crypto: mv_cesa - use ablkcipher_request_cast instead of the manual container_of
[deliverable/linux.git] / drivers / crypto / mv_cesa.c
1 /*
2 * Support for Marvell's crypto engine which can be found on some Orion5X
3 * boards.
4 *
5 * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc >
6 * License: GPLv2
7 *
8 */
9 #include <crypto/aes.h>
10 #include <crypto/algapi.h>
11 #include <linux/crypto.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/kthread.h>
15 #include <linux/platform_device.h>
16 #include <linux/scatterlist.h>
17 #include <linux/slab.h>
18 #include <crypto/internal/hash.h>
19 #include <crypto/sha.h>
20
21 #include "mv_cesa.h"
22
23 #define MV_CESA "MV-CESA:"
24 #define MAX_HW_HASH_SIZE 0xFFFF
25
26 /*
27 * STM:
28 * /---------------------------------------\
29 * | | request complete
30 * \./ |
31 * IDLE -> new request -> BUSY -> done -> DEQUEUE
32 * /°\ |
33 * | | more scatter entries
34 * \________________/
35 */
36 enum engine_status {
37 ENGINE_IDLE,
38 ENGINE_BUSY,
39 ENGINE_W_DEQUEUE,
40 };
41
42 /**
43 * struct req_progress - used for every crypt request
44 * @src_sg_it: sg iterator for src
45 * @dst_sg_it: sg iterator for dst
46 * @sg_src_left: bytes left in src to process (scatter list)
47 * @src_start: offset to add to src start position (scatter list)
48 * @crypt_len: length of current hw crypt/hash process
49 * @hw_nbytes: total bytes to process in hw for this request
50 * @copy_back: whether to copy data back (crypt) or not (hash)
51 * @sg_dst_left: bytes left dst to process in this scatter list
52 * @dst_start: offset to add to dst start position (scatter list)
53 * @hw_processed_bytes: number of bytes processed by hw (request).
54 *
55 * sg helper are used to iterate over the scatterlist. Since the size of the
56 * SRAM may be less than the scatter size, this struct struct is used to keep
57 * track of progress within current scatterlist.
58 */
59 struct req_progress {
60 struct sg_mapping_iter src_sg_it;
61 struct sg_mapping_iter dst_sg_it;
62 void (*complete) (void);
63 void (*process) (int is_first);
64
65 /* src mostly */
66 int sg_src_left;
67 int src_start;
68 int crypt_len;
69 int hw_nbytes;
70 /* dst mostly */
71 int copy_back;
72 int sg_dst_left;
73 int dst_start;
74 int hw_processed_bytes;
75 };
76
77 struct crypto_priv {
78 void __iomem *reg;
79 void __iomem *sram;
80 int irq;
81 struct task_struct *queue_th;
82
83 /* the lock protects queue and eng_st */
84 spinlock_t lock;
85 struct crypto_queue queue;
86 enum engine_status eng_st;
87 struct crypto_async_request *cur_req;
88 struct req_progress p;
89 int max_req_size;
90 int sram_size;
91 int has_sha1;
92 int has_hmac_sha1;
93 };
94
95 static struct crypto_priv *cpg;
96
97 struct mv_ctx {
98 u8 aes_enc_key[AES_KEY_LEN];
99 u32 aes_dec_key[8];
100 int key_len;
101 u32 need_calc_aes_dkey;
102 };
103
104 enum crypto_op {
105 COP_AES_ECB,
106 COP_AES_CBC,
107 };
108
109 struct mv_req_ctx {
110 enum crypto_op op;
111 int decrypt;
112 };
113
114 enum hash_op {
115 COP_SHA1,
116 COP_HMAC_SHA1
117 };
118
119 struct mv_tfm_hash_ctx {
120 struct crypto_shash *fallback;
121 struct crypto_shash *base_hash;
122 u32 ivs[2 * SHA1_DIGEST_SIZE / 4];
123 int count_add;
124 enum hash_op op;
125 };
126
127 struct mv_req_hash_ctx {
128 u64 count;
129 u32 state[SHA1_DIGEST_SIZE / 4];
130 u8 buffer[SHA1_BLOCK_SIZE];
131 int first_hash; /* marks that we don't have previous state */
132 int last_chunk; /* marks that this is the 'final' request */
133 int extra_bytes; /* unprocessed bytes in buffer */
134 enum hash_op op;
135 int count_add;
136 struct scatterlist dummysg;
137 };
138
139 static void compute_aes_dec_key(struct mv_ctx *ctx)
140 {
141 struct crypto_aes_ctx gen_aes_key;
142 int key_pos;
143
144 if (!ctx->need_calc_aes_dkey)
145 return;
146
147 crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len);
148
149 key_pos = ctx->key_len + 24;
150 memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4);
151 switch (ctx->key_len) {
152 case AES_KEYSIZE_256:
153 key_pos -= 2;
154 /* fall */
155 case AES_KEYSIZE_192:
156 key_pos -= 2;
157 memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos],
158 4 * 4);
159 break;
160 }
161 ctx->need_calc_aes_dkey = 0;
162 }
163
164 static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key,
165 unsigned int len)
166 {
167 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
168 struct mv_ctx *ctx = crypto_tfm_ctx(tfm);
169
170 switch (len) {
171 case AES_KEYSIZE_128:
172 case AES_KEYSIZE_192:
173 case AES_KEYSIZE_256:
174 break;
175 default:
176 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
177 return -EINVAL;
178 }
179 ctx->key_len = len;
180 ctx->need_calc_aes_dkey = 1;
181
182 memcpy(ctx->aes_enc_key, key, AES_KEY_LEN);
183 return 0;
184 }
185
186 static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len)
187 {
188 int ret;
189 void *sbuf;
190 int copied = 0;
191
192 while (1) {
193 if (!p->sg_src_left) {
194 ret = sg_miter_next(&p->src_sg_it);
195 BUG_ON(!ret);
196 p->sg_src_left = p->src_sg_it.length;
197 p->src_start = 0;
198 }
199
200 sbuf = p->src_sg_it.addr + p->src_start;
201
202 if (p->sg_src_left <= len - copied) {
203 memcpy(dbuf + copied, sbuf, p->sg_src_left);
204 copied += p->sg_src_left;
205 p->sg_src_left = 0;
206 if (copied >= len)
207 break;
208 } else {
209 int copy_len = len - copied;
210 memcpy(dbuf + copied, sbuf, copy_len);
211 p->src_start += copy_len;
212 p->sg_src_left -= copy_len;
213 break;
214 }
215 }
216 }
217
218 static void setup_data_in(void)
219 {
220 struct req_progress *p = &cpg->p;
221 int data_in_sram =
222 min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size);
223 copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len,
224 data_in_sram - p->crypt_len);
225 p->crypt_len = data_in_sram;
226 }
227
228 static void mv_process_current_q(int first_block)
229 {
230 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
231 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
232 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
233 struct sec_accel_config op;
234
235 switch (req_ctx->op) {
236 case COP_AES_ECB:
237 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB;
238 break;
239 case COP_AES_CBC:
240 default:
241 op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC;
242 op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) |
243 ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF);
244 if (first_block)
245 memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16);
246 break;
247 }
248 if (req_ctx->decrypt) {
249 op.config |= CFG_DIR_DEC;
250 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key,
251 AES_KEY_LEN);
252 } else {
253 op.config |= CFG_DIR_ENC;
254 memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key,
255 AES_KEY_LEN);
256 }
257
258 switch (ctx->key_len) {
259 case AES_KEYSIZE_128:
260 op.config |= CFG_AES_LEN_128;
261 break;
262 case AES_KEYSIZE_192:
263 op.config |= CFG_AES_LEN_192;
264 break;
265 case AES_KEYSIZE_256:
266 op.config |= CFG_AES_LEN_256;
267 break;
268 }
269 op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) |
270 ENC_P_DST(SRAM_DATA_OUT_START);
271 op.enc_key_p = SRAM_DATA_KEY_P;
272
273 setup_data_in();
274 op.enc_len = cpg->p.crypt_len;
275 memcpy(cpg->sram + SRAM_CONFIG, &op,
276 sizeof(struct sec_accel_config));
277
278 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
279 /* GO */
280 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
281
282 /*
283 * XXX: add timer if the interrupt does not occur for some mystery
284 * reason
285 */
286 }
287
288 static void mv_crypto_algo_completion(void)
289 {
290 struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req);
291 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
292
293 sg_miter_stop(&cpg->p.src_sg_it);
294 sg_miter_stop(&cpg->p.dst_sg_it);
295
296 if (req_ctx->op != COP_AES_CBC)
297 return ;
298
299 memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16);
300 }
301
302 static void mv_process_hash_current(int first_block)
303 {
304 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
305 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
306 struct req_progress *p = &cpg->p;
307 struct sec_accel_config op = { 0 };
308 int is_last;
309
310 switch (req_ctx->op) {
311 case COP_SHA1:
312 default:
313 op.config = CFG_OP_MAC_ONLY | CFG_MACM_SHA1;
314 break;
315 case COP_HMAC_SHA1:
316 op.config = CFG_OP_MAC_ONLY | CFG_MACM_HMAC_SHA1;
317 break;
318 }
319
320 op.mac_src_p =
321 MAC_SRC_DATA_P(SRAM_DATA_IN_START) | MAC_SRC_TOTAL_LEN((u32)
322 req_ctx->
323 count);
324
325 setup_data_in();
326
327 op.mac_digest =
328 MAC_DIGEST_P(SRAM_DIGEST_BUF) | MAC_FRAG_LEN(p->crypt_len);
329 op.mac_iv =
330 MAC_INNER_IV_P(SRAM_HMAC_IV_IN) |
331 MAC_OUTER_IV_P(SRAM_HMAC_IV_OUT);
332
333 is_last = req_ctx->last_chunk
334 && (p->hw_processed_bytes + p->crypt_len >= p->hw_nbytes)
335 && (req_ctx->count <= MAX_HW_HASH_SIZE);
336 if (req_ctx->first_hash) {
337 if (is_last)
338 op.config |= CFG_NOT_FRAG;
339 else
340 op.config |= CFG_FIRST_FRAG;
341
342 req_ctx->first_hash = 0;
343 } else {
344 if (is_last)
345 op.config |= CFG_LAST_FRAG;
346 else
347 op.config |= CFG_MID_FRAG;
348 }
349
350 memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config));
351
352 writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0);
353 /* GO */
354 writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD);
355
356 /*
357 * XXX: add timer if the interrupt does not occur for some mystery
358 * reason
359 */
360 }
361
362 static inline int mv_hash_import_sha1_ctx(const struct mv_req_hash_ctx *ctx,
363 struct shash_desc *desc)
364 {
365 int i;
366 struct sha1_state shash_state;
367
368 shash_state.count = ctx->count + ctx->count_add;
369 for (i = 0; i < 5; i++)
370 shash_state.state[i] = ctx->state[i];
371 memcpy(shash_state.buffer, ctx->buffer, sizeof(shash_state.buffer));
372 return crypto_shash_import(desc, &shash_state);
373 }
374
375 static int mv_hash_final_fallback(struct ahash_request *req)
376 {
377 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
378 struct mv_req_hash_ctx *req_ctx = ahash_request_ctx(req);
379 struct {
380 struct shash_desc shash;
381 char ctx[crypto_shash_descsize(tfm_ctx->fallback)];
382 } desc;
383 int rc;
384
385 desc.shash.tfm = tfm_ctx->fallback;
386 desc.shash.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
387 if (unlikely(req_ctx->first_hash)) {
388 crypto_shash_init(&desc.shash);
389 crypto_shash_update(&desc.shash, req_ctx->buffer,
390 req_ctx->extra_bytes);
391 } else {
392 /* only SHA1 for now....
393 */
394 rc = mv_hash_import_sha1_ctx(req_ctx, &desc.shash);
395 if (rc)
396 goto out;
397 }
398 rc = crypto_shash_final(&desc.shash, req->result);
399 out:
400 return rc;
401 }
402
403 static void mv_hash_algo_completion(void)
404 {
405 struct ahash_request *req = ahash_request_cast(cpg->cur_req);
406 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
407
408 if (ctx->extra_bytes)
409 copy_src_to_buf(&cpg->p, ctx->buffer, ctx->extra_bytes);
410 sg_miter_stop(&cpg->p.src_sg_it);
411
412 ctx->state[0] = readl(cpg->reg + DIGEST_INITIAL_VAL_A);
413 ctx->state[1] = readl(cpg->reg + DIGEST_INITIAL_VAL_B);
414 ctx->state[2] = readl(cpg->reg + DIGEST_INITIAL_VAL_C);
415 ctx->state[3] = readl(cpg->reg + DIGEST_INITIAL_VAL_D);
416 ctx->state[4] = readl(cpg->reg + DIGEST_INITIAL_VAL_E);
417
418 if (likely(ctx->last_chunk)) {
419 if (likely(ctx->count <= MAX_HW_HASH_SIZE)) {
420 memcpy(req->result, cpg->sram + SRAM_DIGEST_BUF,
421 crypto_ahash_digestsize(crypto_ahash_reqtfm
422 (req)));
423 } else
424 mv_hash_final_fallback(req);
425 }
426 }
427
428 static void dequeue_complete_req(void)
429 {
430 struct crypto_async_request *req = cpg->cur_req;
431 void *buf;
432 int ret;
433 cpg->p.hw_processed_bytes += cpg->p.crypt_len;
434 if (cpg->p.copy_back) {
435 int need_copy_len = cpg->p.crypt_len;
436 int sram_offset = 0;
437 do {
438 int dst_copy;
439
440 if (!cpg->p.sg_dst_left) {
441 ret = sg_miter_next(&cpg->p.dst_sg_it);
442 BUG_ON(!ret);
443 cpg->p.sg_dst_left = cpg->p.dst_sg_it.length;
444 cpg->p.dst_start = 0;
445 }
446
447 buf = cpg->p.dst_sg_it.addr;
448 buf += cpg->p.dst_start;
449
450 dst_copy = min(need_copy_len, cpg->p.sg_dst_left);
451
452 memcpy(buf,
453 cpg->sram + SRAM_DATA_OUT_START + sram_offset,
454 dst_copy);
455 sram_offset += dst_copy;
456 cpg->p.sg_dst_left -= dst_copy;
457 need_copy_len -= dst_copy;
458 cpg->p.dst_start += dst_copy;
459 } while (need_copy_len > 0);
460 }
461
462 cpg->p.crypt_len = 0;
463
464 BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE);
465 if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) {
466 /* process next scatter list entry */
467 cpg->eng_st = ENGINE_BUSY;
468 cpg->p.process(0);
469 } else {
470 cpg->p.complete();
471 cpg->eng_st = ENGINE_IDLE;
472 local_bh_disable();
473 req->complete(req, 0);
474 local_bh_enable();
475 }
476 }
477
478 static int count_sgs(struct scatterlist *sl, unsigned int total_bytes)
479 {
480 int i = 0;
481 size_t cur_len;
482
483 while (1) {
484 cur_len = sl[i].length;
485 ++i;
486 if (total_bytes > cur_len)
487 total_bytes -= cur_len;
488 else
489 break;
490 }
491
492 return i;
493 }
494
495 static void mv_start_new_crypt_req(struct ablkcipher_request *req)
496 {
497 struct req_progress *p = &cpg->p;
498 int num_sgs;
499
500 cpg->cur_req = &req->base;
501 memset(p, 0, sizeof(struct req_progress));
502 p->hw_nbytes = req->nbytes;
503 p->complete = mv_crypto_algo_completion;
504 p->process = mv_process_current_q;
505 p->copy_back = 1;
506
507 num_sgs = count_sgs(req->src, req->nbytes);
508 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
509
510 num_sgs = count_sgs(req->dst, req->nbytes);
511 sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG);
512
513 mv_process_current_q(1);
514 }
515
516 static void mv_start_new_hash_req(struct ahash_request *req)
517 {
518 struct req_progress *p = &cpg->p;
519 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
520 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
521 int num_sgs, hw_bytes, old_extra_bytes, rc;
522 cpg->cur_req = &req->base;
523 memset(p, 0, sizeof(struct req_progress));
524 hw_bytes = req->nbytes + ctx->extra_bytes;
525 old_extra_bytes = ctx->extra_bytes;
526
527 if (unlikely(ctx->extra_bytes)) {
528 memcpy(cpg->sram + SRAM_DATA_IN_START, ctx->buffer,
529 ctx->extra_bytes);
530 p->crypt_len = ctx->extra_bytes;
531 }
532
533 memcpy(cpg->sram + SRAM_HMAC_IV_IN, tfm_ctx->ivs, sizeof(tfm_ctx->ivs));
534
535 if (unlikely(!ctx->first_hash)) {
536 writel(ctx->state[0], cpg->reg + DIGEST_INITIAL_VAL_A);
537 writel(ctx->state[1], cpg->reg + DIGEST_INITIAL_VAL_B);
538 writel(ctx->state[2], cpg->reg + DIGEST_INITIAL_VAL_C);
539 writel(ctx->state[3], cpg->reg + DIGEST_INITIAL_VAL_D);
540 writel(ctx->state[4], cpg->reg + DIGEST_INITIAL_VAL_E);
541 }
542
543 ctx->extra_bytes = hw_bytes % SHA1_BLOCK_SIZE;
544 if (ctx->extra_bytes != 0
545 && (!ctx->last_chunk || ctx->count > MAX_HW_HASH_SIZE))
546 hw_bytes -= ctx->extra_bytes;
547 else
548 ctx->extra_bytes = 0;
549
550 num_sgs = count_sgs(req->src, req->nbytes);
551 sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG);
552
553 if (hw_bytes) {
554 p->hw_nbytes = hw_bytes;
555 p->complete = mv_hash_algo_completion;
556 p->process = mv_process_hash_current;
557
558 mv_process_hash_current(1);
559 } else {
560 copy_src_to_buf(p, ctx->buffer + old_extra_bytes,
561 ctx->extra_bytes - old_extra_bytes);
562 sg_miter_stop(&p->src_sg_it);
563 if (ctx->last_chunk)
564 rc = mv_hash_final_fallback(req);
565 else
566 rc = 0;
567 cpg->eng_st = ENGINE_IDLE;
568 local_bh_disable();
569 req->base.complete(&req->base, rc);
570 local_bh_enable();
571 }
572 }
573
574 static int queue_manag(void *data)
575 {
576 cpg->eng_st = ENGINE_IDLE;
577 do {
578 struct crypto_async_request *async_req = NULL;
579 struct crypto_async_request *backlog;
580
581 __set_current_state(TASK_INTERRUPTIBLE);
582
583 if (cpg->eng_st == ENGINE_W_DEQUEUE)
584 dequeue_complete_req();
585
586 spin_lock_irq(&cpg->lock);
587 if (cpg->eng_st == ENGINE_IDLE) {
588 backlog = crypto_get_backlog(&cpg->queue);
589 async_req = crypto_dequeue_request(&cpg->queue);
590 if (async_req) {
591 BUG_ON(cpg->eng_st != ENGINE_IDLE);
592 cpg->eng_st = ENGINE_BUSY;
593 }
594 }
595 spin_unlock_irq(&cpg->lock);
596
597 if (backlog) {
598 backlog->complete(backlog, -EINPROGRESS);
599 backlog = NULL;
600 }
601
602 if (async_req) {
603 if (async_req->tfm->__crt_alg->cra_type !=
604 &crypto_ahash_type) {
605 struct ablkcipher_request *req =
606 ablkcipher_request_cast(async_req);
607 mv_start_new_crypt_req(req);
608 } else {
609 struct ahash_request *req =
610 ahash_request_cast(async_req);
611 mv_start_new_hash_req(req);
612 }
613 async_req = NULL;
614 }
615
616 schedule();
617
618 } while (!kthread_should_stop());
619 return 0;
620 }
621
622 static int mv_handle_req(struct crypto_async_request *req)
623 {
624 unsigned long flags;
625 int ret;
626
627 spin_lock_irqsave(&cpg->lock, flags);
628 ret = crypto_enqueue_request(&cpg->queue, req);
629 spin_unlock_irqrestore(&cpg->lock, flags);
630 wake_up_process(cpg->queue_th);
631 return ret;
632 }
633
634 static int mv_enc_aes_ecb(struct ablkcipher_request *req)
635 {
636 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
637
638 req_ctx->op = COP_AES_ECB;
639 req_ctx->decrypt = 0;
640
641 return mv_handle_req(&req->base);
642 }
643
644 static int mv_dec_aes_ecb(struct ablkcipher_request *req)
645 {
646 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
647 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
648
649 req_ctx->op = COP_AES_ECB;
650 req_ctx->decrypt = 1;
651
652 compute_aes_dec_key(ctx);
653 return mv_handle_req(&req->base);
654 }
655
656 static int mv_enc_aes_cbc(struct ablkcipher_request *req)
657 {
658 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
659
660 req_ctx->op = COP_AES_CBC;
661 req_ctx->decrypt = 0;
662
663 return mv_handle_req(&req->base);
664 }
665
666 static int mv_dec_aes_cbc(struct ablkcipher_request *req)
667 {
668 struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
669 struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req);
670
671 req_ctx->op = COP_AES_CBC;
672 req_ctx->decrypt = 1;
673
674 compute_aes_dec_key(ctx);
675 return mv_handle_req(&req->base);
676 }
677
678 static int mv_cra_init(struct crypto_tfm *tfm)
679 {
680 tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx);
681 return 0;
682 }
683
684 static void mv_init_hash_req_ctx(struct mv_req_hash_ctx *ctx, int op,
685 int is_last, unsigned int req_len,
686 int count_add)
687 {
688 memset(ctx, 0, sizeof(*ctx));
689 ctx->op = op;
690 ctx->count = req_len;
691 ctx->first_hash = 1;
692 ctx->last_chunk = is_last;
693 ctx->count_add = count_add;
694 }
695
696 static void mv_update_hash_req_ctx(struct mv_req_hash_ctx *ctx, int is_last,
697 unsigned req_len)
698 {
699 ctx->last_chunk = is_last;
700 ctx->count += req_len;
701 }
702
703 static int mv_hash_init(struct ahash_request *req)
704 {
705 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
706 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 0, 0,
707 tfm_ctx->count_add);
708 return 0;
709 }
710
711 static int mv_hash_update(struct ahash_request *req)
712 {
713 if (!req->nbytes)
714 return 0;
715
716 mv_update_hash_req_ctx(ahash_request_ctx(req), 0, req->nbytes);
717 return mv_handle_req(&req->base);
718 }
719
720 static int mv_hash_final(struct ahash_request *req)
721 {
722 struct mv_req_hash_ctx *ctx = ahash_request_ctx(req);
723 /* dummy buffer of 4 bytes */
724 sg_init_one(&ctx->dummysg, ctx->buffer, 4);
725 /* I think I'm allowed to do that... */
726 ahash_request_set_crypt(req, &ctx->dummysg, req->result, 0);
727 mv_update_hash_req_ctx(ctx, 1, 0);
728 return mv_handle_req(&req->base);
729 }
730
731 static int mv_hash_finup(struct ahash_request *req)
732 {
733 if (!req->nbytes)
734 return mv_hash_final(req);
735
736 mv_update_hash_req_ctx(ahash_request_ctx(req), 1, req->nbytes);
737 return mv_handle_req(&req->base);
738 }
739
740 static int mv_hash_digest(struct ahash_request *req)
741 {
742 const struct mv_tfm_hash_ctx *tfm_ctx = crypto_tfm_ctx(req->base.tfm);
743 mv_init_hash_req_ctx(ahash_request_ctx(req), tfm_ctx->op, 1,
744 req->nbytes, tfm_ctx->count_add);
745 return mv_handle_req(&req->base);
746 }
747
748 static void mv_hash_init_ivs(struct mv_tfm_hash_ctx *ctx, const void *istate,
749 const void *ostate)
750 {
751 const struct sha1_state *isha1_state = istate, *osha1_state = ostate;
752 int i;
753 for (i = 0; i < 5; i++) {
754 ctx->ivs[i] = cpu_to_be32(isha1_state->state[i]);
755 ctx->ivs[i + 5] = cpu_to_be32(osha1_state->state[i]);
756 }
757 }
758
759 static int mv_hash_setkey(struct crypto_ahash *tfm, const u8 * key,
760 unsigned int keylen)
761 {
762 int rc;
763 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(&tfm->base);
764 int bs, ds, ss;
765
766 if (!ctx->base_hash)
767 return 0;
768
769 rc = crypto_shash_setkey(ctx->fallback, key, keylen);
770 if (rc)
771 return rc;
772
773 /* Can't see a way to extract the ipad/opad from the fallback tfm
774 so I'm basically copying code from the hmac module */
775 bs = crypto_shash_blocksize(ctx->base_hash);
776 ds = crypto_shash_digestsize(ctx->base_hash);
777 ss = crypto_shash_statesize(ctx->base_hash);
778
779 {
780 struct {
781 struct shash_desc shash;
782 char ctx[crypto_shash_descsize(ctx->base_hash)];
783 } desc;
784 unsigned int i;
785 char ipad[ss];
786 char opad[ss];
787
788 desc.shash.tfm = ctx->base_hash;
789 desc.shash.flags = crypto_shash_get_flags(ctx->base_hash) &
790 CRYPTO_TFM_REQ_MAY_SLEEP;
791
792 if (keylen > bs) {
793 int err;
794
795 err =
796 crypto_shash_digest(&desc.shash, key, keylen, ipad);
797 if (err)
798 return err;
799
800 keylen = ds;
801 } else
802 memcpy(ipad, key, keylen);
803
804 memset(ipad + keylen, 0, bs - keylen);
805 memcpy(opad, ipad, bs);
806
807 for (i = 0; i < bs; i++) {
808 ipad[i] ^= 0x36;
809 opad[i] ^= 0x5c;
810 }
811
812 rc = crypto_shash_init(&desc.shash) ? :
813 crypto_shash_update(&desc.shash, ipad, bs) ? :
814 crypto_shash_export(&desc.shash, ipad) ? :
815 crypto_shash_init(&desc.shash) ? :
816 crypto_shash_update(&desc.shash, opad, bs) ? :
817 crypto_shash_export(&desc.shash, opad);
818
819 if (rc == 0)
820 mv_hash_init_ivs(ctx, ipad, opad);
821
822 return rc;
823 }
824 }
825
826 static int mv_cra_hash_init(struct crypto_tfm *tfm, const char *base_hash_name,
827 enum hash_op op, int count_add)
828 {
829 const char *fallback_driver_name = tfm->__crt_alg->cra_name;
830 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
831 struct crypto_shash *fallback_tfm = NULL;
832 struct crypto_shash *base_hash = NULL;
833 int err = -ENOMEM;
834
835 ctx->op = op;
836 ctx->count_add = count_add;
837
838 /* Allocate a fallback and abort if it failed. */
839 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
840 CRYPTO_ALG_NEED_FALLBACK);
841 if (IS_ERR(fallback_tfm)) {
842 printk(KERN_WARNING MV_CESA
843 "Fallback driver '%s' could not be loaded!\n",
844 fallback_driver_name);
845 err = PTR_ERR(fallback_tfm);
846 goto out;
847 }
848 ctx->fallback = fallback_tfm;
849
850 if (base_hash_name) {
851 /* Allocate a hash to compute the ipad/opad of hmac. */
852 base_hash = crypto_alloc_shash(base_hash_name, 0,
853 CRYPTO_ALG_NEED_FALLBACK);
854 if (IS_ERR(base_hash)) {
855 printk(KERN_WARNING MV_CESA
856 "Base driver '%s' could not be loaded!\n",
857 base_hash_name);
858 err = PTR_ERR(base_hash);
859 goto err_bad_base;
860 }
861 }
862 ctx->base_hash = base_hash;
863
864 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
865 sizeof(struct mv_req_hash_ctx) +
866 crypto_shash_descsize(ctx->fallback));
867 return 0;
868 err_bad_base:
869 crypto_free_shash(fallback_tfm);
870 out:
871 return err;
872 }
873
874 static void mv_cra_hash_exit(struct crypto_tfm *tfm)
875 {
876 struct mv_tfm_hash_ctx *ctx = crypto_tfm_ctx(tfm);
877
878 crypto_free_shash(ctx->fallback);
879 if (ctx->base_hash)
880 crypto_free_shash(ctx->base_hash);
881 }
882
883 static int mv_cra_hash_sha1_init(struct crypto_tfm *tfm)
884 {
885 return mv_cra_hash_init(tfm, NULL, COP_SHA1, 0);
886 }
887
888 static int mv_cra_hash_hmac_sha1_init(struct crypto_tfm *tfm)
889 {
890 return mv_cra_hash_init(tfm, "sha1", COP_HMAC_SHA1, SHA1_BLOCK_SIZE);
891 }
892
893 irqreturn_t crypto_int(int irq, void *priv)
894 {
895 u32 val;
896
897 val = readl(cpg->reg + SEC_ACCEL_INT_STATUS);
898 if (!(val & SEC_INT_ACCEL0_DONE))
899 return IRQ_NONE;
900
901 val &= ~SEC_INT_ACCEL0_DONE;
902 writel(val, cpg->reg + FPGA_INT_STATUS);
903 writel(val, cpg->reg + SEC_ACCEL_INT_STATUS);
904 BUG_ON(cpg->eng_st != ENGINE_BUSY);
905 cpg->eng_st = ENGINE_W_DEQUEUE;
906 wake_up_process(cpg->queue_th);
907 return IRQ_HANDLED;
908 }
909
910 struct crypto_alg mv_aes_alg_ecb = {
911 .cra_name = "ecb(aes)",
912 .cra_driver_name = "mv-ecb-aes",
913 .cra_priority = 300,
914 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
915 .cra_blocksize = 16,
916 .cra_ctxsize = sizeof(struct mv_ctx),
917 .cra_alignmask = 0,
918 .cra_type = &crypto_ablkcipher_type,
919 .cra_module = THIS_MODULE,
920 .cra_init = mv_cra_init,
921 .cra_u = {
922 .ablkcipher = {
923 .min_keysize = AES_MIN_KEY_SIZE,
924 .max_keysize = AES_MAX_KEY_SIZE,
925 .setkey = mv_setkey_aes,
926 .encrypt = mv_enc_aes_ecb,
927 .decrypt = mv_dec_aes_ecb,
928 },
929 },
930 };
931
932 struct crypto_alg mv_aes_alg_cbc = {
933 .cra_name = "cbc(aes)",
934 .cra_driver_name = "mv-cbc-aes",
935 .cra_priority = 300,
936 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC,
937 .cra_blocksize = AES_BLOCK_SIZE,
938 .cra_ctxsize = sizeof(struct mv_ctx),
939 .cra_alignmask = 0,
940 .cra_type = &crypto_ablkcipher_type,
941 .cra_module = THIS_MODULE,
942 .cra_init = mv_cra_init,
943 .cra_u = {
944 .ablkcipher = {
945 .ivsize = AES_BLOCK_SIZE,
946 .min_keysize = AES_MIN_KEY_SIZE,
947 .max_keysize = AES_MAX_KEY_SIZE,
948 .setkey = mv_setkey_aes,
949 .encrypt = mv_enc_aes_cbc,
950 .decrypt = mv_dec_aes_cbc,
951 },
952 },
953 };
954
955 struct ahash_alg mv_sha1_alg = {
956 .init = mv_hash_init,
957 .update = mv_hash_update,
958 .final = mv_hash_final,
959 .finup = mv_hash_finup,
960 .digest = mv_hash_digest,
961 .halg = {
962 .digestsize = SHA1_DIGEST_SIZE,
963 .base = {
964 .cra_name = "sha1",
965 .cra_driver_name = "mv-sha1",
966 .cra_priority = 300,
967 .cra_flags =
968 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
969 .cra_blocksize = SHA1_BLOCK_SIZE,
970 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
971 .cra_init = mv_cra_hash_sha1_init,
972 .cra_exit = mv_cra_hash_exit,
973 .cra_module = THIS_MODULE,
974 }
975 }
976 };
977
978 struct ahash_alg mv_hmac_sha1_alg = {
979 .init = mv_hash_init,
980 .update = mv_hash_update,
981 .final = mv_hash_final,
982 .finup = mv_hash_finup,
983 .digest = mv_hash_digest,
984 .setkey = mv_hash_setkey,
985 .halg = {
986 .digestsize = SHA1_DIGEST_SIZE,
987 .base = {
988 .cra_name = "hmac(sha1)",
989 .cra_driver_name = "mv-hmac-sha1",
990 .cra_priority = 300,
991 .cra_flags =
992 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
993 .cra_blocksize = SHA1_BLOCK_SIZE,
994 .cra_ctxsize = sizeof(struct mv_tfm_hash_ctx),
995 .cra_init = mv_cra_hash_hmac_sha1_init,
996 .cra_exit = mv_cra_hash_exit,
997 .cra_module = THIS_MODULE,
998 }
999 }
1000 };
1001
1002 static int mv_probe(struct platform_device *pdev)
1003 {
1004 struct crypto_priv *cp;
1005 struct resource *res;
1006 int irq;
1007 int ret;
1008
1009 if (cpg) {
1010 printk(KERN_ERR MV_CESA "Second crypto dev?\n");
1011 return -EEXIST;
1012 }
1013
1014 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1015 if (!res)
1016 return -ENXIO;
1017
1018 cp = kzalloc(sizeof(*cp), GFP_KERNEL);
1019 if (!cp)
1020 return -ENOMEM;
1021
1022 spin_lock_init(&cp->lock);
1023 crypto_init_queue(&cp->queue, 50);
1024 cp->reg = ioremap(res->start, resource_size(res));
1025 if (!cp->reg) {
1026 ret = -ENOMEM;
1027 goto err;
1028 }
1029
1030 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram");
1031 if (!res) {
1032 ret = -ENXIO;
1033 goto err_unmap_reg;
1034 }
1035 cp->sram_size = resource_size(res);
1036 cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE;
1037 cp->sram = ioremap(res->start, cp->sram_size);
1038 if (!cp->sram) {
1039 ret = -ENOMEM;
1040 goto err_unmap_reg;
1041 }
1042
1043 irq = platform_get_irq(pdev, 0);
1044 if (irq < 0 || irq == NO_IRQ) {
1045 ret = irq;
1046 goto err_unmap_sram;
1047 }
1048 cp->irq = irq;
1049
1050 platform_set_drvdata(pdev, cp);
1051 cpg = cp;
1052
1053 cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto");
1054 if (IS_ERR(cp->queue_th)) {
1055 ret = PTR_ERR(cp->queue_th);
1056 goto err_unmap_sram;
1057 }
1058
1059 ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev),
1060 cp);
1061 if (ret)
1062 goto err_thread;
1063
1064 writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK);
1065 writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG);
1066
1067 ret = crypto_register_alg(&mv_aes_alg_ecb);
1068 if (ret)
1069 goto err_irq;
1070
1071 ret = crypto_register_alg(&mv_aes_alg_cbc);
1072 if (ret)
1073 goto err_unreg_ecb;
1074
1075 ret = crypto_register_ahash(&mv_sha1_alg);
1076 if (ret == 0)
1077 cpg->has_sha1 = 1;
1078 else
1079 printk(KERN_WARNING MV_CESA "Could not register sha1 driver\n");
1080
1081 ret = crypto_register_ahash(&mv_hmac_sha1_alg);
1082 if (ret == 0) {
1083 cpg->has_hmac_sha1 = 1;
1084 } else {
1085 printk(KERN_WARNING MV_CESA
1086 "Could not register hmac-sha1 driver\n");
1087 }
1088
1089 return 0;
1090 err_unreg_ecb:
1091 crypto_unregister_alg(&mv_aes_alg_ecb);
1092 err_irq:
1093 free_irq(irq, cp);
1094 err_thread:
1095 kthread_stop(cp->queue_th);
1096 err_unmap_sram:
1097 iounmap(cp->sram);
1098 err_unmap_reg:
1099 iounmap(cp->reg);
1100 err:
1101 kfree(cp);
1102 cpg = NULL;
1103 platform_set_drvdata(pdev, NULL);
1104 return ret;
1105 }
1106
1107 static int mv_remove(struct platform_device *pdev)
1108 {
1109 struct crypto_priv *cp = platform_get_drvdata(pdev);
1110
1111 crypto_unregister_alg(&mv_aes_alg_ecb);
1112 crypto_unregister_alg(&mv_aes_alg_cbc);
1113 if (cp->has_sha1)
1114 crypto_unregister_ahash(&mv_sha1_alg);
1115 if (cp->has_hmac_sha1)
1116 crypto_unregister_ahash(&mv_hmac_sha1_alg);
1117 kthread_stop(cp->queue_th);
1118 free_irq(cp->irq, cp);
1119 memset(cp->sram, 0, cp->sram_size);
1120 iounmap(cp->sram);
1121 iounmap(cp->reg);
1122 kfree(cp);
1123 cpg = NULL;
1124 return 0;
1125 }
1126
1127 static struct platform_driver marvell_crypto = {
1128 .probe = mv_probe,
1129 .remove = mv_remove,
1130 .driver = {
1131 .owner = THIS_MODULE,
1132 .name = "mv_crypto",
1133 },
1134 };
1135 MODULE_ALIAS("platform:mv_crypto");
1136
1137 static int __init mv_crypto_init(void)
1138 {
1139 return platform_driver_register(&marvell_crypto);
1140 }
1141 module_init(mv_crypto_init);
1142
1143 static void __exit mv_crypto_exit(void)
1144 {
1145 platform_driver_unregister(&marvell_crypto);
1146 }
1147 module_exit(mv_crypto_exit);
1148
1149 MODULE_AUTHOR("Sebastian Andrzej Siewior <sebastian@breakpoint.cc>");
1150 MODULE_DESCRIPTION("Support for Marvell's cryptographic engine");
1151 MODULE_LICENSE("GPL");
This page took 0.130737 seconds and 5 git commands to generate.