crypto: rockchip - add DT bindings documentation
[deliverable/linux.git] / drivers / crypto / picoxcell_crypto.c
1 /*
2 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18 #include <crypto/internal/aead.h>
19 #include <crypto/aes.h>
20 #include <crypto/algapi.h>
21 #include <crypto/authenc.h>
22 #include <crypto/des.h>
23 #include <crypto/md5.h>
24 #include <crypto/sha.h>
25 #include <crypto/internal/skcipher.h>
26 #include <linux/clk.h>
27 #include <linux/crypto.h>
28 #include <linux/delay.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/dmapool.h>
31 #include <linux/err.h>
32 #include <linux/init.h>
33 #include <linux/interrupt.h>
34 #include <linux/io.h>
35 #include <linux/list.h>
36 #include <linux/module.h>
37 #include <linux/of.h>
38 #include <linux/platform_device.h>
39 #include <linux/pm.h>
40 #include <linux/rtnetlink.h>
41 #include <linux/scatterlist.h>
42 #include <linux/sched.h>
43 #include <linux/sizes.h>
44 #include <linux/slab.h>
45 #include <linux/timer.h>
46
47 #include "picoxcell_crypto_regs.h"
48
49 /*
50 * The threshold for the number of entries in the CMD FIFO available before
51 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
52 * number of interrupts raised to the CPU.
53 */
54 #define CMD0_IRQ_THRESHOLD 1
55
56 /*
57 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
58 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
59 * When there are packets in flight but lower than the threshold, we enable
60 * the timer and at expiry, attempt to remove any processed packets from the
61 * queue and if there are still packets left, schedule the timer again.
62 */
63 #define PACKET_TIMEOUT 1
64
65 /* The priority to register each algorithm with. */
66 #define SPACC_CRYPTO_ALG_PRIORITY 10000
67
68 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
69 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
70 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
71 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
72 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
73 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
74 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
75 #define SPACC_CRYPTO_L2_MAX_CTXS 128
76 #define SPACC_CRYPTO_L2_FIFO_SZ 128
77
78 #define MAX_DDT_LEN 16
79
80 /* DDT format. This must match the hardware DDT format exactly. */
81 struct spacc_ddt {
82 dma_addr_t p;
83 u32 len;
84 };
85
86 /*
87 * Asynchronous crypto request structure.
88 *
89 * This structure defines a request that is either queued for processing or
90 * being processed.
91 */
92 struct spacc_req {
93 struct list_head list;
94 struct spacc_engine *engine;
95 struct crypto_async_request *req;
96 int result;
97 bool is_encrypt;
98 unsigned ctx_id;
99 dma_addr_t src_addr, dst_addr;
100 struct spacc_ddt *src_ddt, *dst_ddt;
101 void (*complete)(struct spacc_req *req);
102 };
103
104 struct spacc_aead {
105 unsigned long ctrl_default;
106 unsigned long type;
107 struct aead_alg alg;
108 struct spacc_engine *engine;
109 struct list_head entry;
110 int key_offs;
111 int iv_offs;
112 };
113
114 struct spacc_engine {
115 void __iomem *regs;
116 struct list_head pending;
117 int next_ctx;
118 spinlock_t hw_lock;
119 int in_flight;
120 struct list_head completed;
121 struct list_head in_progress;
122 struct tasklet_struct complete;
123 unsigned long fifo_sz;
124 void __iomem *cipher_ctx_base;
125 void __iomem *hash_key_base;
126 struct spacc_alg *algs;
127 unsigned num_algs;
128 struct list_head registered_algs;
129 struct spacc_aead *aeads;
130 unsigned num_aeads;
131 struct list_head registered_aeads;
132 size_t cipher_pg_sz;
133 size_t hash_pg_sz;
134 const char *name;
135 struct clk *clk;
136 struct device *dev;
137 unsigned max_ctxs;
138 struct timer_list packet_timeout;
139 unsigned stat_irq_thresh;
140 struct dma_pool *req_pool;
141 };
142
143 /* Algorithm type mask. */
144 #define SPACC_CRYPTO_ALG_MASK 0x7
145
146 /* SPACC definition of a crypto algorithm. */
147 struct spacc_alg {
148 unsigned long ctrl_default;
149 unsigned long type;
150 struct crypto_alg alg;
151 struct spacc_engine *engine;
152 struct list_head entry;
153 int key_offs;
154 int iv_offs;
155 };
156
157 /* Generic context structure for any algorithm type. */
158 struct spacc_generic_ctx {
159 struct spacc_engine *engine;
160 int flags;
161 int key_offs;
162 int iv_offs;
163 };
164
165 /* Block cipher context. */
166 struct spacc_ablk_ctx {
167 struct spacc_generic_ctx generic;
168 u8 key[AES_MAX_KEY_SIZE];
169 u8 key_len;
170 /*
171 * The fallback cipher. If the operation can't be done in hardware,
172 * fallback to a software version.
173 */
174 struct crypto_ablkcipher *sw_cipher;
175 };
176
177 /* AEAD cipher context. */
178 struct spacc_aead_ctx {
179 struct spacc_generic_ctx generic;
180 u8 cipher_key[AES_MAX_KEY_SIZE];
181 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
182 u8 cipher_key_len;
183 u8 hash_key_len;
184 struct crypto_aead *sw_cipher;
185 };
186
187 static int spacc_ablk_submit(struct spacc_req *req);
188
189 static inline struct spacc_alg *to_spacc_alg(struct crypto_alg *alg)
190 {
191 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
192 }
193
194 static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
195 {
196 return container_of(alg, struct spacc_aead, alg);
197 }
198
199 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
200 {
201 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
202
203 return fifo_stat & SPA_FIFO_CMD_FULL;
204 }
205
206 /*
207 * Given a cipher context, and a context number, get the base address of the
208 * context page.
209 *
210 * Returns the address of the context page where the key/context may
211 * be written.
212 */
213 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
214 unsigned indx,
215 bool is_cipher_ctx)
216 {
217 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
218 (indx * ctx->engine->cipher_pg_sz) :
219 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
220 }
221
222 /* The context pages can only be written with 32-bit accesses. */
223 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
224 unsigned count)
225 {
226 const u32 *src32 = (const u32 *) src;
227
228 while (count--)
229 writel(*src32++, dst++);
230 }
231
232 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
233 void __iomem *page_addr, const u8 *key,
234 size_t key_len, const u8 *iv, size_t iv_len)
235 {
236 void __iomem *key_ptr = page_addr + ctx->key_offs;
237 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
238
239 memcpy_toio32(key_ptr, key, key_len / 4);
240 memcpy_toio32(iv_ptr, iv, iv_len / 4);
241 }
242
243 /*
244 * Load a context into the engines context memory.
245 *
246 * Returns the index of the context page where the context was loaded.
247 */
248 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
249 const u8 *ciph_key, size_t ciph_len,
250 const u8 *iv, size_t ivlen, const u8 *hash_key,
251 size_t hash_len)
252 {
253 unsigned indx = ctx->engine->next_ctx++;
254 void __iomem *ciph_page_addr, *hash_page_addr;
255
256 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
257 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
258
259 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
260 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
261 ivlen);
262 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
263 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
264 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
265
266 if (hash_key) {
267 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
268 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
269 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
270 }
271
272 return indx;
273 }
274
275 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
276 {
277 ddt->p = phys;
278 ddt->len = len;
279 }
280
281 /*
282 * Take a crypto request and scatterlists for the data and turn them into DDTs
283 * for passing to the crypto engines. This also DMA maps the data so that the
284 * crypto engines can DMA to/from them.
285 */
286 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
287 struct scatterlist *payload,
288 unsigned nbytes,
289 enum dma_data_direction dir,
290 dma_addr_t *ddt_phys)
291 {
292 unsigned mapped_ents;
293 struct scatterlist *cur;
294 struct spacc_ddt *ddt;
295 int i;
296 int nents;
297
298 nents = sg_nents_for_len(payload, nbytes);
299 if (nents < 0) {
300 dev_err(engine->dev, "Invalid numbers of SG.\n");
301 return NULL;
302 }
303 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
304
305 if (mapped_ents + 1 > MAX_DDT_LEN)
306 goto out;
307
308 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
309 if (!ddt)
310 goto out;
311
312 for_each_sg(payload, cur, mapped_ents, i)
313 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
314 ddt_set(&ddt[mapped_ents], 0, 0);
315
316 return ddt;
317
318 out:
319 dma_unmap_sg(engine->dev, payload, nents, dir);
320 return NULL;
321 }
322
323 static int spacc_aead_make_ddts(struct aead_request *areq)
324 {
325 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
326 struct spacc_req *req = aead_request_ctx(areq);
327 struct spacc_engine *engine = req->engine;
328 struct spacc_ddt *src_ddt, *dst_ddt;
329 unsigned total;
330 int src_nents, dst_nents;
331 struct scatterlist *cur;
332 int i, dst_ents, src_ents;
333
334 total = areq->assoclen + areq->cryptlen;
335 if (req->is_encrypt)
336 total += crypto_aead_authsize(aead);
337
338 src_nents = sg_nents_for_len(areq->src, total);
339 if (src_nents < 0) {
340 dev_err(engine->dev, "Invalid numbers of src SG.\n");
341 return src_nents;
342 }
343 if (src_nents + 1 > MAX_DDT_LEN)
344 return -E2BIG;
345
346 dst_nents = 0;
347 if (areq->src != areq->dst) {
348 dst_nents = sg_nents_for_len(areq->dst, total);
349 if (dst_nents < 0) {
350 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
351 return dst_nents;
352 }
353 if (src_nents + 1 > MAX_DDT_LEN)
354 return -E2BIG;
355 }
356
357 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
358 if (!src_ddt)
359 goto err;
360
361 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
362 if (!dst_ddt)
363 goto err_free_src;
364
365 req->src_ddt = src_ddt;
366 req->dst_ddt = dst_ddt;
367
368 if (dst_nents) {
369 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
370 DMA_TO_DEVICE);
371 if (!src_ents)
372 goto err_free_dst;
373
374 dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
375 DMA_FROM_DEVICE);
376
377 if (!dst_ents) {
378 dma_unmap_sg(engine->dev, areq->src, src_nents,
379 DMA_TO_DEVICE);
380 goto err_free_dst;
381 }
382 } else {
383 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
384 DMA_BIDIRECTIONAL);
385 if (!src_ents)
386 goto err_free_dst;
387 dst_ents = src_ents;
388 }
389
390 /*
391 * Now map in the payload for the source and destination and terminate
392 * with the NULL pointers.
393 */
394 for_each_sg(areq->src, cur, src_ents, i)
395 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
396
397 /* For decryption we need to skip the associated data. */
398 total = req->is_encrypt ? 0 : areq->assoclen;
399 for_each_sg(areq->dst, cur, dst_ents, i) {
400 unsigned len = sg_dma_len(cur);
401
402 if (len <= total) {
403 total -= len;
404 continue;
405 }
406
407 ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
408 }
409
410 ddt_set(src_ddt, 0, 0);
411 ddt_set(dst_ddt, 0, 0);
412
413 return 0;
414
415 err_free_dst:
416 dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
417 err_free_src:
418 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
419 err:
420 return -ENOMEM;
421 }
422
423 static void spacc_aead_free_ddts(struct spacc_req *req)
424 {
425 struct aead_request *areq = container_of(req->req, struct aead_request,
426 base);
427 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
428 unsigned total = areq->assoclen + areq->cryptlen +
429 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
430 struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
431 struct spacc_engine *engine = aead_ctx->generic.engine;
432 int nents = sg_nents_for_len(areq->src, total);
433
434 /* sg_nents_for_len should not fail since it works when mapping sg */
435 if (unlikely(nents < 0)) {
436 dev_err(engine->dev, "Invalid numbers of src SG.\n");
437 return;
438 }
439
440 if (areq->src != areq->dst) {
441 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
442 nents = sg_nents_for_len(areq->dst, total);
443 if (unlikely(nents < 0)) {
444 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
445 return;
446 }
447 dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
448 } else
449 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
450
451 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
452 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
453 }
454
455 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
456 dma_addr_t ddt_addr, struct scatterlist *payload,
457 unsigned nbytes, enum dma_data_direction dir)
458 {
459 int nents = sg_nents_for_len(payload, nbytes);
460
461 if (nents < 0) {
462 dev_err(req->engine->dev, "Invalid numbers of SG.\n");
463 return;
464 }
465
466 dma_unmap_sg(req->engine->dev, payload, nents, dir);
467 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
468 }
469
470 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
471 unsigned int keylen)
472 {
473 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
474 struct crypto_authenc_keys keys;
475 int err;
476
477 crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
478 crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
479 CRYPTO_TFM_REQ_MASK);
480 err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
481 crypto_aead_clear_flags(tfm, CRYPTO_TFM_RES_MASK);
482 crypto_aead_set_flags(tfm, crypto_aead_get_flags(ctx->sw_cipher) &
483 CRYPTO_TFM_RES_MASK);
484 if (err)
485 return err;
486
487 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
488 goto badkey;
489
490 if (keys.enckeylen > AES_MAX_KEY_SIZE)
491 goto badkey;
492
493 if (keys.authkeylen > sizeof(ctx->hash_ctx))
494 goto badkey;
495
496 memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
497 ctx->cipher_key_len = keys.enckeylen;
498
499 memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
500 ctx->hash_key_len = keys.authkeylen;
501
502 return 0;
503
504 badkey:
505 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
506 return -EINVAL;
507 }
508
509 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
510 unsigned int authsize)
511 {
512 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
513
514 return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
515 }
516
517 /*
518 * Check if an AEAD request requires a fallback operation. Some requests can't
519 * be completed in hardware because the hardware may not support certain key
520 * sizes. In these cases we need to complete the request in software.
521 */
522 static int spacc_aead_need_fallback(struct aead_request *aead_req)
523 {
524 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
525 struct aead_alg *alg = crypto_aead_alg(aead);
526 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
527 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
528
529 /*
530 * If we have a non-supported key-length, then we need to do a
531 * software fallback.
532 */
533 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
534 SPA_CTRL_CIPH_ALG_AES &&
535 ctx->cipher_key_len != AES_KEYSIZE_128 &&
536 ctx->cipher_key_len != AES_KEYSIZE_256)
537 return 1;
538
539 return 0;
540 }
541
542 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
543 bool is_encrypt)
544 {
545 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
546 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
547 struct aead_request *subreq = aead_request_ctx(req);
548
549 aead_request_set_tfm(subreq, ctx->sw_cipher);
550 aead_request_set_callback(subreq, req->base.flags,
551 req->base.complete, req->base.data);
552 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
553 req->iv);
554 aead_request_set_ad(subreq, req->assoclen);
555
556 return is_encrypt ? crypto_aead_encrypt(subreq) :
557 crypto_aead_decrypt(subreq);
558 }
559
560 static void spacc_aead_complete(struct spacc_req *req)
561 {
562 spacc_aead_free_ddts(req);
563 req->req->complete(req->req, req->result);
564 }
565
566 static int spacc_aead_submit(struct spacc_req *req)
567 {
568 struct aead_request *aead_req =
569 container_of(req->req, struct aead_request, base);
570 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
571 unsigned int authsize = crypto_aead_authsize(aead);
572 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
573 struct aead_alg *alg = crypto_aead_alg(aead);
574 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
575 struct spacc_engine *engine = ctx->generic.engine;
576 u32 ctrl, proc_len, assoc_len;
577
578 req->result = -EINPROGRESS;
579 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
580 ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
581 ctx->hash_ctx, ctx->hash_key_len);
582
583 /* Set the source and destination DDT pointers. */
584 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
585 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
586 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
587
588 assoc_len = aead_req->assoclen;
589 proc_len = aead_req->cryptlen + assoc_len;
590
591 /*
592 * If we are decrypting, we need to take the length of the ICV out of
593 * the processing length.
594 */
595 if (!req->is_encrypt)
596 proc_len -= authsize;
597
598 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
599 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
600 writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
601 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
602 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
603
604 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
605 (1 << SPA_CTRL_ICV_APPEND);
606 if (req->is_encrypt)
607 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
608 else
609 ctrl |= (1 << SPA_CTRL_KEY_EXP);
610
611 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
612
613 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
614
615 return -EINPROGRESS;
616 }
617
618 static int spacc_req_submit(struct spacc_req *req);
619
620 static void spacc_push(struct spacc_engine *engine)
621 {
622 struct spacc_req *req;
623
624 while (!list_empty(&engine->pending) &&
625 engine->in_flight + 1 <= engine->fifo_sz) {
626
627 ++engine->in_flight;
628 req = list_first_entry(&engine->pending, struct spacc_req,
629 list);
630 list_move_tail(&req->list, &engine->in_progress);
631
632 req->result = spacc_req_submit(req);
633 }
634 }
635
636 /*
637 * Setup an AEAD request for processing. This will configure the engine, load
638 * the context and then start the packet processing.
639 */
640 static int spacc_aead_setup(struct aead_request *req,
641 unsigned alg_type, bool is_encrypt)
642 {
643 struct crypto_aead *aead = crypto_aead_reqtfm(req);
644 struct aead_alg *alg = crypto_aead_alg(aead);
645 struct spacc_engine *engine = to_spacc_aead(alg)->engine;
646 struct spacc_req *dev_req = aead_request_ctx(req);
647 int err;
648 unsigned long flags;
649
650 dev_req->req = &req->base;
651 dev_req->is_encrypt = is_encrypt;
652 dev_req->result = -EBUSY;
653 dev_req->engine = engine;
654 dev_req->complete = spacc_aead_complete;
655
656 if (unlikely(spacc_aead_need_fallback(req) ||
657 ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
658 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
659
660 if (err)
661 goto out;
662
663 err = -EINPROGRESS;
664 spin_lock_irqsave(&engine->hw_lock, flags);
665 if (unlikely(spacc_fifo_cmd_full(engine)) ||
666 engine->in_flight + 1 > engine->fifo_sz) {
667 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
668 err = -EBUSY;
669 spin_unlock_irqrestore(&engine->hw_lock, flags);
670 goto out_free_ddts;
671 }
672 list_add_tail(&dev_req->list, &engine->pending);
673 } else {
674 list_add_tail(&dev_req->list, &engine->pending);
675 spacc_push(engine);
676 }
677 spin_unlock_irqrestore(&engine->hw_lock, flags);
678
679 goto out;
680
681 out_free_ddts:
682 spacc_aead_free_ddts(dev_req);
683 out:
684 return err;
685 }
686
687 static int spacc_aead_encrypt(struct aead_request *req)
688 {
689 struct crypto_aead *aead = crypto_aead_reqtfm(req);
690 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
691
692 return spacc_aead_setup(req, alg->type, 1);
693 }
694
695 static int spacc_aead_decrypt(struct aead_request *req)
696 {
697 struct crypto_aead *aead = crypto_aead_reqtfm(req);
698 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
699
700 return spacc_aead_setup(req, alg->type, 0);
701 }
702
703 /*
704 * Initialise a new AEAD context. This is responsible for allocating the
705 * fallback cipher and initialising the context.
706 */
707 static int spacc_aead_cra_init(struct crypto_aead *tfm)
708 {
709 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
710 struct aead_alg *alg = crypto_aead_alg(tfm);
711 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
712 struct spacc_engine *engine = spacc_alg->engine;
713
714 ctx->generic.flags = spacc_alg->type;
715 ctx->generic.engine = engine;
716 ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
717 CRYPTO_ALG_NEED_FALLBACK);
718 if (IS_ERR(ctx->sw_cipher))
719 return PTR_ERR(ctx->sw_cipher);
720 ctx->generic.key_offs = spacc_alg->key_offs;
721 ctx->generic.iv_offs = spacc_alg->iv_offs;
722
723 crypto_aead_set_reqsize(
724 tfm,
725 max(sizeof(struct spacc_req),
726 sizeof(struct aead_request) +
727 crypto_aead_reqsize(ctx->sw_cipher)));
728
729 return 0;
730 }
731
732 /*
733 * Destructor for an AEAD context. This is called when the transform is freed
734 * and must free the fallback cipher.
735 */
736 static void spacc_aead_cra_exit(struct crypto_aead *tfm)
737 {
738 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
739
740 crypto_free_aead(ctx->sw_cipher);
741 }
742
743 /*
744 * Set the DES key for a block cipher transform. This also performs weak key
745 * checking if the transform has requested it.
746 */
747 static int spacc_des_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
748 unsigned int len)
749 {
750 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
751 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
752 u32 tmp[DES_EXPKEY_WORDS];
753
754 if (len > DES3_EDE_KEY_SIZE) {
755 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
756 return -EINVAL;
757 }
758
759 if (unlikely(!des_ekey(tmp, key)) &&
760 (crypto_ablkcipher_get_flags(cipher) & CRYPTO_TFM_REQ_WEAK_KEY)) {
761 tfm->crt_flags |= CRYPTO_TFM_RES_WEAK_KEY;
762 return -EINVAL;
763 }
764
765 memcpy(ctx->key, key, len);
766 ctx->key_len = len;
767
768 return 0;
769 }
770
771 /*
772 * Set the key for an AES block cipher. Some key lengths are not supported in
773 * hardware so this must also check whether a fallback is needed.
774 */
775 static int spacc_aes_setkey(struct crypto_ablkcipher *cipher, const u8 *key,
776 unsigned int len)
777 {
778 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
779 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
780 int err = 0;
781
782 if (len > AES_MAX_KEY_SIZE) {
783 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
784 return -EINVAL;
785 }
786
787 /*
788 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
789 * request for any other size (192 bits) then we need to do a software
790 * fallback.
791 */
792 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
793 ctx->sw_cipher) {
794 /*
795 * Set the fallback transform to use the same request flags as
796 * the hardware transform.
797 */
798 ctx->sw_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
799 ctx->sw_cipher->base.crt_flags |=
800 cipher->base.crt_flags & CRYPTO_TFM_REQ_MASK;
801
802 err = crypto_ablkcipher_setkey(ctx->sw_cipher, key, len);
803 if (err)
804 goto sw_setkey_failed;
805 } else if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256 &&
806 !ctx->sw_cipher)
807 err = -EINVAL;
808
809 memcpy(ctx->key, key, len);
810 ctx->key_len = len;
811
812 sw_setkey_failed:
813 if (err && ctx->sw_cipher) {
814 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
815 tfm->crt_flags |=
816 ctx->sw_cipher->base.crt_flags & CRYPTO_TFM_RES_MASK;
817 }
818
819 return err;
820 }
821
822 static int spacc_kasumi_f8_setkey(struct crypto_ablkcipher *cipher,
823 const u8 *key, unsigned int len)
824 {
825 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
826 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
827 int err = 0;
828
829 if (len > AES_MAX_KEY_SIZE) {
830 crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN);
831 err = -EINVAL;
832 goto out;
833 }
834
835 memcpy(ctx->key, key, len);
836 ctx->key_len = len;
837
838 out:
839 return err;
840 }
841
842 static int spacc_ablk_need_fallback(struct spacc_req *req)
843 {
844 struct spacc_ablk_ctx *ctx;
845 struct crypto_tfm *tfm = req->req->tfm;
846 struct crypto_alg *alg = req->req->tfm->__crt_alg;
847 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
848
849 ctx = crypto_tfm_ctx(tfm);
850
851 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
852 SPA_CTRL_CIPH_ALG_AES &&
853 ctx->key_len != AES_KEYSIZE_128 &&
854 ctx->key_len != AES_KEYSIZE_256;
855 }
856
857 static void spacc_ablk_complete(struct spacc_req *req)
858 {
859 struct ablkcipher_request *ablk_req =
860 container_of(req->req, struct ablkcipher_request, base);
861
862 if (ablk_req->src != ablk_req->dst) {
863 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
864 ablk_req->nbytes, DMA_TO_DEVICE);
865 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
866 ablk_req->nbytes, DMA_FROM_DEVICE);
867 } else
868 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
869 ablk_req->nbytes, DMA_BIDIRECTIONAL);
870
871 req->req->complete(req->req, req->result);
872 }
873
874 static int spacc_ablk_submit(struct spacc_req *req)
875 {
876 struct crypto_tfm *tfm = req->req->tfm;
877 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
878 struct ablkcipher_request *ablk_req = ablkcipher_request_cast(req->req);
879 struct crypto_alg *alg = req->req->tfm->__crt_alg;
880 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
881 struct spacc_engine *engine = ctx->generic.engine;
882 u32 ctrl;
883
884 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
885 ctx->key_len, ablk_req->info, alg->cra_ablkcipher.ivsize,
886 NULL, 0);
887
888 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
889 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
890 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
891
892 writel(ablk_req->nbytes, engine->regs + SPA_PROC_LEN_REG_OFFSET);
893 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
894 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
895 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
896
897 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
898 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
899 (1 << SPA_CTRL_KEY_EXP));
900
901 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
902
903 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
904
905 return -EINPROGRESS;
906 }
907
908 static int spacc_ablk_do_fallback(struct ablkcipher_request *req,
909 unsigned alg_type, bool is_encrypt)
910 {
911 struct crypto_tfm *old_tfm =
912 crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
913 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
914 int err;
915
916 if (!ctx->sw_cipher)
917 return -EINVAL;
918
919 /*
920 * Change the request to use the software fallback transform, and once
921 * the ciphering has completed, put the old transform back into the
922 * request.
923 */
924 ablkcipher_request_set_tfm(req, ctx->sw_cipher);
925 err = is_encrypt ? crypto_ablkcipher_encrypt(req) :
926 crypto_ablkcipher_decrypt(req);
927 ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(old_tfm));
928
929 return err;
930 }
931
932 static int spacc_ablk_setup(struct ablkcipher_request *req, unsigned alg_type,
933 bool is_encrypt)
934 {
935 struct crypto_alg *alg = req->base.tfm->__crt_alg;
936 struct spacc_engine *engine = to_spacc_alg(alg)->engine;
937 struct spacc_req *dev_req = ablkcipher_request_ctx(req);
938 unsigned long flags;
939 int err = -ENOMEM;
940
941 dev_req->req = &req->base;
942 dev_req->is_encrypt = is_encrypt;
943 dev_req->engine = engine;
944 dev_req->complete = spacc_ablk_complete;
945 dev_req->result = -EINPROGRESS;
946
947 if (unlikely(spacc_ablk_need_fallback(dev_req)))
948 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
949
950 /*
951 * Create the DDT's for the engine. If we share the same source and
952 * destination then we can optimize by reusing the DDT's.
953 */
954 if (req->src != req->dst) {
955 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
956 req->nbytes, DMA_TO_DEVICE, &dev_req->src_addr);
957 if (!dev_req->src_ddt)
958 goto out;
959
960 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
961 req->nbytes, DMA_FROM_DEVICE, &dev_req->dst_addr);
962 if (!dev_req->dst_ddt)
963 goto out_free_src;
964 } else {
965 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
966 req->nbytes, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
967 if (!dev_req->dst_ddt)
968 goto out;
969
970 dev_req->src_ddt = NULL;
971 dev_req->src_addr = dev_req->dst_addr;
972 }
973
974 err = -EINPROGRESS;
975 spin_lock_irqsave(&engine->hw_lock, flags);
976 /*
977 * Check if the engine will accept the operation now. If it won't then
978 * we either stick it on the end of a pending list if we can backlog,
979 * or bailout with an error if not.
980 */
981 if (unlikely(spacc_fifo_cmd_full(engine)) ||
982 engine->in_flight + 1 > engine->fifo_sz) {
983 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
984 err = -EBUSY;
985 spin_unlock_irqrestore(&engine->hw_lock, flags);
986 goto out_free_ddts;
987 }
988 list_add_tail(&dev_req->list, &engine->pending);
989 } else {
990 list_add_tail(&dev_req->list, &engine->pending);
991 spacc_push(engine);
992 }
993 spin_unlock_irqrestore(&engine->hw_lock, flags);
994
995 goto out;
996
997 out_free_ddts:
998 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
999 req->nbytes, req->src == req->dst ?
1000 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
1001 out_free_src:
1002 if (req->src != req->dst)
1003 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
1004 req->src, req->nbytes, DMA_TO_DEVICE);
1005 out:
1006 return err;
1007 }
1008
1009 static int spacc_ablk_cra_init(struct crypto_tfm *tfm)
1010 {
1011 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1012 struct crypto_alg *alg = tfm->__crt_alg;
1013 struct spacc_alg *spacc_alg = to_spacc_alg(alg);
1014 struct spacc_engine *engine = spacc_alg->engine;
1015
1016 ctx->generic.flags = spacc_alg->type;
1017 ctx->generic.engine = engine;
1018 if (alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1019 ctx->sw_cipher = crypto_alloc_ablkcipher(alg->cra_name, 0,
1020 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
1021 if (IS_ERR(ctx->sw_cipher)) {
1022 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1023 alg->cra_name);
1024 ctx->sw_cipher = NULL;
1025 }
1026 }
1027 ctx->generic.key_offs = spacc_alg->key_offs;
1028 ctx->generic.iv_offs = spacc_alg->iv_offs;
1029
1030 tfm->crt_ablkcipher.reqsize = sizeof(struct spacc_req);
1031
1032 return 0;
1033 }
1034
1035 static void spacc_ablk_cra_exit(struct crypto_tfm *tfm)
1036 {
1037 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
1038
1039 if (ctx->sw_cipher)
1040 crypto_free_ablkcipher(ctx->sw_cipher);
1041 ctx->sw_cipher = NULL;
1042 }
1043
1044 static int spacc_ablk_encrypt(struct ablkcipher_request *req)
1045 {
1046 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1047 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1048 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1049
1050 return spacc_ablk_setup(req, alg->type, 1);
1051 }
1052
1053 static int spacc_ablk_decrypt(struct ablkcipher_request *req)
1054 {
1055 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(req);
1056 struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher);
1057 struct spacc_alg *alg = to_spacc_alg(tfm->__crt_alg);
1058
1059 return spacc_ablk_setup(req, alg->type, 0);
1060 }
1061
1062 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1063 {
1064 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1065 SPA_FIFO_STAT_EMPTY;
1066 }
1067
1068 static void spacc_process_done(struct spacc_engine *engine)
1069 {
1070 struct spacc_req *req;
1071 unsigned long flags;
1072
1073 spin_lock_irqsave(&engine->hw_lock, flags);
1074
1075 while (!spacc_fifo_stat_empty(engine)) {
1076 req = list_first_entry(&engine->in_progress, struct spacc_req,
1077 list);
1078 list_move_tail(&req->list, &engine->completed);
1079 --engine->in_flight;
1080
1081 /* POP the status register. */
1082 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1083 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1084 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1085
1086 /*
1087 * Convert the SPAcc error status into the standard POSIX error
1088 * codes.
1089 */
1090 if (unlikely(req->result)) {
1091 switch (req->result) {
1092 case SPA_STATUS_ICV_FAIL:
1093 req->result = -EBADMSG;
1094 break;
1095
1096 case SPA_STATUS_MEMORY_ERROR:
1097 dev_warn(engine->dev,
1098 "memory error triggered\n");
1099 req->result = -EFAULT;
1100 break;
1101
1102 case SPA_STATUS_BLOCK_ERROR:
1103 dev_warn(engine->dev,
1104 "block error triggered\n");
1105 req->result = -EIO;
1106 break;
1107 }
1108 }
1109 }
1110
1111 tasklet_schedule(&engine->complete);
1112
1113 spin_unlock_irqrestore(&engine->hw_lock, flags);
1114 }
1115
1116 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1117 {
1118 struct spacc_engine *engine = (struct spacc_engine *)dev;
1119 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1120
1121 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1122 spacc_process_done(engine);
1123
1124 return IRQ_HANDLED;
1125 }
1126
1127 static void spacc_packet_timeout(unsigned long data)
1128 {
1129 struct spacc_engine *engine = (struct spacc_engine *)data;
1130
1131 spacc_process_done(engine);
1132 }
1133
1134 static int spacc_req_submit(struct spacc_req *req)
1135 {
1136 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1137
1138 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1139 return spacc_aead_submit(req);
1140 else
1141 return spacc_ablk_submit(req);
1142 }
1143
1144 static void spacc_spacc_complete(unsigned long data)
1145 {
1146 struct spacc_engine *engine = (struct spacc_engine *)data;
1147 struct spacc_req *req, *tmp;
1148 unsigned long flags;
1149 LIST_HEAD(completed);
1150
1151 spin_lock_irqsave(&engine->hw_lock, flags);
1152
1153 list_splice_init(&engine->completed, &completed);
1154 spacc_push(engine);
1155 if (engine->in_flight)
1156 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1157
1158 spin_unlock_irqrestore(&engine->hw_lock, flags);
1159
1160 list_for_each_entry_safe(req, tmp, &completed, list) {
1161 list_del(&req->list);
1162 req->complete(req);
1163 }
1164 }
1165
1166 #ifdef CONFIG_PM
1167 static int spacc_suspend(struct device *dev)
1168 {
1169 struct platform_device *pdev = to_platform_device(dev);
1170 struct spacc_engine *engine = platform_get_drvdata(pdev);
1171
1172 /*
1173 * We only support standby mode. All we have to do is gate the clock to
1174 * the spacc. The hardware will preserve state until we turn it back
1175 * on again.
1176 */
1177 clk_disable(engine->clk);
1178
1179 return 0;
1180 }
1181
1182 static int spacc_resume(struct device *dev)
1183 {
1184 struct platform_device *pdev = to_platform_device(dev);
1185 struct spacc_engine *engine = platform_get_drvdata(pdev);
1186
1187 return clk_enable(engine->clk);
1188 }
1189
1190 static const struct dev_pm_ops spacc_pm_ops = {
1191 .suspend = spacc_suspend,
1192 .resume = spacc_resume,
1193 };
1194 #endif /* CONFIG_PM */
1195
1196 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1197 {
1198 return dev ? platform_get_drvdata(to_platform_device(dev)) : NULL;
1199 }
1200
1201 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1202 struct device_attribute *attr,
1203 char *buf)
1204 {
1205 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1206
1207 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1208 }
1209
1210 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1211 struct device_attribute *attr,
1212 const char *buf, size_t len)
1213 {
1214 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1215 unsigned long thresh;
1216
1217 if (kstrtoul(buf, 0, &thresh))
1218 return -EINVAL;
1219
1220 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1221
1222 engine->stat_irq_thresh = thresh;
1223 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1224 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1225
1226 return len;
1227 }
1228 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1229 spacc_stat_irq_thresh_store);
1230
1231 static struct spacc_alg ipsec_engine_algs[] = {
1232 {
1233 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1234 .key_offs = 0,
1235 .iv_offs = AES_MAX_KEY_SIZE,
1236 .alg = {
1237 .cra_name = "cbc(aes)",
1238 .cra_driver_name = "cbc-aes-picoxcell",
1239 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1240 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1241 CRYPTO_ALG_KERN_DRIVER_ONLY |
1242 CRYPTO_ALG_ASYNC |
1243 CRYPTO_ALG_NEED_FALLBACK,
1244 .cra_blocksize = AES_BLOCK_SIZE,
1245 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1246 .cra_type = &crypto_ablkcipher_type,
1247 .cra_module = THIS_MODULE,
1248 .cra_ablkcipher = {
1249 .setkey = spacc_aes_setkey,
1250 .encrypt = spacc_ablk_encrypt,
1251 .decrypt = spacc_ablk_decrypt,
1252 .min_keysize = AES_MIN_KEY_SIZE,
1253 .max_keysize = AES_MAX_KEY_SIZE,
1254 .ivsize = AES_BLOCK_SIZE,
1255 },
1256 .cra_init = spacc_ablk_cra_init,
1257 .cra_exit = spacc_ablk_cra_exit,
1258 },
1259 },
1260 {
1261 .key_offs = 0,
1262 .iv_offs = AES_MAX_KEY_SIZE,
1263 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1264 .alg = {
1265 .cra_name = "ecb(aes)",
1266 .cra_driver_name = "ecb-aes-picoxcell",
1267 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1268 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1269 CRYPTO_ALG_KERN_DRIVER_ONLY |
1270 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK,
1271 .cra_blocksize = AES_BLOCK_SIZE,
1272 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1273 .cra_type = &crypto_ablkcipher_type,
1274 .cra_module = THIS_MODULE,
1275 .cra_ablkcipher = {
1276 .setkey = spacc_aes_setkey,
1277 .encrypt = spacc_ablk_encrypt,
1278 .decrypt = spacc_ablk_decrypt,
1279 .min_keysize = AES_MIN_KEY_SIZE,
1280 .max_keysize = AES_MAX_KEY_SIZE,
1281 },
1282 .cra_init = spacc_ablk_cra_init,
1283 .cra_exit = spacc_ablk_cra_exit,
1284 },
1285 },
1286 {
1287 .key_offs = DES_BLOCK_SIZE,
1288 .iv_offs = 0,
1289 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1290 .alg = {
1291 .cra_name = "cbc(des)",
1292 .cra_driver_name = "cbc-des-picoxcell",
1293 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1294 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1295 CRYPTO_ALG_ASYNC |
1296 CRYPTO_ALG_KERN_DRIVER_ONLY,
1297 .cra_blocksize = DES_BLOCK_SIZE,
1298 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1299 .cra_type = &crypto_ablkcipher_type,
1300 .cra_module = THIS_MODULE,
1301 .cra_ablkcipher = {
1302 .setkey = spacc_des_setkey,
1303 .encrypt = spacc_ablk_encrypt,
1304 .decrypt = spacc_ablk_decrypt,
1305 .min_keysize = DES_KEY_SIZE,
1306 .max_keysize = DES_KEY_SIZE,
1307 .ivsize = DES_BLOCK_SIZE,
1308 },
1309 .cra_init = spacc_ablk_cra_init,
1310 .cra_exit = spacc_ablk_cra_exit,
1311 },
1312 },
1313 {
1314 .key_offs = DES_BLOCK_SIZE,
1315 .iv_offs = 0,
1316 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1317 .alg = {
1318 .cra_name = "ecb(des)",
1319 .cra_driver_name = "ecb-des-picoxcell",
1320 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1321 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1322 CRYPTO_ALG_ASYNC |
1323 CRYPTO_ALG_KERN_DRIVER_ONLY,
1324 .cra_blocksize = DES_BLOCK_SIZE,
1325 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1326 .cra_type = &crypto_ablkcipher_type,
1327 .cra_module = THIS_MODULE,
1328 .cra_ablkcipher = {
1329 .setkey = spacc_des_setkey,
1330 .encrypt = spacc_ablk_encrypt,
1331 .decrypt = spacc_ablk_decrypt,
1332 .min_keysize = DES_KEY_SIZE,
1333 .max_keysize = DES_KEY_SIZE,
1334 },
1335 .cra_init = spacc_ablk_cra_init,
1336 .cra_exit = spacc_ablk_cra_exit,
1337 },
1338 },
1339 {
1340 .key_offs = DES_BLOCK_SIZE,
1341 .iv_offs = 0,
1342 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1343 .alg = {
1344 .cra_name = "cbc(des3_ede)",
1345 .cra_driver_name = "cbc-des3-ede-picoxcell",
1346 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1347 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1348 CRYPTO_ALG_ASYNC |
1349 CRYPTO_ALG_KERN_DRIVER_ONLY,
1350 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1351 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1352 .cra_type = &crypto_ablkcipher_type,
1353 .cra_module = THIS_MODULE,
1354 .cra_ablkcipher = {
1355 .setkey = spacc_des_setkey,
1356 .encrypt = spacc_ablk_encrypt,
1357 .decrypt = spacc_ablk_decrypt,
1358 .min_keysize = DES3_EDE_KEY_SIZE,
1359 .max_keysize = DES3_EDE_KEY_SIZE,
1360 .ivsize = DES3_EDE_BLOCK_SIZE,
1361 },
1362 .cra_init = spacc_ablk_cra_init,
1363 .cra_exit = spacc_ablk_cra_exit,
1364 },
1365 },
1366 {
1367 .key_offs = DES_BLOCK_SIZE,
1368 .iv_offs = 0,
1369 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1370 .alg = {
1371 .cra_name = "ecb(des3_ede)",
1372 .cra_driver_name = "ecb-des3-ede-picoxcell",
1373 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1374 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1375 CRYPTO_ALG_ASYNC |
1376 CRYPTO_ALG_KERN_DRIVER_ONLY,
1377 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1378 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1379 .cra_type = &crypto_ablkcipher_type,
1380 .cra_module = THIS_MODULE,
1381 .cra_ablkcipher = {
1382 .setkey = spacc_des_setkey,
1383 .encrypt = spacc_ablk_encrypt,
1384 .decrypt = spacc_ablk_decrypt,
1385 .min_keysize = DES3_EDE_KEY_SIZE,
1386 .max_keysize = DES3_EDE_KEY_SIZE,
1387 },
1388 .cra_init = spacc_ablk_cra_init,
1389 .cra_exit = spacc_ablk_cra_exit,
1390 },
1391 },
1392 };
1393
1394 static struct spacc_aead ipsec_engine_aeads[] = {
1395 {
1396 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1397 SPA_CTRL_CIPH_MODE_CBC |
1398 SPA_CTRL_HASH_ALG_SHA |
1399 SPA_CTRL_HASH_MODE_HMAC,
1400 .key_offs = 0,
1401 .iv_offs = AES_MAX_KEY_SIZE,
1402 .alg = {
1403 .base = {
1404 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1405 .cra_driver_name = "authenc-hmac-sha1-"
1406 "cbc-aes-picoxcell",
1407 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1408 .cra_flags = CRYPTO_ALG_ASYNC |
1409 CRYPTO_ALG_NEED_FALLBACK |
1410 CRYPTO_ALG_KERN_DRIVER_ONLY,
1411 .cra_blocksize = AES_BLOCK_SIZE,
1412 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1413 .cra_module = THIS_MODULE,
1414 },
1415 .setkey = spacc_aead_setkey,
1416 .setauthsize = spacc_aead_setauthsize,
1417 .encrypt = spacc_aead_encrypt,
1418 .decrypt = spacc_aead_decrypt,
1419 .ivsize = AES_BLOCK_SIZE,
1420 .maxauthsize = SHA1_DIGEST_SIZE,
1421 .init = spacc_aead_cra_init,
1422 .exit = spacc_aead_cra_exit,
1423 },
1424 },
1425 {
1426 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1427 SPA_CTRL_CIPH_MODE_CBC |
1428 SPA_CTRL_HASH_ALG_SHA256 |
1429 SPA_CTRL_HASH_MODE_HMAC,
1430 .key_offs = 0,
1431 .iv_offs = AES_MAX_KEY_SIZE,
1432 .alg = {
1433 .base = {
1434 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1435 .cra_driver_name = "authenc-hmac-sha256-"
1436 "cbc-aes-picoxcell",
1437 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1438 .cra_flags = CRYPTO_ALG_ASYNC |
1439 CRYPTO_ALG_NEED_FALLBACK |
1440 CRYPTO_ALG_KERN_DRIVER_ONLY,
1441 .cra_blocksize = AES_BLOCK_SIZE,
1442 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1443 .cra_module = THIS_MODULE,
1444 },
1445 .setkey = spacc_aead_setkey,
1446 .setauthsize = spacc_aead_setauthsize,
1447 .encrypt = spacc_aead_encrypt,
1448 .decrypt = spacc_aead_decrypt,
1449 .ivsize = AES_BLOCK_SIZE,
1450 .maxauthsize = SHA256_DIGEST_SIZE,
1451 .init = spacc_aead_cra_init,
1452 .exit = spacc_aead_cra_exit,
1453 },
1454 },
1455 {
1456 .key_offs = 0,
1457 .iv_offs = AES_MAX_KEY_SIZE,
1458 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1459 SPA_CTRL_CIPH_MODE_CBC |
1460 SPA_CTRL_HASH_ALG_MD5 |
1461 SPA_CTRL_HASH_MODE_HMAC,
1462 .alg = {
1463 .base = {
1464 .cra_name = "authenc(hmac(md5),cbc(aes))",
1465 .cra_driver_name = "authenc-hmac-md5-"
1466 "cbc-aes-picoxcell",
1467 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1468 .cra_flags = CRYPTO_ALG_ASYNC |
1469 CRYPTO_ALG_NEED_FALLBACK |
1470 CRYPTO_ALG_KERN_DRIVER_ONLY,
1471 .cra_blocksize = AES_BLOCK_SIZE,
1472 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1473 .cra_module = THIS_MODULE,
1474 },
1475 .setkey = spacc_aead_setkey,
1476 .setauthsize = spacc_aead_setauthsize,
1477 .encrypt = spacc_aead_encrypt,
1478 .decrypt = spacc_aead_decrypt,
1479 .ivsize = AES_BLOCK_SIZE,
1480 .maxauthsize = MD5_DIGEST_SIZE,
1481 .init = spacc_aead_cra_init,
1482 .exit = spacc_aead_cra_exit,
1483 },
1484 },
1485 {
1486 .key_offs = DES_BLOCK_SIZE,
1487 .iv_offs = 0,
1488 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1489 SPA_CTRL_CIPH_MODE_CBC |
1490 SPA_CTRL_HASH_ALG_SHA |
1491 SPA_CTRL_HASH_MODE_HMAC,
1492 .alg = {
1493 .base = {
1494 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1495 .cra_driver_name = "authenc-hmac-sha1-"
1496 "cbc-3des-picoxcell",
1497 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1498 .cra_flags = CRYPTO_ALG_ASYNC |
1499 CRYPTO_ALG_NEED_FALLBACK |
1500 CRYPTO_ALG_KERN_DRIVER_ONLY,
1501 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1502 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1503 .cra_module = THIS_MODULE,
1504 },
1505 .setkey = spacc_aead_setkey,
1506 .setauthsize = spacc_aead_setauthsize,
1507 .encrypt = spacc_aead_encrypt,
1508 .decrypt = spacc_aead_decrypt,
1509 .ivsize = DES3_EDE_BLOCK_SIZE,
1510 .maxauthsize = SHA1_DIGEST_SIZE,
1511 .init = spacc_aead_cra_init,
1512 .exit = spacc_aead_cra_exit,
1513 },
1514 },
1515 {
1516 .key_offs = DES_BLOCK_SIZE,
1517 .iv_offs = 0,
1518 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1519 SPA_CTRL_CIPH_MODE_CBC |
1520 SPA_CTRL_HASH_ALG_SHA256 |
1521 SPA_CTRL_HASH_MODE_HMAC,
1522 .alg = {
1523 .base = {
1524 .cra_name = "authenc(hmac(sha256),"
1525 "cbc(des3_ede))",
1526 .cra_driver_name = "authenc-hmac-sha256-"
1527 "cbc-3des-picoxcell",
1528 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1529 .cra_flags = CRYPTO_ALG_ASYNC |
1530 CRYPTO_ALG_NEED_FALLBACK |
1531 CRYPTO_ALG_KERN_DRIVER_ONLY,
1532 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1533 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1534 .cra_module = THIS_MODULE,
1535 },
1536 .setkey = spacc_aead_setkey,
1537 .setauthsize = spacc_aead_setauthsize,
1538 .encrypt = spacc_aead_encrypt,
1539 .decrypt = spacc_aead_decrypt,
1540 .ivsize = DES3_EDE_BLOCK_SIZE,
1541 .maxauthsize = SHA256_DIGEST_SIZE,
1542 .init = spacc_aead_cra_init,
1543 .exit = spacc_aead_cra_exit,
1544 },
1545 },
1546 {
1547 .key_offs = DES_BLOCK_SIZE,
1548 .iv_offs = 0,
1549 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1550 SPA_CTRL_CIPH_MODE_CBC |
1551 SPA_CTRL_HASH_ALG_MD5 |
1552 SPA_CTRL_HASH_MODE_HMAC,
1553 .alg = {
1554 .base = {
1555 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1556 .cra_driver_name = "authenc-hmac-md5-"
1557 "cbc-3des-picoxcell",
1558 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1559 .cra_flags = CRYPTO_ALG_ASYNC |
1560 CRYPTO_ALG_NEED_FALLBACK |
1561 CRYPTO_ALG_KERN_DRIVER_ONLY,
1562 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1563 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1564 .cra_module = THIS_MODULE,
1565 },
1566 .setkey = spacc_aead_setkey,
1567 .setauthsize = spacc_aead_setauthsize,
1568 .encrypt = spacc_aead_encrypt,
1569 .decrypt = spacc_aead_decrypt,
1570 .ivsize = DES3_EDE_BLOCK_SIZE,
1571 .maxauthsize = MD5_DIGEST_SIZE,
1572 .init = spacc_aead_cra_init,
1573 .exit = spacc_aead_cra_exit,
1574 },
1575 },
1576 };
1577
1578 static struct spacc_alg l2_engine_algs[] = {
1579 {
1580 .key_offs = 0,
1581 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1582 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1583 SPA_CTRL_CIPH_MODE_F8,
1584 .alg = {
1585 .cra_name = "f8(kasumi)",
1586 .cra_driver_name = "f8-kasumi-picoxcell",
1587 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1588 .cra_flags = CRYPTO_ALG_TYPE_GIVCIPHER |
1589 CRYPTO_ALG_ASYNC |
1590 CRYPTO_ALG_KERN_DRIVER_ONLY,
1591 .cra_blocksize = 8,
1592 .cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1593 .cra_type = &crypto_ablkcipher_type,
1594 .cra_module = THIS_MODULE,
1595 .cra_ablkcipher = {
1596 .setkey = spacc_kasumi_f8_setkey,
1597 .encrypt = spacc_ablk_encrypt,
1598 .decrypt = spacc_ablk_decrypt,
1599 .min_keysize = 16,
1600 .max_keysize = 16,
1601 .ivsize = 8,
1602 },
1603 .cra_init = spacc_ablk_cra_init,
1604 .cra_exit = spacc_ablk_cra_exit,
1605 },
1606 },
1607 };
1608
1609 #ifdef CONFIG_OF
1610 static const struct of_device_id spacc_of_id_table[] = {
1611 { .compatible = "picochip,spacc-ipsec" },
1612 { .compatible = "picochip,spacc-l2" },
1613 {}
1614 };
1615 MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1616 #endif /* CONFIG_OF */
1617
1618 static bool spacc_is_compatible(struct platform_device *pdev,
1619 const char *spacc_type)
1620 {
1621 const struct platform_device_id *platid = platform_get_device_id(pdev);
1622
1623 if (platid && !strcmp(platid->name, spacc_type))
1624 return true;
1625
1626 #ifdef CONFIG_OF
1627 if (of_device_is_compatible(pdev->dev.of_node, spacc_type))
1628 return true;
1629 #endif /* CONFIG_OF */
1630
1631 return false;
1632 }
1633
1634 static int spacc_probe(struct platform_device *pdev)
1635 {
1636 int i, err, ret = -EINVAL;
1637 struct resource *mem, *irq;
1638 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1639 GFP_KERNEL);
1640 if (!engine)
1641 return -ENOMEM;
1642
1643 if (spacc_is_compatible(pdev, "picochip,spacc-ipsec")) {
1644 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1645 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1646 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1647 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1648 engine->algs = ipsec_engine_algs;
1649 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1650 engine->aeads = ipsec_engine_aeads;
1651 engine->num_aeads = ARRAY_SIZE(ipsec_engine_aeads);
1652 } else if (spacc_is_compatible(pdev, "picochip,spacc-l2")) {
1653 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1654 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1655 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1656 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1657 engine->algs = l2_engine_algs;
1658 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1659 } else {
1660 return -EINVAL;
1661 }
1662
1663 engine->name = dev_name(&pdev->dev);
1664
1665 mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1666 engine->regs = devm_ioremap_resource(&pdev->dev, mem);
1667 if (IS_ERR(engine->regs))
1668 return PTR_ERR(engine->regs);
1669
1670 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1671 if (!irq) {
1672 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1673 return -ENXIO;
1674 }
1675
1676 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1677 engine->name, engine)) {
1678 dev_err(engine->dev, "failed to request IRQ\n");
1679 return -EBUSY;
1680 }
1681
1682 engine->dev = &pdev->dev;
1683 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1684 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1685
1686 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1687 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1688 if (!engine->req_pool)
1689 return -ENOMEM;
1690
1691 spin_lock_init(&engine->hw_lock);
1692
1693 engine->clk = clk_get(&pdev->dev, "ref");
1694 if (IS_ERR(engine->clk)) {
1695 dev_info(&pdev->dev, "clk unavailable\n");
1696 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1697 return PTR_ERR(engine->clk);
1698 }
1699
1700 if (clk_prepare_enable(engine->clk)) {
1701 dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1702 clk_put(engine->clk);
1703 return -EIO;
1704 }
1705
1706 err = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1707 if (err) {
1708 clk_disable_unprepare(engine->clk);
1709 clk_put(engine->clk);
1710 return err;
1711 }
1712
1713
1714 /*
1715 * Use an IRQ threshold of 50% as a default. This seems to be a
1716 * reasonable trade off of latency against throughput but can be
1717 * changed at runtime.
1718 */
1719 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1720
1721 /*
1722 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1723 * only submit a new packet for processing when we complete another in
1724 * the queue. This minimizes time spent in the interrupt handler.
1725 */
1726 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1727 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1728 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1729 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1730
1731 setup_timer(&engine->packet_timeout, spacc_packet_timeout,
1732 (unsigned long)engine);
1733
1734 INIT_LIST_HEAD(&engine->pending);
1735 INIT_LIST_HEAD(&engine->completed);
1736 INIT_LIST_HEAD(&engine->in_progress);
1737 engine->in_flight = 0;
1738 tasklet_init(&engine->complete, spacc_spacc_complete,
1739 (unsigned long)engine);
1740
1741 platform_set_drvdata(pdev, engine);
1742
1743 INIT_LIST_HEAD(&engine->registered_algs);
1744 for (i = 0; i < engine->num_algs; ++i) {
1745 engine->algs[i].engine = engine;
1746 err = crypto_register_alg(&engine->algs[i].alg);
1747 if (!err) {
1748 list_add_tail(&engine->algs[i].entry,
1749 &engine->registered_algs);
1750 ret = 0;
1751 }
1752 if (err)
1753 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1754 engine->algs[i].alg.cra_name);
1755 else
1756 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1757 engine->algs[i].alg.cra_name);
1758 }
1759
1760 INIT_LIST_HEAD(&engine->registered_aeads);
1761 for (i = 0; i < engine->num_aeads; ++i) {
1762 engine->aeads[i].engine = engine;
1763 err = crypto_register_aead(&engine->aeads[i].alg);
1764 if (!err) {
1765 list_add_tail(&engine->aeads[i].entry,
1766 &engine->registered_aeads);
1767 ret = 0;
1768 }
1769 if (err)
1770 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1771 engine->aeads[i].alg.base.cra_name);
1772 else
1773 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1774 engine->aeads[i].alg.base.cra_name);
1775 }
1776
1777 return ret;
1778 }
1779
1780 static int spacc_remove(struct platform_device *pdev)
1781 {
1782 struct spacc_aead *aead, *an;
1783 struct spacc_alg *alg, *next;
1784 struct spacc_engine *engine = platform_get_drvdata(pdev);
1785
1786 del_timer_sync(&engine->packet_timeout);
1787 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1788
1789 list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1790 list_del(&aead->entry);
1791 crypto_unregister_aead(&aead->alg);
1792 }
1793
1794 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1795 list_del(&alg->entry);
1796 crypto_unregister_alg(&alg->alg);
1797 }
1798
1799 clk_disable_unprepare(engine->clk);
1800 clk_put(engine->clk);
1801
1802 return 0;
1803 }
1804
1805 static const struct platform_device_id spacc_id_table[] = {
1806 { "picochip,spacc-ipsec", },
1807 { "picochip,spacc-l2", },
1808 { }
1809 };
1810
1811 static struct platform_driver spacc_driver = {
1812 .probe = spacc_probe,
1813 .remove = spacc_remove,
1814 .driver = {
1815 .name = "picochip,spacc",
1816 #ifdef CONFIG_PM
1817 .pm = &spacc_pm_ops,
1818 #endif /* CONFIG_PM */
1819 .of_match_table = of_match_ptr(spacc_of_id_table),
1820 },
1821 .id_table = spacc_id_table,
1822 };
1823
1824 module_platform_driver(spacc_driver);
1825
1826 MODULE_LICENSE("GPL");
1827 MODULE_AUTHOR("Jamie Iles");
This page took 0.069844 seconds and 5 git commands to generate.