(!sg_page(t));
1395 dpage = sg_page(t);
1396 doff = 0;
1397 len = t->length;
1398 } else {
1399 BUG_ON(!sg_page(dst));
1400 dpage = sg_page(dst);
1401 doff = dst->offset;
1402 len = dst->length;
1403 }
1404 len = min(len, n);
1405
1406 hifn_setup_dst_desc(dev, dpage, doff, len, n - len == 0);
1407
1408 dst++;
1409 t++;
1410 n -= len;
1411 }
1412
1413 hifn_setup_cmd_desc(dev, ctx, rctx, priv, nbytes);
1414 hifn_setup_res_desc(dev);
1415 return 0;
1416 }
1417
1418 static int hifn_cipher_walk_init(struct hifn_cipher_walk *w,
1419 int num, gfp_t gfp_flags)
1420 {
1421 int i;
1422
1423 num = min(ASYNC_SCATTERLIST_CACHE, num);
1424 sg_init_table(w->cache, num);
1425
1426 w->num = 0;
1427 for (i=0; i<num; ++i) {
1428 struct page *page = alloc_page(gfp_flags);
1429 struct scatterlist *s;
1430
1431 if (!page)
1432 break;
1433
1434 s = &w->cache[i];
1435
1436 sg_set_page(s, page, PAGE_SIZE, 0);
1437 w->num++;
1438 }
1439
1440 return i;
1441 }
1442
1443 static void hifn_cipher_walk_exit(struct hifn_cipher_walk *w)
1444 {
1445 int i;
1446
1447 for (i=0; i<w->num; ++i) {
1448 struct scatterlist *s = &w->cache[i];
1449
1450 __free_page(sg_page(s));
1451
1452 s->length = 0;
1453 }
1454
1455 w->num = 0;
1456 }
1457
1458 static int ablkcipher_add(unsigned int *drestp, struct scatterlist *dst,
1459 unsigned int size, unsigned int *nbytesp)
1460 {
1461 unsigned int copy, drest = *drestp, nbytes = *nbytesp;
1462 int idx = 0;
1463
1464 if (drest < size || size > nbytes)
1465 return -EINVAL;
1466
1467 while (size) {
1468 copy = min3(drest, size, dst->length);
1469
1470 size -= copy;
1471 drest -= copy;
1472 nbytes -= copy;
1473
1474 dprintk("%s: copy: %u, size: %u, drest: %u, nbytes: %u.\n",
1475 __func__, copy, size, drest, nbytes);
1476
1477 dst++;
1478 idx++;
1479 }
1480
1481 *nbytesp = nbytes;
1482 *drestp = drest;
1483
1484 return idx;
1485 }
1486
1487 static int hifn_cipher_walk(struct ablkcipher_request *req,
1488 struct hifn_cipher_walk *w)
1489 {
1490 struct scatterlist *dst, *t;
1491 unsigned int nbytes = req->nbytes, offset, copy, diff;
1492 int idx, tidx, err;
1493
1494 tidx = idx = 0;
1495 offset = 0;
1496 while (nbytes) {
1497 if (idx >= w->num && (w->flags & ASYNC_FLAGS_MISALIGNED))
1498 return -EINVAL;
1499
1500 dst = &req->dst[idx];
1501
1502 dprintk("\n%s: dlen: %u, doff: %u, offset: %u, nbytes: %u.\n",
1503 __func__, dst->length, dst->offset, offset, nbytes);
1504
1505 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1506 !IS_ALIGNED(dst->length, HIFN_D_DST_DALIGN) ||
1507 offset) {
1508 unsigned slen = min(dst->length - offset, nbytes);
1509 unsigned dlen = PAGE_SIZE;
1510
1511 t = &w->cache[idx];
1512
1513 err = ablkcipher_add(&dlen, dst, slen, &nbytes);
1514 if (err < 0)
1515 return err;
1516
1517 idx += err;
1518
1519 copy = slen & ~(HIFN_D_DST_DALIGN - 1);
1520 diff = slen & (HIFN_D_DST_DALIGN - 1);
1521
1522 if (dlen < nbytes) {
1523 /*
1524 * Destination page does not have enough space
1525 * to put there additional blocksized chunk,
1526 * so we mark that page as containing only
1527 * blocksize aligned chunks:
1528 * t->length = (slen & ~(HIFN_D_DST_DALIGN - 1));
1529 * and increase number of bytes to be processed
1530 * in next chunk:
1531 * nbytes += diff;
1532 */
1533 nbytes += diff;
1534
1535 /*
1536 * Temporary of course...
1537 * Kick author if you will catch this one.
1538 */
1539 printk(KERN_ERR "%s: dlen: %u, nbytes: %u,"
1540 "slen: %u, offset: %u.\n",
1541 __func__, dlen, nbytes, slen, offset);
1542 printk(KERN_ERR "%s: please contact author to fix this "
1543 "issue, generally you should not catch "
1544 "this path under any condition but who "
1545 "knows how did you use crypto code.\n"
1546 "Thank you.\n", __func__);
1547 BUG();
1548 } else {
1549 copy += diff + nbytes;
1550
1551 dst = &req->dst[idx];
1552
1553 err = ablkcipher_add(&dlen, dst, nbytes, &nbytes);
1554 if (err < 0)
1555 return err;
1556
1557 idx += err;
1558 }
1559
1560 t->length = copy;
1561 t->offset = offset;
1562 } else {
1563 nbytes -= min(dst->length, nbytes);
1564 idx++;
1565 }
1566
1567 tidx++;
1568 }
1569
1570 return tidx;
1571 }
1572
1573 static int hifn_setup_session(struct ablkcipher_request *req)
1574 {
1575 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
1576 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1577 struct hifn_device *dev = ctx->dev;
1578 unsigned long dlen, flags;
1579 unsigned int nbytes = req->nbytes, idx = 0;
1580 int err = -EINVAL, sg_num;
1581 struct scatterlist *dst;
1582
1583 if (rctx->iv && !rctx->ivsize && rctx->mode != ACRYPTO_MODE_ECB)
1584 goto err_out_exit;
1585
1586 rctx->walk.flags = 0;
1587
1588 while (nbytes) {
1589 dst = &req->dst[idx];
1590 dlen = min(dst->length, nbytes);
1591
1592 if (!IS_ALIGNED(dst->offset, HIFN_D_DST_DALIGN) ||
1593 !IS_ALIGNED(dlen, HIFN_D_DST_DALIGN))
1594 rctx->walk.flags |= ASYNC_FLAGS_MISALIGNED;
1595
1596 nbytes -= dlen;
1597 idx++;
1598 }
1599
1600 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1601 err = hifn_cipher_walk_init(&rctx->walk, idx, GFP_ATOMIC);
1602 if (err < 0)
1603 return err;
1604 }
1605
1606 sg_num = hifn_cipher_walk(req, &rctx->walk);
1607 if (sg_num < 0) {
1608 err = sg_num;
1609 goto err_out_exit;
1610 }
1611
1612 spin_lock_irqsave(&dev->lock, flags);
1613 if (dev->started + sg_num > HIFN_QUEUE_LENGTH) {
1614 err = -EAGAIN;
1615 goto err_out;
1616 }
1617
1618 err = hifn_setup_dma(dev, ctx, rctx, req->src, req->dst, req->nbytes, req);
1619 if (err)
1620 goto err_out;
1621
1622 dev->snum++;
1623
1624 dev->active = HIFN_DEFAULT_ACTIVE_NUM;
1625 spin_unlock_irqrestore(&dev->lock, flags);
1626
1627 return 0;
1628
1629 err_out:
1630 spin_unlock_irqrestore(&dev->lock, flags);
1631 err_out_exit:
1632 if (err) {
1633 printk("%s: iv: %p [%d], key: %p [%d], mode: %u, op: %u, "
1634 "type: %u, err: %d.\n",
1635 dev->name, rctx->iv, rctx->ivsize,
1636 ctx->key, ctx->keysize,
1637 rctx->mode, rctx->op, rctx->type, err);
1638 }
1639
1640 return err;
1641 }
1642
1643 static int hifn_test(struct hifn_device *dev, int encdec, u8 snum)
1644 {
1645 int n, err;
1646 u8 src[16];
1647 struct hifn_context ctx;
1648 struct hifn_request_context rctx;
1649 u8 fips_aes_ecb_from_zero[16] = {
1650 0x66, 0xE9, 0x4B, 0xD4,
1651 0xEF, 0x8A, 0x2C, 0x3B,
1652 0x88, 0x4C, 0xFA, 0x59,
1653 0xCA, 0x34, 0x2B, 0x2E};
1654 struct scatterlist sg;
1655
1656 memset(src, 0, sizeof(src));
1657 memset(ctx.key, 0, sizeof(ctx.key));
1658
1659 ctx.dev = dev;
1660 ctx.keysize = 16;
1661 rctx.ivsize = 0;
1662 rctx.iv = NULL;
1663 rctx.op = (encdec)?ACRYPTO_OP_ENCRYPT:ACRYPTO_OP_DECRYPT;
1664 rctx.mode = ACRYPTO_MODE_ECB;
1665 rctx.type = ACRYPTO_TYPE_AES_128;
1666 rctx.walk.cache[0].length = 0;
1667
1668 sg_init_one(&sg, &src, sizeof(src));
1669
1670 err = hifn_setup_dma(dev, &ctx, &rctx, &sg, &sg, sizeof(src), NULL);
1671 if (err)
1672 goto err_out;
1673
1674 dev->started = 0;
1675 msleep(200);
1676
1677 dprintk("%s: decoded: ", dev->name);
1678 for (n=0; n<sizeof(src); ++n)
1679 dprintk("%02x ", src[n]);
1680 dprintk("\n");
1681 dprintk("%s: FIPS : ", dev->name);
1682 for (n=0; n<sizeof(fips_aes_ecb_from_zero); ++n)
1683 dprintk("%02x ", fips_aes_ecb_from_zero[n]);
1684 dprintk("\n");
1685
1686 if (!memcmp(src, fips_aes_ecb_from_zero, sizeof(fips_aes_ecb_from_zero))) {
1687 printk(KERN_INFO "%s: AES 128 ECB test has been successfully "
1688 "passed.\n", dev->name);
1689 return 0;
1690 }
1691
1692 err_out:
1693 printk(KERN_INFO "%s: AES 128 ECB test has been failed.\n", dev->name);
1694 return -1;
1695 }
1696
1697 static int hifn_start_device(struct hifn_device *dev)
1698 {
1699 int err;
1700
1701 dev->started = dev->active = 0;
1702 hifn_reset_dma(dev, 1);
1703
1704 err = hifn_enable_crypto(dev);
1705 if (err)
1706 return err;
1707
1708 hifn_reset_puc(dev);
1709
1710 hifn_init_dma(dev);
1711
1712 hifn_init_registers(dev);
1713
1714 hifn_init_pubrng(dev);
1715
1716 return 0;
1717 }
1718
1719 static int ablkcipher_get(void *saddr, unsigned int *srestp, unsigned int offset,
1720 struct scatterlist *dst, unsigned int size, unsigned int *nbytesp)
1721 {
1722 unsigned int srest = *srestp, nbytes = *nbytesp, copy;
1723 void *daddr;
1724 int idx = 0;
1725
1726 if (srest < size || size > nbytes)
1727 return -EINVAL;
1728
1729 while (size) {
1730 copy = min3(srest, dst->length, size);
1731
1732 daddr = kmap_atomic(sg_page(dst));
1733 memcpy(daddr + dst->offset + offset, saddr, copy);
1734 kunmap_atomic(daddr);
1735
1736 nbytes -= copy;
1737 size -= copy;
1738 srest -= copy;
1739 saddr += copy;
1740 offset = 0;
1741
1742 dprintk("%s: copy: %u, size: %u, srest: %u, nbytes: %u.\n",
1743 __func__, copy, size, srest, nbytes);
1744
1745 dst++;
1746 idx++;
1747 }
1748
1749 *nbytesp = nbytes;
1750 *srestp = srest;
1751
1752 return idx;
1753 }
1754
1755 static inline void hifn_complete_sa(struct hifn_device *dev, int i)
1756 {
1757 unsigned long flags;
1758
1759 spin_lock_irqsave(&dev->lock, flags);
1760 dev->sa[i] = NULL;
1761 dev->started--;
1762 if (dev->started < 0)
1763 printk("%s: started: %d.\n", __func__, dev->started);
1764 spin_unlock_irqrestore(&dev->lock, flags);
1765 BUG_ON(dev->started < 0);
1766 }
1767
1768 static void hifn_process_ready(struct ablkcipher_request *req, int error)
1769 {
1770 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
1771
1772 if (rctx->walk.flags & ASYNC_FLAGS_MISALIGNED) {
1773 unsigned int nbytes = req->nbytes;
1774 int idx = 0, err;
1775 struct scatterlist *dst, *t;
1776 void *saddr;
1777
1778 while (nbytes) {
1779 t = &rctx->walk.cache[idx];
1780 dst = &req->dst[idx];
1781
1782 dprintk("\n%s: sg_page(t): %p, t->length: %u, "
1783 "sg_page(dst): %p, dst->length: %u, "
1784 "nbytes: %u.\n",
1785 __func__, sg_page(t), t->length,
1786 sg_page(dst), dst->length, nbytes);
1787
1788 if (!t->length) {
1789 nbytes -= min(dst->length, nbytes);
1790 idx++;
1791 continue;
1792 }
1793
1794 saddr = kmap_atomic(sg_page(t));
1795
1796 err = ablkcipher_get(saddr, &t->length, t->offset,
1797 dst, nbytes, &nbytes);
1798 if (err < 0) {
1799 kunmap_atomic(saddr);
1800 break;
1801 }
1802
1803 idx += err;
1804 kunmap_atomic(saddr);
1805 }
1806
1807 hifn_cipher_walk_exit(&rctx->walk);
1808 }
1809
1810 req->base.complete(&req->base, error);
1811 }
1812
1813 static void hifn_clear_rings(struct hifn_device *dev, int error)
1814 {
1815 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1816 int i, u;
1817
1818 dprintk("%s: ring cleanup 1: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1819 "k: %d.%d.%d.%d.\n",
1820 dev->name,
1821 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1822 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1823 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1824
1825 i = dma->resk; u = dma->resu;
1826 while (u != 0) {
1827 if (dma->resr[i].l & __cpu_to_le32(HIFN_D_VALID))
1828 break;
1829
1830 if (dev->sa[i]) {
1831 dev->success++;
1832 dev->reset = 0;
1833 hifn_process_ready(dev->sa[i], error);
1834 hifn_complete_sa(dev, i);
1835 }
1836
1837 if (++i == HIFN_D_RES_RSIZE)
1838 i = 0;
1839 u--;
1840 }
1841 dma->resk = i; dma->resu = u;
1842
1843 i = dma->srck; u = dma->srcu;
1844 while (u != 0) {
1845 if (dma->srcr[i].l & __cpu_to_le32(HIFN_D_VALID))
1846 break;
1847 if (++i == HIFN_D_SRC_RSIZE)
1848 i = 0;
1849 u--;
1850 }
1851 dma->srck = i; dma->srcu = u;
1852
1853 i = dma->cmdk; u = dma->cmdu;
1854 while (u != 0) {
1855 if (dma->cmdr[i].l & __cpu_to_le32(HIFN_D_VALID))
1856 break;
1857 if (++i == HIFN_D_CMD_RSIZE)
1858 i = 0;
1859 u--;
1860 }
1861 dma->cmdk = i; dma->cmdu = u;
1862
1863 i = dma->dstk; u = dma->dstu;
1864 while (u != 0) {
1865 if (dma->dstr[i].l & __cpu_to_le32(HIFN_D_VALID))
1866 break;
1867 if (++i == HIFN_D_DST_RSIZE)
1868 i = 0;
1869 u--;
1870 }
1871 dma->dstk = i; dma->dstu = u;
1872
1873 dprintk("%s: ring cleanup 2: i: %d.%d.%d.%d, u: %d.%d.%d.%d, "
1874 "k: %d.%d.%d.%d.\n",
1875 dev->name,
1876 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1877 dma->cmdu, dma->srcu, dma->dstu, dma->resu,
1878 dma->cmdk, dma->srck, dma->dstk, dma->resk);
1879 }
1880
1881 static void hifn_work(struct work_struct *work)
1882 {
1883 struct delayed_work *dw = to_delayed_work(work);
1884 struct hifn_device *dev = container_of(dw, struct hifn_device, work);
1885 unsigned long flags;
1886 int reset = 0;
1887 u32 r = 0;
1888
1889 spin_lock_irqsave(&dev->lock, flags);
1890 if (dev->active == 0) {
1891 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1892
1893 if (dma->cmdu == 0 && (dev->flags & HIFN_FLAG_CMD_BUSY)) {
1894 dev->flags &= ~HIFN_FLAG_CMD_BUSY;
1895 r |= HIFN_DMACSR_C_CTRL_DIS;
1896 }
1897 if (dma->srcu == 0 && (dev->flags & HIFN_FLAG_SRC_BUSY)) {
1898 dev->flags &= ~HIFN_FLAG_SRC_BUSY;
1899 r |= HIFN_DMACSR_S_CTRL_DIS;
1900 }
1901 if (dma->dstu == 0 && (dev->flags & HIFN_FLAG_DST_BUSY)) {
1902 dev->flags &= ~HIFN_FLAG_DST_BUSY;
1903 r |= HIFN_DMACSR_D_CTRL_DIS;
1904 }
1905 if (dma->resu == 0 && (dev->flags & HIFN_FLAG_RES_BUSY)) {
1906 dev->flags &= ~HIFN_FLAG_RES_BUSY;
1907 r |= HIFN_DMACSR_R_CTRL_DIS;
1908 }
1909 if (r)
1910 hifn_write_1(dev, HIFN_1_DMA_CSR, r);
1911 } else
1912 dev->active--;
1913
1914 if ((dev->prev_success == dev->success) && dev->started)
1915 reset = 1;
1916 dev->prev_success = dev->success;
1917 spin_unlock_irqrestore(&dev->lock, flags);
1918
1919 if (reset) {
1920 if (++dev->reset >= 5) {
1921 int i;
1922 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1923
1924 printk("%s: r: %08x, active: %d, started: %d, "
1925 "success: %lu: qlen: %u/%u, reset: %d.\n",
1926 dev->name, r, dev->active, dev->started,
1927 dev->success, dev->queue.qlen, dev->queue.max_qlen,
1928 reset);
1929
1930 printk("%s: res: ", __func__);
1931 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
1932 printk("%x.%p ", dma->resr[i].l, dev->sa[i]);
1933 if (dev->sa[i]) {
1934 hifn_process_ready(dev->sa[i], -ENODEV);
1935 hifn_complete_sa(dev, i);
1936 }
1937 }
1938 printk("\n");
1939
1940 hifn_reset_dma(dev, 1);
1941 hifn_stop_device(dev);
1942 hifn_start_device(dev);
1943 dev->reset = 0;
1944 }
1945
1946 tasklet_schedule(&dev->tasklet);
1947 }
1948
1949 schedule_delayed_work(&dev->work, HZ);
1950 }
1951
1952 static irqreturn_t hifn_interrupt(int irq, void *data)
1953 {
1954 struct hifn_device *dev = (struct hifn_device *)data;
1955 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
1956 u32 dmacsr, restart;
1957
1958 dmacsr = hifn_read_1(dev, HIFN_1_DMA_CSR);
1959
1960 dprintk("%s: 1 dmacsr: %08x, dmareg: %08x, res: %08x [%d], "
1961 "i: %d.%d.%d.%d, u: %d.%d.%d.%d.\n",
1962 dev->name, dmacsr, dev->dmareg, dmacsr & dev->dmareg, dma->cmdi,
1963 dma->cmdi, dma->srci, dma->dsti, dma->resi,
1964 dma->cmdu, dma->srcu, dma->dstu, dma->resu);
1965
1966 if ((dmacsr & dev->dmareg) == 0)
1967 return IRQ_NONE;
1968
1969 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & dev->dmareg);
1970
1971 if (dmacsr & HIFN_DMACSR_ENGINE)
1972 hifn_write_0(dev, HIFN_0_PUISR, hifn_read_0(dev, HIFN_0_PUISR));
1973 if (dmacsr & HIFN_DMACSR_PUBDONE)
1974 hifn_write_1(dev, HIFN_1_PUB_STATUS,
1975 hifn_read_1(dev, HIFN_1_PUB_STATUS) | HIFN_PUBSTS_DONE);
1976
1977 restart = dmacsr & (HIFN_DMACSR_R_OVER | HIFN_DMACSR_D_OVER);
1978 if (restart) {
1979 u32 puisr = hifn_read_0(dev, HIFN_0_PUISR);
1980
1981 printk(KERN_WARNING "%s: overflow: r: %d, d: %d, puisr: %08x, d: %u.\n",
1982 dev->name, !!(dmacsr & HIFN_DMACSR_R_OVER),
1983 !!(dmacsr & HIFN_DMACSR_D_OVER),
1984 puisr, !!(puisr & HIFN_PUISR_DSTOVER));
1985 if (!!(puisr & HIFN_PUISR_DSTOVER))
1986 hifn_write_0(dev, HIFN_0_PUISR, HIFN_PUISR_DSTOVER);
1987 hifn_write_1(dev, HIFN_1_DMA_CSR, dmacsr & (HIFN_DMACSR_R_OVER |
1988 HIFN_DMACSR_D_OVER));
1989 }
1990
1991 restart = dmacsr & (HIFN_DMACSR_C_ABORT | HIFN_DMACSR_S_ABORT |
1992 HIFN_DMACSR_D_ABORT | HIFN_DMACSR_R_ABORT);
1993 if (restart) {
1994 printk(KERN_WARNING "%s: abort: c: %d, s: %d, d: %d, r: %d.\n",
1995 dev->name, !!(dmacsr & HIFN_DMACSR_C_ABORT),
1996 !!(dmacsr & HIFN_DMACSR_S_ABORT),
1997 !!(dmacsr & HIFN_DMACSR_D_ABORT),
1998 !!(dmacsr & HIFN_DMACSR_R_ABORT));
1999 hifn_reset_dma(dev, 1);
2000 hifn_init_dma(dev);
2001 hifn_init_registers(dev);
2002 }
2003
2004 if ((dmacsr & HIFN_DMACSR_C_WAIT) && (dma->cmdu == 0)) {
2005 dprintk("%s: wait on command.\n", dev->name);
2006 dev->dmareg &= ~(HIFN_DMAIER_C_WAIT);
2007 hifn_write_1(dev, HIFN_1_DMA_IER, dev->dmareg);
2008 }
2009
2010 tasklet_schedule(&dev->tasklet);
2011
2012 return IRQ_HANDLED;
2013 }
2014
2015 static void hifn_flush(struct hifn_device *dev)
2016 {
2017 unsigned long flags;
2018 struct crypto_async_request *async_req;
2019 struct ablkcipher_request *req;
2020 struct hifn_dma *dma = (struct hifn_dma *)dev->desc_virt;
2021 int i;
2022
2023 for (i=0; i<HIFN_D_RES_RSIZE; ++i) {
2024 struct hifn_desc *d = &dma->resr[i];
2025
2026 if (dev->sa[i]) {
2027 hifn_process_ready(dev->sa[i],
2028 (d->l & __cpu_to_le32(HIFN_D_VALID))?-ENODEV:0);
2029 hifn_complete_sa(dev, i);
2030 }
2031 }
2032
2033 spin_lock_irqsave(&dev->lock, flags);
2034 while ((async_req = crypto_dequeue_request(&dev->queue))) {
2035 req = container_of(async_req, struct ablkcipher_request, base);
2036 spin_unlock_irqrestore(&dev->lock, flags);
2037
2038 hifn_process_ready(req, -ENODEV);
2039
2040 spin_lock_irqsave(&dev->lock, flags);
2041 }
2042 spin_unlock_irqrestore(&dev->lock, flags);
2043 }
2044
2045 static int hifn_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
2046 unsigned int len)
2047 {
2048 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
2049 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2050 struct hifn_device *dev = ctx->dev;
2051
2052 if (len > HIFN_MAX_CRYPT_KEY_LENGTH) {
2053 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
2054 return -1;
2055 }
2056
2057 if (len == HIFN_DES_KEY_LENGTH) {
2058 u32 tmp[DES_EXPKEY_WORDS];
2059 int ret = des_ekey(tmp, key);
2060
2061 if (unlikely(ret == 0) && (tfm->crt_flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
2062 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
2063 return -EINVAL;
2064 }
2065 }
2066
2067 dev->flags &= ~HIFN_FLAG_OLD_KEY;
2068
2069 memcpy(ctx->key, key, len);
2070 ctx->keysize = len;
2071
2072 return 0;
2073 }
2074
2075 static int hifn_handle_req(struct ablkcipher_request *req)
2076 {
2077 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2078 struct hifn_device *dev = ctx->dev;
2079 int err = -EAGAIN;
2080
2081 if (dev->started + DIV_ROUND_UP(req->nbytes, PAGE_SIZE) <= HIFN_QUEUE_LENGTH)
2082 err = hifn_setup_session(req);
2083
2084 if (err == -EAGAIN) {
2085 unsigned long flags;
2086
2087 spin_lock_irqsave(&dev->lock, flags);
2088 err = ablkcipher_enqueue_request(&dev->queue, req);
2089 spin_unlock_irqrestore(&dev->lock, flags);
2090 }
2091
2092 return err;
2093 }
2094
2095 static int hifn_setup_crypto_req(struct ablkcipher_request *req, u8 op,
2096 u8 type, u8 mode)
2097 {
2098 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2099 struct hifn_request_context *rctx = ablkcipher_request_ctx(req);
2100 unsigned ivsize;
2101
2102 ivsize = crypto_ablkcipher_ivsize(crypto_ablkcipher_reqtfm(req));
2103
2104 if (req->info && mode != ACRYPTO_MODE_ECB) {
2105 if (type == ACRYPTO_TYPE_AES_128)
2106 ivsize = HIFN_AES_IV_LENGTH;
2107 else if (type == ACRYPTO_TYPE_DES)
2108 ivsize = HIFN_DES_KEY_LENGTH;
2109 else if (type == ACRYPTO_TYPE_3DES)
2110 ivsize = HIFN_3DES_KEY_LENGTH;
2111 }
2112
2113 if (ctx->keysize != 16 && type == ACRYPTO_TYPE_AES_128) {
2114 if (ctx->keysize == 24)
2115 type = ACRYPTO_TYPE_AES_192;
2116 else if (ctx->keysize == 32)
2117 type = ACRYPTO_TYPE_AES_256;
2118 }
2119
2120 rctx->op = op;
2121 rctx->mode = mode;
2122 rctx->type = type;
2123 rctx->iv = req->info;
2124 rctx->ivsize = ivsize;
2125
2126 /*
2127 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2128 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2129 * HEAVY TODO: needs to kick Herbert XU to write documentation.
2130 */
2131
2132 return hifn_handle_req(req);
2133 }
2134
2135 static int hifn_process_queue(struct hifn_device *dev)
2136 {
2137 struct crypto_async_request *async_req, *backlog;
2138 struct ablkcipher_request *req;
2139 unsigned long flags;
2140 int err = 0;
2141
2142 while (dev->started < HIFN_QUEUE_LENGTH) {
2143 spin_lock_irqsave(&dev->lock, flags);
2144 backlog = crypto_get_backlog(&dev->queue);
2145 async_req = crypto_dequeue_request(&dev->queue);
2146 spin_unlock_irqrestore(&dev->lock, flags);
2147
2148 if (!async_req)
2149 break;
2150
2151 if (backlog)
2152 backlog->complete(backlog, -EINPROGRESS);
2153
2154 req = container_of(async_req, struct ablkcipher_request, base);
2155
2156 err = hifn_handle_req(req);
2157 if (err)
2158 break;
2159 }
2160
2161 return err;
2162 }
2163
2164 static int hifn_setup_crypto(struct ablkcipher_request *req, u8 op,
2165 u8 type, u8 mode)
2166 {
2167 int err;
2168 struct hifn_context *ctx = crypto_tfm_ctx(req->base.tfm);
2169 struct hifn_device *dev = ctx->dev;
2170
2171 err = hifn_setup_crypto_req(req, op, type, mode);
2172 if (err)
2173 return err;
2174
2175 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2176 hifn_process_queue(dev);
2177
2178 return -EINPROGRESS;
2179 }
2180
2181 /*
2182 * AES ecryption functions.
2183 */
2184 static inline int hifn_encrypt_aes_ecb(struct ablkcipher_request *req)
2185 {
2186 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2187 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2188 }
2189 static inline int hifn_encrypt_aes_cbc(struct ablkcipher_request *req)
2190 {
2191 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2192 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2193 }
2194 static inline int hifn_encrypt_aes_cfb(struct ablkcipher_request *req)
2195 {
2196 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2197 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2198 }
2199 static inline int hifn_encrypt_aes_ofb(struct ablkcipher_request *req)
2200 {
2201 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2202 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2203 }
2204
2205 /*
2206 * AES decryption functions.
2207 */
2208 static inline int hifn_decrypt_aes_ecb(struct ablkcipher_request *req)
2209 {
2210 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2211 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_ECB);
2212 }
2213 static inline int hifn_decrypt_aes_cbc(struct ablkcipher_request *req)
2214 {
2215 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2216 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CBC);
2217 }
2218 static inline int hifn_decrypt_aes_cfb(struct ablkcipher_request *req)
2219 {
2220 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2221 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_CFB);
2222 }
2223 static inline int hifn_decrypt_aes_ofb(struct ablkcipher_request *req)
2224 {
2225 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2226 ACRYPTO_TYPE_AES_128, ACRYPTO_MODE_OFB);
2227 }
2228
2229 /*
2230 * DES ecryption functions.
2231 */
2232 static inline int hifn_encrypt_des_ecb(struct ablkcipher_request *req)
2233 {
2234 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2235 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2236 }
2237 static inline int hifn_encrypt_des_cbc(struct ablkcipher_request *req)
2238 {
2239 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2240 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2241 }
2242 static inline int hifn_encrypt_des_cfb(struct ablkcipher_request *req)
2243 {
2244 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2245 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2246 }
2247 static inline int hifn_encrypt_des_ofb(struct ablkcipher_request *req)
2248 {
2249 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2250 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2251 }
2252
2253 /*
2254 * DES decryption functions.
2255 */
2256 static inline int hifn_decrypt_des_ecb(struct ablkcipher_request *req)
2257 {
2258 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2259 ACRYPTO_TYPE_DES, ACRYPTO_MODE_ECB);
2260 }
2261 static inline int hifn_decrypt_des_cbc(struct ablkcipher_request *req)
2262 {
2263 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2264 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CBC);
2265 }
2266 static inline int hifn_decrypt_des_cfb(struct ablkcipher_request *req)
2267 {
2268 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2269 ACRYPTO_TYPE_DES, ACRYPTO_MODE_CFB);
2270 }
2271 static inline int hifn_decrypt_des_ofb(struct ablkcipher_request *req)
2272 {
2273 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2274 ACRYPTO_TYPE_DES, ACRYPTO_MODE_OFB);
2275 }
2276
2277 /*
2278 * 3DES ecryption functions.
2279 */
2280 static inline int hifn_encrypt_3des_ecb(struct ablkcipher_request *req)
2281 {
2282 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2283 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2284 }
2285 static inline int hifn_encrypt_3des_cbc(struct ablkcipher_request *req)
2286 {
2287 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2288 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2289 }
2290 static inline int hifn_encrypt_3des_cfb(struct ablkcipher_request *req)
2291 {
2292 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2293 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2294 }
2295 static inline int hifn_encrypt_3des_ofb(struct ablkcipher_request *req)
2296 {
2297 return hifn_setup_crypto(req, ACRYPTO_OP_ENCRYPT,
2298 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2299 }
2300
2301 /*
2302 * 3DES decryption functions.
2303 */
2304 static inline int hifn_decrypt_3des_ecb(struct ablkcipher_request *req)
2305 {
2306 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2307 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_ECB);
2308 }
2309 static inline int hifn_decrypt_3des_cbc(struct ablkcipher_request *req)
2310 {
2311 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2312 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CBC);
2313 }
2314 static inline int hifn_decrypt_3des_cfb(struct ablkcipher_request *req)
2315 {
2316 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2317 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_CFB);
2318 }
2319 static inline int hifn_decrypt_3des_ofb(struct ablkcipher_request *req)
2320 {
2321 return hifn_setup_crypto(req, ACRYPTO_OP_DECRYPT,
2322 ACRYPTO_TYPE_3DES, ACRYPTO_MODE_OFB);
2323 }
2324
2325 struct hifn_alg_template
2326 {
2327 char name[CRYPTO_MAX_ALG_NAME];
2328 char drv_name[CRYPTO_MAX_ALG_NAME];
2329 unsigned int bsize;
2330 struct ablkcipher_alg ablkcipher;
2331 };
2332
2333 static struct hifn_alg_template hifn_alg_templates[] = {
2334 /*
2335 * 3DES ECB, CBC, CFB and OFB modes.
2336 */
2337 {
2338 .name = "cfb(des3_ede)", .drv_name = "cfb-3des", .bsize = 8,
2339 .ablkcipher = {
2340 .min_keysize = HIFN_3DES_KEY_LENGTH,
2341 .max_keysize = HIFN_3DES_KEY_LENGTH,
2342 .setkey = hifn_setkey,
2343 .encrypt = hifn_encrypt_3des_cfb,
2344 .decrypt = hifn_decrypt_3des_cfb,
2345 },
2346 },
2347 {
2348 .name = "ofb(des3_ede)", .drv_name = "ofb-3des", .bsize = 8,
2349 .ablkcipher = {
2350 .min_keysize = HIFN_3DES_KEY_LENGTH,
2351 .max_keysize = HIFN_3DES_KEY_LENGTH,
2352 .setkey = hifn_setkey,
2353 .encrypt = hifn_encrypt_3des_ofb,
2354 .decrypt = hifn_decrypt_3des_ofb,
2355 },
2356 },
2357 {
2358 .name = "cbc(des3_ede)", .drv_name = "cbc-3des", .bsize = 8,
2359 .ablkcipher = {
2360 .ivsize = HIFN_IV_LENGTH,
2361 .min_keysize = HIFN_3DES_KEY_LENGTH,
2362 .max_keysize = HIFN_3DES_KEY_LENGTH,
2363 .setkey = hifn_setkey,
2364 .encrypt = hifn_encrypt_3des_cbc,
2365 .decrypt = hifn_decrypt_3des_cbc,
2366 },
2367 },
2368 {
2369 .name = "ecb(des3_ede)", .drv_name = "ecb-3des", .bsize = 8,
2370 .ablkcipher = {
2371 .min_keysize = HIFN_3DES_KEY_LENGTH,
2372 .max_keysize = HIFN_3DES_KEY_LENGTH,
2373 .setkey = hifn_setkey,
2374 .encrypt = hifn_encrypt_3des_ecb,
2375 .decrypt = hifn_decrypt_3des_ecb,
2376 },
2377 },
2378
2379 /*
2380 * DES ECB, CBC, CFB and OFB modes.
2381 */
2382 {
2383 .name = "cfb(des)", .drv_name = "cfb-des", .bsize = 8,
2384 .ablkcipher = {
2385 .min_keysize = HIFN_DES_KEY_LENGTH,
2386 .max_keysize = HIFN_DES_KEY_LENGTH,
2387 .setkey = hifn_setkey,
2388 .encrypt = hifn_encrypt_des_cfb,
2389 .decrypt = hifn_decrypt_des_cfb,
2390 },
2391 },
2392 {
2393 .name = "ofb(des)", .drv_name = "ofb-des", .bsize = 8,
2394 .ablkcipher = {
2395 .min_keysize = HIFN_DES_KEY_LENGTH,
2396 .max_keysize = HIFN_DES_KEY_LENGTH,
2397 .setkey = hifn_setkey,
2398 .encrypt = hifn_encrypt_des_ofb,
2399 .decrypt = hifn_decrypt_des_ofb,
2400 },
2401 },
2402 {
2403 .name = "cbc(des)", .drv_name = "cbc-des", .bsize = 8,
2404 .ablkcipher = {
2405 .ivsize = HIFN_IV_LENGTH,
2406 .min_keysize = HIFN_DES_KEY_LENGTH,
2407 .max_keysize = HIFN_DES_KEY_LENGTH,
2408 .setkey = hifn_setkey,
2409 .encrypt = hifn_encrypt_des_cbc,
2410 .decrypt = hifn_decrypt_des_cbc,
2411 },
2412 },
2413 {
2414 .name = "ecb(des)", .drv_name = "ecb-des", .bsize = 8,
2415 .ablkcipher = {
2416 .min_keysize = HIFN_DES_KEY_LENGTH,
2417 .max_keysize = HIFN_DES_KEY_LENGTH,
2418 .setkey = hifn_setkey,
2419 .encrypt = hifn_encrypt_des_ecb,
2420 .decrypt = hifn_decrypt_des_ecb,
2421 },
2422 },
2423
2424 /*
2425 * AES ECB, CBC, CFB and OFB modes.
2426 */
2427 {
2428 .name = "ecb(aes)", .drv_name = "ecb-aes", .bsize = 16,
2429 .ablkcipher = {
2430 .min_keysize = AES_MIN_KEY_SIZE,
2431 .max_keysize = AES_MAX_KEY_SIZE,
2432 .setkey = hifn_setkey,
2433 .encrypt = hifn_encrypt_aes_ecb,
2434 .decrypt = hifn_decrypt_aes_ecb,
2435 },
2436 },
2437 {
2438 .name = "cbc(aes)", .drv_name = "cbc-aes", .bsize = 16,
2439 .ablkcipher = {
2440 .ivsize = HIFN_AES_IV_LENGTH,
2441 .min_keysize = AES_MIN_KEY_SIZE,
2442 .max_keysize = AES_MAX_KEY_SIZE,
2443 .setkey = hifn_setkey,
2444 .encrypt = hifn_encrypt_aes_cbc,
2445 .decrypt = hifn_decrypt_aes_cbc,
2446 },
2447 },
2448 {
2449 .name = "cfb(aes)", .drv_name = "cfb-aes", .bsize = 16,
2450 .ablkcipher = {
2451 .min_keysize = AES_MIN_KEY_SIZE,
2452 .max_keysize = AES_MAX_KEY_SIZE,
2453 .setkey = hifn_setkey,
2454 .encrypt = hifn_encrypt_aes_cfb,
2455 .decrypt = hifn_decrypt_aes_cfb,
2456 },
2457 },
2458 {
2459 .name = "ofb(aes)", .drv_name = "ofb-aes", .bsize = 16,
2460 .ablkcipher = {
2461 .min_keysize = AES_MIN_KEY_SIZE,
2462 .max_keysize = AES_MAX_KEY_SIZE,
2463 .setkey = hifn_setkey,
2464 .encrypt = hifn_encrypt_aes_ofb,
2465 .decrypt = hifn_decrypt_aes_ofb,
2466 },
2467 },
2468 };
2469
2470 static int hifn_cra_init(struct crypto_tfm *tfm)
2471 {
2472 struct crypto_alg *alg = tfm->__crt_alg;
2473 struct hifn_crypto_alg *ha = crypto_alg_to_hifn(alg);
2474 struct hifn_context *ctx = crypto_tfm_ctx(tfm);
2475
2476 ctx->dev = ha->dev;
2477 tfm->crt_ablkcipher.reqsize = sizeof(struct hifn_request_context);
2478 return 0;
2479 }
2480
2481 static int hifn_alg_alloc(struct hifn_device *dev, struct hifn_alg_template *t)
2482 {
2483 struct hifn_crypto_alg *alg;
2484 int err;
2485
2486 alg = kzalloc(sizeof(struct hifn_crypto_alg), GFP_KERNEL);
2487 if (!alg)
2488 return -ENOMEM;
2489
2490 snprintf(alg->alg.cra_name, CRYPTO_MAX_ALG_NAME, "%s", t->name);
2491 snprintf(alg->alg.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s-%s",
2492 t->drv_name, dev->name);
2493
2494 alg->alg.cra_priority = 300;
2495 alg->alg.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
2496 CRYPTO_ALG_KERN_DRIVER_ONLY | CRYPTO_ALG_ASYNC;
2497 alg->alg.cra_blocksize = t->bsize;
2498 alg->alg.cra_ctxsize = sizeof(struct hifn_context);
2499 alg->alg.cra_alignmask = 0;
2500 alg->alg.cra_type = &crypto_ablkcipher_type;
2501 alg->alg.cra_module = THIS_MODULE;
2502 alg->alg.cra_u.ablkcipher = t->ablkcipher;
2503 alg->alg.cra_init = hifn_cra_init;
2504
2505 alg->dev = dev;
2506
2507 list_add_tail(&alg->entry, &dev->alg_list);
2508
2509 err = crypto_register_alg(&alg->alg);
2510 if (err) {
2511 list_del(&alg->entry);
2512 kfree(alg);
2513 }
2514
2515 return err;
2516 }
2517
2518 static void hifn_unregister_alg(struct hifn_device *dev)
2519 {
2520 struct hifn_crypto_alg *a, *n;
2521
2522 list_for_each_entry_safe(a, n, &dev->alg_list, entry) {
2523 list_del(&a->entry);
2524 crypto_unregister_alg(&a->alg);
2525 kfree(a);
2526 }
2527 }
2528
2529 static int hifn_register_alg(struct hifn_device *dev)
2530 {
2531 int i, err;
2532
2533 for (i=0; i<ARRAY_SIZE(hifn_alg_templates); ++i) {
2534 err = hifn_alg_alloc(dev, &hifn_alg_templates[i]);
2535 if (err)
2536 goto err_out_exit;
2537 }
2538
2539 return 0;
2540
2541 err_out_exit:
2542 hifn_unregister_alg(dev);
2543 return err;
2544 }
2545
2546 static void hifn_tasklet_callback(unsigned long data)
2547 {
2548 struct hifn_device *dev = (struct hifn_device *)data;
2549
2550 /*
2551 * This is ok to call this without lock being held,
2552 * althogh it modifies some parameters used in parallel,
2553 * (like dev->success), but they are used in process
2554 * context or update is atomic (like setting dev->sa[i] to NULL).
2555 */
2556 hifn_clear_rings(dev, 0);
2557
2558 if (dev->started < HIFN_QUEUE_LENGTH && dev->queue.qlen)
2559 hifn_process_queue(dev);
2560 }
2561
2562 static int hifn_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2563 {
2564 int err, i;
2565 struct hifn_device *dev;
2566 char name[8];
2567
2568 err = pci_enable_device(pdev);
2569 if (err)
2570 return err;
2571 pci_set_master(pdev);
2572
2573 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2574 if (err)
2575 goto err_out_disable_pci_device;
2576
2577 snprintf(name, sizeof(name), "hifn%d",
2578 atomic_inc_return(&hifn_dev_number)-1);
2579
2580 err = pci_request_regions(pdev, name);
2581 if (err)
2582 goto err_out_disable_pci_device;
2583
2584 if (pci_resource_len(pdev, 0) < HIFN_BAR0_SIZE ||
2585 pci_resource_len(pdev, 1) < HIFN_BAR1_SIZE ||
2586 pci_resource_len(pdev, 2) < HIFN_BAR2_SIZE) {
2587 dprintk("%s: Broken hardware - I/O regions are too small.\n",
2588 pci_name(pdev));
2589 err = -ENODEV;
2590 goto err_out_free_regions;
2591 }
2592
2593 dev = kzalloc(sizeof(struct hifn_device) + sizeof(struct crypto_alg),
2594 GFP_KERNEL);
2595 if (!dev) {
2596 err = -ENOMEM;
2597 goto err_out_free_regions;
2598 }
2599
2600 INIT_LIST_HEAD(&dev->alg_list);
2601
2602 snprintf(dev->name, sizeof(dev->name), "%s", name);
2603 spin_lock_init(&dev->lock);
2604
2605 for (i=0; i<3; ++i) {
2606 unsigned long addr, size;
2607
2608 addr = pci_resource_start(pdev, i);
2609 size = pci_resource_len(pdev, i);
2610
2611 dev->bar[i] = ioremap_nocache(addr, size);
2612 if (!dev->bar[i]) {
2613 err = -ENOMEM;
2614 goto err_out_unmap_bars;
2615 }
2616 }
2617
2618 dev->desc_virt = pci_zalloc_consistent(pdev, sizeof(struct hifn_dma),
2619 &dev->desc_dma);
2620 if (!dev->desc_virt) {
2621 dprintk("Failed to allocate descriptor rings.\n");
2622 err = -ENOMEM;
2623 goto err_out_unmap_bars;
2624 }
2625
2626 dev->pdev = pdev;
2627 dev->irq = pdev->irq;
2628
2629 for (i=0; i<HIFN_D_RES_RSIZE; ++i)
2630 dev->sa[i] = NULL;
2631
2632 pci_set_drvdata(pdev, dev);
2633
2634 tasklet_init(&dev->tasklet, hifn_tasklet_callback, (unsigned long)dev);
2635
2636 crypto_init_queue(&dev->queue, 1);
2637
2638 err = request_irq(dev->irq, hifn_interrupt, IRQF_SHARED, dev->name, dev);
2639 if (err) {
2640 dprintk("Failed to request IRQ%d: err: %d.\n", dev->irq, err);
2641 dev->irq = 0;
2642 goto err_out_free_desc;
2643 }
2644
2645 err = hifn_start_device(dev);
2646 if (err)
2647 goto err_out_free_irq;
2648
2649 err = hifn_test(dev, 1, 0);
2650 if (err)
2651 goto err_out_stop_device;
2652
2653 err = hifn_register_rng(dev);
2654 if (err)
2655 goto err_out_stop_device;
2656
2657 err = hifn_register_alg(dev);
2658 if (err)
2659 goto err_out_unregister_rng;
2660
2661 INIT_DELAYED_WORK(&dev->work, hifn_work);
2662 schedule_delayed_work(&dev->work, HZ);
2663
2664 dprintk("HIFN crypto accelerator card at %s has been "
2665 "successfully registered as %s.\n",
2666 pci_name(pdev), dev->name);
2667
2668 return 0;
2669
2670 err_out_unregister_rng:
2671 hifn_unregister_rng(dev);
2672 err_out_stop_device:
2673 hifn_reset_dma(dev, 1);
2674 hifn_stop_device(dev);
2675 err_out_free_irq:
2676 free_irq(dev->irq, dev);
2677 tasklet_kill(&dev->tasklet);
2678 err_out_free_desc:
2679 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2680 dev->desc_virt, dev->desc_dma);
2681
2682 err_out_unmap_bars:
2683 for (i=0; i<3; ++i)
2684 if (dev->bar[i])
2685 iounmap(dev->bar[i]);
2686
2687 err_out_free_regions:
2688 pci_release_regions(pdev);
2689
2690 err_out_disable_pci_device:
2691 pci_disable_device(pdev);
2692
2693 return err;
2694 }
2695
2696 static void hifn_remove(struct pci_dev *pdev)
2697 {
2698 int i;
2699 struct hifn_device *dev;
2700
2701 dev = pci_get_drvdata(pdev);
2702
2703 if (dev) {
2704 cancel_delayed_work_sync(&dev->work);
2705
2706 hifn_unregister_rng(dev);
2707 hifn_unregister_alg(dev);
2708 hifn_reset_dma(dev, 1);
2709 hifn_stop_device(dev);
2710
2711 free_irq(dev->irq, dev);
2712 tasklet_kill(&dev->tasklet);
2713
2714 hifn_flush(dev);
2715
2716 pci_free_consistent(pdev, sizeof(struct hifn_dma),
2717 dev->desc_virt, dev->desc_dma);
2718 for (i=0; i<3; ++i)
2719 if (dev->bar[i])
2720 iounmap(dev->bar[i]);
2721
2722 kfree(dev);
2723 }
2724
2725 pci_release_regions(pdev);
2726 pci_disable_device(pdev);
2727 }
2728
2729 static struct pci_device_id hifn_pci_tbl[] = {
2730 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7955) },
2731 { PCI_DEVICE(PCI_VENDOR_ID_HIFN, PCI_DEVICE_ID_HIFN_7956) },
2732 { 0 }
2733 };
2734 MODULE_DEVICE_TABLE(pci, hifn_pci_tbl);
2735
2736 static struct pci_driver hifn_pci_driver = {
2737 .name = "hifn795x",
2738 .id_table = hifn_pci_tbl,
2739 .probe = hifn_probe,
2740 .remove = hifn_remove,
2741 };
2742
2743 static int __init hifn_init(void)
2744 {
2745 unsigned int freq;
2746 int err;
2747
2748 /* HIFN supports only 32-bit addresses */
2749 BUILD_BUG_ON(sizeof(dma_addr_t) != 4);
2750
2751 if (strncmp(hifn_pll_ref, "ext", 3) &&
2752 strncmp(hifn_pll_ref, "pci", 3)) {
2753 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref clock, "
2754 "must be pci or ext");
2755 return -EINVAL;
2756 }
2757
2758 /*
2759 * For the 7955/7956 the reference clock frequency must be in the
2760 * range of 20MHz-100MHz. For the 7954 the upper bound is 66.67MHz,
2761 * but this chip is currently not supported.
2762 */
2763 if (hifn_pll_ref[3] != '\0') {
2764 freq = simple_strtoul(hifn_pll_ref + 3, NULL, 10);
2765 if (freq < 20 || freq > 100) {
2766 printk(KERN_ERR "hifn795x: invalid hifn_pll_ref "
2767 "frequency, must be in the range "
2768 "of 20-100");
2769 return -EINVAL;
2770 }
2771 }
2772
2773 err = pci_register_driver(&hifn_pci_driver);
2774 if (err < 0) {
2775 dprintk("Failed to register PCI driver for %s device.\n",
2776 hifn_pci_driver.name);
2777 return -ENODEV;
2778 }
2779
2780 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2781 "has been successfully registered.\n");
2782
2783 return 0;
2784 }
2785
2786 static void __exit hifn_fini(void)
2787 {
2788 pci_unregister_driver(&hifn_pci_driver);
2789
2790 printk(KERN_INFO "Driver for HIFN 795x crypto accelerator chip "
2791 "has been successfully unregistered.\n");
2792 }
2793
2794 module_init(hifn_init);
2795 module_exit(hifn_fini);
2796
2797 MODULE_LICENSE("GPL");
2798 MODULE_AUTHOR("Evgeniy Polyakov <johnpol@2ka.mipt.ru>");
2799 MODULE_DESCRIPTION("Driver for HIFN 795x crypto accelerator chip.");
This page took 0.098397 seconds and 5 git commands to generate.