Merge branch 'picoxcell/timer' into next/timer
[deliverable/linux.git] / drivers / crypto / ux500 / cryp / cryp_core.c
1 /**
2 * Copyright (C) ST-Ericsson SA 2010
3 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson.
4 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson.
5 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
6 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
7 * Author: Jonas Linde <jonas.linde@stericsson.com> for ST-Ericsson.
8 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
9 * License terms: GNU General Public License (GPL) version 2
10 */
11
12 #include <linux/clk.h>
13 #include <linux/completion.h>
14 #include <linux/crypto.h>
15 #include <linux/dmaengine.h>
16 #include <linux/err.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/irqreturn.h>
21 #include <linux/klist.h>
22 #include <linux/module.h>
23 #include <linux/platform_device.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/semaphore.h>
26
27 #include <crypto/aes.h>
28 #include <crypto/algapi.h>
29 #include <crypto/ctr.h>
30 #include <crypto/des.h>
31 #include <crypto/scatterwalk.h>
32
33 #include <plat/ste_dma40.h>
34
35 #include <mach/crypto-ux500.h>
36 #include <mach/hardware.h>
37
38 #include "cryp_p.h"
39 #include "cryp.h"
40
41 #define CRYP_MAX_KEY_SIZE 32
42 #define BYTES_PER_WORD 4
43
44 static int cryp_mode;
45 static atomic_t session_id;
46
47 static struct stedma40_chan_cfg *mem_to_engine;
48 static struct stedma40_chan_cfg *engine_to_mem;
49
50 /**
51 * struct cryp_driver_data - data specific to the driver.
52 *
53 * @device_list: A list of registered devices to choose from.
54 * @device_allocation: A semaphore initialized with number of devices.
55 */
56 struct cryp_driver_data {
57 struct klist device_list;
58 struct semaphore device_allocation;
59 };
60
61 /**
62 * struct cryp_ctx - Crypto context
63 * @config: Crypto mode.
64 * @key[CRYP_MAX_KEY_SIZE]: Key.
65 * @keylen: Length of key.
66 * @iv: Pointer to initialization vector.
67 * @indata: Pointer to indata.
68 * @outdata: Pointer to outdata.
69 * @datalen: Length of indata.
70 * @outlen: Length of outdata.
71 * @blocksize: Size of blocks.
72 * @updated: Updated flag.
73 * @dev_ctx: Device dependent context.
74 * @device: Pointer to the device.
75 */
76 struct cryp_ctx {
77 struct cryp_config config;
78 u8 key[CRYP_MAX_KEY_SIZE];
79 u32 keylen;
80 u8 *iv;
81 const u8 *indata;
82 u8 *outdata;
83 u32 datalen;
84 u32 outlen;
85 u32 blocksize;
86 u8 updated;
87 struct cryp_device_context dev_ctx;
88 struct cryp_device_data *device;
89 u32 session_id;
90 };
91
92 static struct cryp_driver_data driver_data;
93
94 /**
95 * uint8p_to_uint32_be - 4*uint8 to uint32 big endian
96 * @in: Data to convert.
97 */
98 static inline u32 uint8p_to_uint32_be(u8 *in)
99 {
100 u32 *data = (u32 *)in;
101
102 return cpu_to_be32p(data);
103 }
104
105 /**
106 * swap_bits_in_byte - mirror the bits in a byte
107 * @b: the byte to be mirrored
108 *
109 * The bits are swapped the following way:
110 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
111 * nibble 2 (n2) bits 4-7.
112 *
113 * Nibble 1 (n1):
114 * (The "old" (moved) bit is replaced with a zero)
115 * 1. Move bit 6 and 7, 4 positions to the left.
116 * 2. Move bit 3 and 5, 2 positions to the left.
117 * 3. Move bit 1-4, 1 position to the left.
118 *
119 * Nibble 2 (n2):
120 * 1. Move bit 0 and 1, 4 positions to the right.
121 * 2. Move bit 2 and 4, 2 positions to the right.
122 * 3. Move bit 3-6, 1 position to the right.
123 *
124 * Combine the two nibbles to a complete and swapped byte.
125 */
126
127 static inline u8 swap_bits_in_byte(u8 b)
128 {
129 #define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
130 #define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
131 right shift 2 */
132 #define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
133 right shift 1 */
134 #define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
135 #define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
136 left shift 2 */
137 #define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
138 left shift 1 */
139
140 u8 n1;
141 u8 n2;
142
143 /* Swap most significant nibble */
144 /* Right shift 4, bits 6 and 7 */
145 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
146 /* Right shift 2, bits 3 and 5 */
147 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
148 /* Right shift 1, bits 1-4 */
149 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
150
151 /* Swap least significant nibble */
152 /* Left shift 4, bits 0 and 1 */
153 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
154 /* Left shift 2, bits 2 and 4 */
155 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
156 /* Left shift 1, bits 3-6 */
157 n2 = (n2 & L_SHIFT_1_MASK) << 1;
158
159 return n1 | n2;
160 }
161
162 static inline void swap_words_in_key_and_bits_in_byte(const u8 *in,
163 u8 *out, u32 len)
164 {
165 unsigned int i = 0;
166 int j;
167 int index = 0;
168
169 j = len - BYTES_PER_WORD;
170 while (j >= 0) {
171 for (i = 0; i < BYTES_PER_WORD; i++) {
172 index = len - j - BYTES_PER_WORD + i;
173 out[j + i] =
174 swap_bits_in_byte(in[index]);
175 }
176 j -= BYTES_PER_WORD;
177 }
178 }
179
180 static void add_session_id(struct cryp_ctx *ctx)
181 {
182 /*
183 * We never want 0 to be a valid value, since this is the default value
184 * for the software context.
185 */
186 if (unlikely(atomic_inc_and_test(&session_id)))
187 atomic_inc(&session_id);
188
189 ctx->session_id = atomic_read(&session_id);
190 }
191
192 static irqreturn_t cryp_interrupt_handler(int irq, void *param)
193 {
194 struct cryp_ctx *ctx;
195 int i;
196 struct cryp_device_data *device_data;
197
198 if (param == NULL) {
199 BUG_ON(!param);
200 return IRQ_HANDLED;
201 }
202
203 /* The device is coming from the one found in hw_crypt_noxts. */
204 device_data = (struct cryp_device_data *)param;
205
206 ctx = device_data->current_ctx;
207
208 if (ctx == NULL) {
209 BUG_ON(!ctx);
210 return IRQ_HANDLED;
211 }
212
213 dev_dbg(ctx->device->dev, "[%s] (len: %d) %s, ", __func__, ctx->outlen,
214 cryp_pending_irq_src(device_data, CRYP_IRQ_SRC_OUTPUT_FIFO) ?
215 "out" : "in");
216
217 if (cryp_pending_irq_src(device_data,
218 CRYP_IRQ_SRC_OUTPUT_FIFO)) {
219 if (ctx->outlen / ctx->blocksize > 0) {
220 for (i = 0; i < ctx->blocksize / 4; i++) {
221 *(ctx->outdata) = readl_relaxed(
222 &device_data->base->dout);
223 ctx->outdata += 4;
224 ctx->outlen -= 4;
225 }
226
227 if (ctx->outlen == 0) {
228 cryp_disable_irq_src(device_data,
229 CRYP_IRQ_SRC_OUTPUT_FIFO);
230 }
231 }
232 } else if (cryp_pending_irq_src(device_data,
233 CRYP_IRQ_SRC_INPUT_FIFO)) {
234 if (ctx->datalen / ctx->blocksize > 0) {
235 for (i = 0 ; i < ctx->blocksize / 4; i++) {
236 writel_relaxed(ctx->indata,
237 &device_data->base->din);
238 ctx->indata += 4;
239 ctx->datalen -= 4;
240 }
241
242 if (ctx->datalen == 0)
243 cryp_disable_irq_src(device_data,
244 CRYP_IRQ_SRC_INPUT_FIFO);
245
246 if (ctx->config.algomode == CRYP_ALGO_AES_XTS) {
247 CRYP_PUT_BITS(&device_data->base->cr,
248 CRYP_START_ENABLE,
249 CRYP_CR_START_POS,
250 CRYP_CR_START_MASK);
251
252 cryp_wait_until_done(device_data);
253 }
254 }
255 }
256
257 return IRQ_HANDLED;
258 }
259
260 static int mode_is_aes(enum cryp_algo_mode mode)
261 {
262 return CRYP_ALGO_AES_ECB == mode ||
263 CRYP_ALGO_AES_CBC == mode ||
264 CRYP_ALGO_AES_CTR == mode ||
265 CRYP_ALGO_AES_XTS == mode;
266 }
267
268 static int cfg_iv(struct cryp_device_data *device_data, u32 left, u32 right,
269 enum cryp_init_vector_index index)
270 {
271 struct cryp_init_vector_value vector_value;
272
273 dev_dbg(device_data->dev, "[%s]", __func__);
274
275 vector_value.init_value_left = left;
276 vector_value.init_value_right = right;
277
278 return cryp_configure_init_vector(device_data,
279 index,
280 vector_value);
281 }
282
283 static int cfg_ivs(struct cryp_device_data *device_data, struct cryp_ctx *ctx)
284 {
285 int i;
286 int status = 0;
287 int num_of_regs = ctx->blocksize / 8;
288 u32 iv[AES_BLOCK_SIZE / 4];
289
290 dev_dbg(device_data->dev, "[%s]", __func__);
291
292 /*
293 * Since we loop on num_of_regs we need to have a check in case
294 * someone provides an incorrect blocksize which would force calling
295 * cfg_iv with i greater than 2 which is an error.
296 */
297 if (num_of_regs > 2) {
298 dev_err(device_data->dev, "[%s] Incorrect blocksize %d",
299 __func__, ctx->blocksize);
300 return -EINVAL;
301 }
302
303 for (i = 0; i < ctx->blocksize / 4; i++)
304 iv[i] = uint8p_to_uint32_be(ctx->iv + i*4);
305
306 for (i = 0; i < num_of_regs; i++) {
307 status = cfg_iv(device_data, iv[i*2], iv[i*2+1],
308 (enum cryp_init_vector_index) i);
309 if (status != 0)
310 return status;
311 }
312 return status;
313 }
314
315 static int set_key(struct cryp_device_data *device_data,
316 u32 left_key,
317 u32 right_key,
318 enum cryp_key_reg_index index)
319 {
320 struct cryp_key_value key_value;
321 int cryp_error;
322
323 dev_dbg(device_data->dev, "[%s]", __func__);
324
325 key_value.key_value_left = left_key;
326 key_value.key_value_right = right_key;
327
328 cryp_error = cryp_configure_key_values(device_data,
329 index,
330 key_value);
331 if (cryp_error != 0)
332 dev_err(device_data->dev, "[%s]: "
333 "cryp_configure_key_values() failed!", __func__);
334
335 return cryp_error;
336 }
337
338 static int cfg_keys(struct cryp_ctx *ctx)
339 {
340 int i;
341 int num_of_regs = ctx->keylen / 8;
342 u32 swapped_key[CRYP_MAX_KEY_SIZE / 4];
343 int cryp_error = 0;
344
345 dev_dbg(ctx->device->dev, "[%s]", __func__);
346
347 if (mode_is_aes(ctx->config.algomode)) {
348 swap_words_in_key_and_bits_in_byte((u8 *)ctx->key,
349 (u8 *)swapped_key,
350 ctx->keylen);
351 } else {
352 for (i = 0; i < ctx->keylen / 4; i++)
353 swapped_key[i] = uint8p_to_uint32_be(ctx->key + i*4);
354 }
355
356 for (i = 0; i < num_of_regs; i++) {
357 cryp_error = set_key(ctx->device,
358 *(((u32 *)swapped_key)+i*2),
359 *(((u32 *)swapped_key)+i*2+1),
360 (enum cryp_key_reg_index) i);
361
362 if (cryp_error != 0) {
363 dev_err(ctx->device->dev, "[%s]: set_key() failed!",
364 __func__);
365 return cryp_error;
366 }
367 }
368 return cryp_error;
369 }
370
371 static int cryp_setup_context(struct cryp_ctx *ctx,
372 struct cryp_device_data *device_data)
373 {
374 u32 control_register = CRYP_CR_DEFAULT;
375
376 switch (cryp_mode) {
377 case CRYP_MODE_INTERRUPT:
378 writel_relaxed(CRYP_IMSC_DEFAULT, &device_data->base->imsc);
379 break;
380
381 case CRYP_MODE_DMA:
382 writel_relaxed(CRYP_DMACR_DEFAULT, &device_data->base->dmacr);
383 break;
384
385 default:
386 break;
387 }
388
389 if (ctx->updated == 0) {
390 cryp_flush_inoutfifo(device_data);
391 if (cfg_keys(ctx) != 0) {
392 dev_err(ctx->device->dev, "[%s]: cfg_keys failed!",
393 __func__);
394 return -EINVAL;
395 }
396
397 if (ctx->iv &&
398 CRYP_ALGO_AES_ECB != ctx->config.algomode &&
399 CRYP_ALGO_DES_ECB != ctx->config.algomode &&
400 CRYP_ALGO_TDES_ECB != ctx->config.algomode) {
401 if (cfg_ivs(device_data, ctx) != 0)
402 return -EPERM;
403 }
404
405 cryp_set_configuration(device_data, &ctx->config,
406 &control_register);
407 add_session_id(ctx);
408 } else if (ctx->updated == 1 &&
409 ctx->session_id != atomic_read(&session_id)) {
410 cryp_flush_inoutfifo(device_data);
411 cryp_restore_device_context(device_data, &ctx->dev_ctx);
412
413 add_session_id(ctx);
414 control_register = ctx->dev_ctx.cr;
415 } else
416 control_register = ctx->dev_ctx.cr;
417
418 writel(control_register |
419 (CRYP_CRYPEN_ENABLE << CRYP_CR_CRYPEN_POS),
420 &device_data->base->cr);
421
422 return 0;
423 }
424
425 static int cryp_get_device_data(struct cryp_ctx *ctx,
426 struct cryp_device_data **device_data)
427 {
428 int ret;
429 struct klist_iter device_iterator;
430 struct klist_node *device_node;
431 struct cryp_device_data *local_device_data = NULL;
432 pr_debug(DEV_DBG_NAME " [%s]", __func__);
433
434 /* Wait until a device is available */
435 ret = down_interruptible(&driver_data.device_allocation);
436 if (ret)
437 return ret; /* Interrupted */
438
439 /* Select a device */
440 klist_iter_init(&driver_data.device_list, &device_iterator);
441
442 device_node = klist_next(&device_iterator);
443 while (device_node) {
444 local_device_data = container_of(device_node,
445 struct cryp_device_data, list_node);
446 spin_lock(&local_device_data->ctx_lock);
447 /* current_ctx allocates a device, NULL = unallocated */
448 if (local_device_data->current_ctx) {
449 device_node = klist_next(&device_iterator);
450 } else {
451 local_device_data->current_ctx = ctx;
452 ctx->device = local_device_data;
453 spin_unlock(&local_device_data->ctx_lock);
454 break;
455 }
456 spin_unlock(&local_device_data->ctx_lock);
457 }
458 klist_iter_exit(&device_iterator);
459
460 if (!device_node) {
461 /**
462 * No free device found.
463 * Since we allocated a device with down_interruptible, this
464 * should not be able to happen.
465 * Number of available devices, which are contained in
466 * device_allocation, is therefore decremented by not doing
467 * an up(device_allocation).
468 */
469 return -EBUSY;
470 }
471
472 *device_data = local_device_data;
473
474 return 0;
475 }
476
477 static void cryp_dma_setup_channel(struct cryp_device_data *device_data,
478 struct device *dev)
479 {
480 dma_cap_zero(device_data->dma.mask);
481 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
482
483 device_data->dma.cfg_mem2cryp = mem_to_engine;
484 device_data->dma.chan_mem2cryp =
485 dma_request_channel(device_data->dma.mask,
486 stedma40_filter,
487 device_data->dma.cfg_mem2cryp);
488
489 device_data->dma.cfg_cryp2mem = engine_to_mem;
490 device_data->dma.chan_cryp2mem =
491 dma_request_channel(device_data->dma.mask,
492 stedma40_filter,
493 device_data->dma.cfg_cryp2mem);
494
495 init_completion(&device_data->dma.cryp_dma_complete);
496 }
497
498 static void cryp_dma_out_callback(void *data)
499 {
500 struct cryp_ctx *ctx = (struct cryp_ctx *) data;
501 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
502
503 complete(&ctx->device->dma.cryp_dma_complete);
504 }
505
506 static int cryp_set_dma_transfer(struct cryp_ctx *ctx,
507 struct scatterlist *sg,
508 int len,
509 enum dma_data_direction direction)
510 {
511 struct dma_async_tx_descriptor *desc;
512 struct dma_chan *channel = NULL;
513 dma_cookie_t cookie;
514
515 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
516
517 if (unlikely(!IS_ALIGNED((u32)sg, 4))) {
518 dev_err(ctx->device->dev, "[%s]: Data in sg list isn't "
519 "aligned! Addr: 0x%08x", __func__, (u32)sg);
520 return -EFAULT;
521 }
522
523 switch (direction) {
524 case DMA_TO_DEVICE:
525 channel = ctx->device->dma.chan_mem2cryp;
526 ctx->device->dma.sg_src = sg;
527 ctx->device->dma.sg_src_len = dma_map_sg(channel->device->dev,
528 ctx->device->dma.sg_src,
529 ctx->device->dma.nents_src,
530 direction);
531
532 if (!ctx->device->dma.sg_src_len) {
533 dev_dbg(ctx->device->dev,
534 "[%s]: Could not map the sg list (TO_DEVICE)",
535 __func__);
536 return -EFAULT;
537 }
538
539 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
540 "(TO_DEVICE)", __func__);
541
542 desc = channel->device->device_prep_slave_sg(channel,
543 ctx->device->dma.sg_src,
544 ctx->device->dma.sg_src_len,
545 direction, DMA_CTRL_ACK, NULL);
546 break;
547
548 case DMA_FROM_DEVICE:
549 channel = ctx->device->dma.chan_cryp2mem;
550 ctx->device->dma.sg_dst = sg;
551 ctx->device->dma.sg_dst_len = dma_map_sg(channel->device->dev,
552 ctx->device->dma.sg_dst,
553 ctx->device->dma.nents_dst,
554 direction);
555
556 if (!ctx->device->dma.sg_dst_len) {
557 dev_dbg(ctx->device->dev,
558 "[%s]: Could not map the sg list (FROM_DEVICE)",
559 __func__);
560 return -EFAULT;
561 }
562
563 dev_dbg(ctx->device->dev, "[%s]: Setting up DMA for buffer "
564 "(FROM_DEVICE)", __func__);
565
566 desc = channel->device->device_prep_slave_sg(channel,
567 ctx->device->dma.sg_dst,
568 ctx->device->dma.sg_dst_len,
569 direction,
570 DMA_CTRL_ACK |
571 DMA_PREP_INTERRUPT, NULL);
572
573 desc->callback = cryp_dma_out_callback;
574 desc->callback_param = ctx;
575 break;
576
577 default:
578 dev_dbg(ctx->device->dev, "[%s]: Invalid DMA direction",
579 __func__);
580 return -EFAULT;
581 }
582
583 cookie = desc->tx_submit(desc);
584 dma_async_issue_pending(channel);
585
586 return 0;
587 }
588
589 static void cryp_dma_done(struct cryp_ctx *ctx)
590 {
591 struct dma_chan *chan;
592
593 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
594
595 chan = ctx->device->dma.chan_mem2cryp;
596 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
597 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_src,
598 ctx->device->dma.sg_src_len, DMA_TO_DEVICE);
599
600 chan = ctx->device->dma.chan_cryp2mem;
601 chan->device->device_control(chan, DMA_TERMINATE_ALL, 0);
602 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg_dst,
603 ctx->device->dma.sg_dst_len, DMA_FROM_DEVICE);
604 }
605
606 static int cryp_dma_write(struct cryp_ctx *ctx, struct scatterlist *sg,
607 int len)
608 {
609 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
610 dev_dbg(ctx->device->dev, "[%s]: ", __func__);
611
612 if (error) {
613 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
614 "failed", __func__);
615 return error;
616 }
617
618 return len;
619 }
620
621 static int cryp_dma_read(struct cryp_ctx *ctx, struct scatterlist *sg, int len)
622 {
623 int error = cryp_set_dma_transfer(ctx, sg, len, DMA_FROM_DEVICE);
624 if (error) {
625 dev_dbg(ctx->device->dev, "[%s]: cryp_set_dma_transfer() "
626 "failed", __func__);
627 return error;
628 }
629
630 return len;
631 }
632
633 static void cryp_polling_mode(struct cryp_ctx *ctx,
634 struct cryp_device_data *device_data)
635 {
636 int len = ctx->blocksize / BYTES_PER_WORD;
637 int remaining_length = ctx->datalen;
638 u32 *indata = (u32 *)ctx->indata;
639 u32 *outdata = (u32 *)ctx->outdata;
640
641 while (remaining_length > 0) {
642 writesl(&device_data->base->din, indata, len);
643 indata += len;
644 remaining_length -= (len * BYTES_PER_WORD);
645 cryp_wait_until_done(device_data);
646
647 readsl(&device_data->base->dout, outdata, len);
648 outdata += len;
649 cryp_wait_until_done(device_data);
650 }
651 }
652
653 static int cryp_disable_power(struct device *dev,
654 struct cryp_device_data *device_data,
655 bool save_device_context)
656 {
657 int ret = 0;
658
659 dev_dbg(dev, "[%s]", __func__);
660
661 spin_lock(&device_data->power_state_spinlock);
662 if (!device_data->power_state)
663 goto out;
664
665 spin_lock(&device_data->ctx_lock);
666 if (save_device_context && device_data->current_ctx) {
667 cryp_save_device_context(device_data,
668 &device_data->current_ctx->dev_ctx,
669 cryp_mode);
670 device_data->restore_dev_ctx = true;
671 }
672 spin_unlock(&device_data->ctx_lock);
673
674 clk_disable(device_data->clk);
675 ret = regulator_disable(device_data->pwr_regulator);
676 if (ret)
677 dev_err(dev, "[%s]: "
678 "regulator_disable() failed!",
679 __func__);
680
681 device_data->power_state = false;
682
683 out:
684 spin_unlock(&device_data->power_state_spinlock);
685
686 return ret;
687 }
688
689 static int cryp_enable_power(
690 struct device *dev,
691 struct cryp_device_data *device_data,
692 bool restore_device_context)
693 {
694 int ret = 0;
695
696 dev_dbg(dev, "[%s]", __func__);
697
698 spin_lock(&device_data->power_state_spinlock);
699 if (!device_data->power_state) {
700 ret = regulator_enable(device_data->pwr_regulator);
701 if (ret) {
702 dev_err(dev, "[%s]: regulator_enable() failed!",
703 __func__);
704 goto out;
705 }
706
707 ret = clk_enable(device_data->clk);
708 if (ret) {
709 dev_err(dev, "[%s]: clk_enable() failed!",
710 __func__);
711 regulator_disable(device_data->pwr_regulator);
712 goto out;
713 }
714 device_data->power_state = true;
715 }
716
717 if (device_data->restore_dev_ctx) {
718 spin_lock(&device_data->ctx_lock);
719 if (restore_device_context && device_data->current_ctx) {
720 device_data->restore_dev_ctx = false;
721 cryp_restore_device_context(device_data,
722 &device_data->current_ctx->dev_ctx);
723 }
724 spin_unlock(&device_data->ctx_lock);
725 }
726 out:
727 spin_unlock(&device_data->power_state_spinlock);
728
729 return ret;
730 }
731
732 static int hw_crypt_noxts(struct cryp_ctx *ctx,
733 struct cryp_device_data *device_data)
734 {
735 int ret = 0;
736
737 const u8 *indata = ctx->indata;
738 u8 *outdata = ctx->outdata;
739 u32 datalen = ctx->datalen;
740 u32 outlen = datalen;
741
742 pr_debug(DEV_DBG_NAME " [%s]", __func__);
743
744 ctx->outlen = ctx->datalen;
745
746 if (unlikely(!IS_ALIGNED((u32)indata, 4))) {
747 pr_debug(DEV_DBG_NAME " [%s]: Data isn't aligned! Addr: "
748 "0x%08x", __func__, (u32)indata);
749 return -EINVAL;
750 }
751
752 ret = cryp_setup_context(ctx, device_data);
753
754 if (ret)
755 goto out;
756
757 if (cryp_mode == CRYP_MODE_INTERRUPT) {
758 cryp_enable_irq_src(device_data, CRYP_IRQ_SRC_INPUT_FIFO |
759 CRYP_IRQ_SRC_OUTPUT_FIFO);
760
761 /*
762 * ctx->outlen is decremented in the cryp_interrupt_handler
763 * function. We had to add cpu_relax() (barrier) to make sure
764 * that gcc didn't optimze away this variable.
765 */
766 while (ctx->outlen > 0)
767 cpu_relax();
768 } else if (cryp_mode == CRYP_MODE_POLLING ||
769 cryp_mode == CRYP_MODE_DMA) {
770 /*
771 * The reason for having DMA in this if case is that if we are
772 * running cryp_mode = 2, then we separate DMA routines for
773 * handling cipher/plaintext > blocksize, except when
774 * running the normal CRYPTO_ALG_TYPE_CIPHER, then we still use
775 * the polling mode. Overhead of doing DMA setup eats up the
776 * benefits using it.
777 */
778 cryp_polling_mode(ctx, device_data);
779 } else {
780 dev_err(ctx->device->dev, "[%s]: Invalid operation mode!",
781 __func__);
782 ret = -EPERM;
783 goto out;
784 }
785
786 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
787 ctx->updated = 1;
788
789 out:
790 ctx->indata = indata;
791 ctx->outdata = outdata;
792 ctx->datalen = datalen;
793 ctx->outlen = outlen;
794
795 return ret;
796 }
797
798 static int get_nents(struct scatterlist *sg, int nbytes)
799 {
800 int nents = 0;
801
802 while (nbytes > 0) {
803 nbytes -= sg->length;
804 sg = scatterwalk_sg_next(sg);
805 nents++;
806 }
807
808 return nents;
809 }
810
811 static int ablk_dma_crypt(struct ablkcipher_request *areq)
812 {
813 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
814 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
815 struct cryp_device_data *device_data;
816
817 int bytes_written = 0;
818 int bytes_read = 0;
819 int ret;
820
821 pr_debug(DEV_DBG_NAME " [%s]", __func__);
822
823 ctx->datalen = areq->nbytes;
824 ctx->outlen = areq->nbytes;
825
826 ret = cryp_get_device_data(ctx, &device_data);
827 if (ret)
828 return ret;
829
830 ret = cryp_setup_context(ctx, device_data);
831 if (ret)
832 goto out;
833
834 /* We have the device now, so store the nents in the dma struct. */
835 ctx->device->dma.nents_src = get_nents(areq->src, ctx->datalen);
836 ctx->device->dma.nents_dst = get_nents(areq->dst, ctx->outlen);
837
838 /* Enable DMA in- and output. */
839 cryp_configure_for_dma(device_data, CRYP_DMA_ENABLE_BOTH_DIRECTIONS);
840
841 bytes_written = cryp_dma_write(ctx, areq->src, ctx->datalen);
842 bytes_read = cryp_dma_read(ctx, areq->dst, bytes_written);
843
844 wait_for_completion(&ctx->device->dma.cryp_dma_complete);
845 cryp_dma_done(ctx);
846
847 cryp_save_device_context(device_data, &ctx->dev_ctx, cryp_mode);
848 ctx->updated = 1;
849
850 out:
851 spin_lock(&device_data->ctx_lock);
852 device_data->current_ctx = NULL;
853 ctx->device = NULL;
854 spin_unlock(&device_data->ctx_lock);
855
856 /*
857 * The down_interruptible part for this semaphore is called in
858 * cryp_get_device_data.
859 */
860 up(&driver_data.device_allocation);
861
862 if (unlikely(bytes_written != bytes_read))
863 return -EPERM;
864
865 return 0;
866 }
867
868 static int ablk_crypt(struct ablkcipher_request *areq)
869 {
870 struct ablkcipher_walk walk;
871 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
872 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
873 struct cryp_device_data *device_data;
874 unsigned long src_paddr;
875 unsigned long dst_paddr;
876 int ret;
877 int nbytes;
878
879 pr_debug(DEV_DBG_NAME " [%s]", __func__);
880
881 ret = cryp_get_device_data(ctx, &device_data);
882 if (ret)
883 goto out;
884
885 ablkcipher_walk_init(&walk, areq->dst, areq->src, areq->nbytes);
886 ret = ablkcipher_walk_phys(areq, &walk);
887
888 if (ret) {
889 pr_err(DEV_DBG_NAME "[%s]: ablkcipher_walk_phys() failed!",
890 __func__);
891 goto out;
892 }
893
894 while ((nbytes = walk.nbytes) > 0) {
895 ctx->iv = walk.iv;
896 src_paddr = (page_to_phys(walk.src.page) + walk.src.offset);
897 ctx->indata = phys_to_virt(src_paddr);
898
899 dst_paddr = (page_to_phys(walk.dst.page) + walk.dst.offset);
900 ctx->outdata = phys_to_virt(dst_paddr);
901
902 ctx->datalen = nbytes - (nbytes % ctx->blocksize);
903
904 ret = hw_crypt_noxts(ctx, device_data);
905 if (ret)
906 goto out;
907
908 nbytes -= ctx->datalen;
909 ret = ablkcipher_walk_done(areq, &walk, nbytes);
910 if (ret)
911 goto out;
912 }
913 ablkcipher_walk_complete(&walk);
914
915 out:
916 /* Release the device */
917 spin_lock(&device_data->ctx_lock);
918 device_data->current_ctx = NULL;
919 ctx->device = NULL;
920 spin_unlock(&device_data->ctx_lock);
921
922 /*
923 * The down_interruptible part for this semaphore is called in
924 * cryp_get_device_data.
925 */
926 up(&driver_data.device_allocation);
927
928 return ret;
929 }
930
931 static int aes_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
932 const u8 *key, unsigned int keylen)
933 {
934 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
935 u32 *flags = &cipher->base.crt_flags;
936
937 pr_debug(DEV_DBG_NAME " [%s]", __func__);
938
939 switch (keylen) {
940 case AES_KEYSIZE_128:
941 ctx->config.keysize = CRYP_KEY_SIZE_128;
942 break;
943
944 case AES_KEYSIZE_192:
945 ctx->config.keysize = CRYP_KEY_SIZE_192;
946 break;
947
948 case AES_KEYSIZE_256:
949 ctx->config.keysize = CRYP_KEY_SIZE_256;
950 break;
951
952 default:
953 pr_err(DEV_DBG_NAME "[%s]: Unknown keylen!", __func__);
954 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
955 return -EINVAL;
956 }
957
958 memcpy(ctx->key, key, keylen);
959 ctx->keylen = keylen;
960
961 ctx->updated = 0;
962
963 return 0;
964 }
965
966 static int des_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
967 const u8 *key, unsigned int keylen)
968 {
969 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
970 u32 *flags = &cipher->base.crt_flags;
971 u32 tmp[DES_EXPKEY_WORDS];
972 int ret;
973
974 pr_debug(DEV_DBG_NAME " [%s]", __func__);
975 if (keylen != DES_KEY_SIZE) {
976 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
977 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
978 __func__);
979 return -EINVAL;
980 }
981
982 ret = des_ekey(tmp, key);
983 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
984 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
985 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
986 __func__);
987 return -EINVAL;
988 }
989
990 memcpy(ctx->key, key, keylen);
991 ctx->keylen = keylen;
992
993 ctx->updated = 0;
994 return 0;
995 }
996
997 static int des3_ablkcipher_setkey(struct crypto_ablkcipher *cipher,
998 const u8 *key, unsigned int keylen)
999 {
1000 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1001 u32 *flags = &cipher->base.crt_flags;
1002 const u32 *K = (const u32 *)key;
1003 u32 tmp[DES3_EDE_EXPKEY_WORDS];
1004 int i, ret;
1005
1006 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1007 if (keylen != DES3_EDE_KEY_SIZE) {
1008 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
1009 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_RES_BAD_KEY_LEN",
1010 __func__);
1011 return -EINVAL;
1012 }
1013
1014 /* Checking key interdependency for weak key detection. */
1015 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
1016 !((K[2] ^ K[4]) | (K[3] ^ K[5]))) &&
1017 (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1018 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1019 pr_debug(DEV_DBG_NAME " [%s]: CRYPTO_TFM_REQ_WEAK_KEY",
1020 __func__);
1021 return -EINVAL;
1022 }
1023 for (i = 0; i < 3; i++) {
1024 ret = des_ekey(tmp, key + i*DES_KEY_SIZE);
1025 if (unlikely(ret == 0) && (*flags & CRYPTO_TFM_REQ_WEAK_KEY)) {
1026 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
1027 pr_debug(DEV_DBG_NAME " [%s]: "
1028 "CRYPTO_TFM_REQ_WEAK_KEY", __func__);
1029 return -EINVAL;
1030 }
1031 }
1032
1033 memcpy(ctx->key, key, keylen);
1034 ctx->keylen = keylen;
1035
1036 ctx->updated = 0;
1037 return 0;
1038 }
1039
1040 static int cryp_blk_encrypt(struct ablkcipher_request *areq)
1041 {
1042 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1043 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1044
1045 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1046
1047 ctx->config.algodir = CRYP_ALGORITHM_ENCRYPT;
1048
1049 /*
1050 * DMA does not work for DES due to a hw bug */
1051 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1052 return ablk_dma_crypt(areq);
1053
1054 /* For everything except DMA, we run the non DMA version. */
1055 return ablk_crypt(areq);
1056 }
1057
1058 static int cryp_blk_decrypt(struct ablkcipher_request *areq)
1059 {
1060 struct crypto_ablkcipher *cipher = crypto_ablkcipher_reqtfm(areq);
1061 struct cryp_ctx *ctx = crypto_ablkcipher_ctx(cipher);
1062
1063 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1064
1065 ctx->config.algodir = CRYP_ALGORITHM_DECRYPT;
1066
1067 /* DMA does not work for DES due to a hw bug */
1068 if (cryp_mode == CRYP_MODE_DMA && mode_is_aes(ctx->config.algomode))
1069 return ablk_dma_crypt(areq);
1070
1071 /* For everything except DMA, we run the non DMA version. */
1072 return ablk_crypt(areq);
1073 }
1074
1075 struct cryp_algo_template {
1076 enum cryp_algo_mode algomode;
1077 struct crypto_alg crypto;
1078 };
1079
1080 static int cryp_cra_init(struct crypto_tfm *tfm)
1081 {
1082 struct cryp_ctx *ctx = crypto_tfm_ctx(tfm);
1083 struct crypto_alg *alg = tfm->__crt_alg;
1084 struct cryp_algo_template *cryp_alg = container_of(alg,
1085 struct cryp_algo_template,
1086 crypto);
1087
1088 ctx->config.algomode = cryp_alg->algomode;
1089 ctx->blocksize = crypto_tfm_alg_blocksize(tfm);
1090
1091 return 0;
1092 }
1093
1094 static struct cryp_algo_template cryp_algs[] = {
1095 {
1096 .algomode = CRYP_ALGO_AES_ECB,
1097 .crypto = {
1098 .cra_name = "aes",
1099 .cra_driver_name = "aes-ux500",
1100 .cra_priority = 300,
1101 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1102 CRYPTO_ALG_ASYNC,
1103 .cra_blocksize = AES_BLOCK_SIZE,
1104 .cra_ctxsize = sizeof(struct cryp_ctx),
1105 .cra_alignmask = 3,
1106 .cra_type = &crypto_ablkcipher_type,
1107 .cra_init = cryp_cra_init,
1108 .cra_module = THIS_MODULE,
1109 .cra_u = {
1110 .ablkcipher = {
1111 .min_keysize = AES_MIN_KEY_SIZE,
1112 .max_keysize = AES_MAX_KEY_SIZE,
1113 .setkey = aes_ablkcipher_setkey,
1114 .encrypt = cryp_blk_encrypt,
1115 .decrypt = cryp_blk_decrypt
1116 }
1117 }
1118 }
1119 },
1120 {
1121 .algomode = CRYP_ALGO_AES_ECB,
1122 .crypto = {
1123 .cra_name = "ecb(aes)",
1124 .cra_driver_name = "ecb-aes-ux500",
1125 .cra_priority = 300,
1126 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1127 CRYPTO_ALG_ASYNC,
1128 .cra_blocksize = AES_BLOCK_SIZE,
1129 .cra_ctxsize = sizeof(struct cryp_ctx),
1130 .cra_alignmask = 3,
1131 .cra_type = &crypto_ablkcipher_type,
1132 .cra_init = cryp_cra_init,
1133 .cra_module = THIS_MODULE,
1134 .cra_u = {
1135 .ablkcipher = {
1136 .min_keysize = AES_MIN_KEY_SIZE,
1137 .max_keysize = AES_MAX_KEY_SIZE,
1138 .setkey = aes_ablkcipher_setkey,
1139 .encrypt = cryp_blk_encrypt,
1140 .decrypt = cryp_blk_decrypt,
1141 }
1142 }
1143 }
1144 },
1145 {
1146 .algomode = CRYP_ALGO_AES_CBC,
1147 .crypto = {
1148 .cra_name = "cbc(aes)",
1149 .cra_driver_name = "cbc-aes-ux500",
1150 .cra_priority = 300,
1151 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1152 CRYPTO_ALG_ASYNC,
1153 .cra_blocksize = AES_BLOCK_SIZE,
1154 .cra_ctxsize = sizeof(struct cryp_ctx),
1155 .cra_alignmask = 3,
1156 .cra_type = &crypto_ablkcipher_type,
1157 .cra_init = cryp_cra_init,
1158 .cra_module = THIS_MODULE,
1159 .cra_u = {
1160 .ablkcipher = {
1161 .min_keysize = AES_MIN_KEY_SIZE,
1162 .max_keysize = AES_MAX_KEY_SIZE,
1163 .setkey = aes_ablkcipher_setkey,
1164 .encrypt = cryp_blk_encrypt,
1165 .decrypt = cryp_blk_decrypt,
1166 .ivsize = AES_BLOCK_SIZE,
1167 }
1168 }
1169 }
1170 },
1171 {
1172 .algomode = CRYP_ALGO_AES_CTR,
1173 .crypto = {
1174 .cra_name = "ctr(aes)",
1175 .cra_driver_name = "ctr-aes-ux500",
1176 .cra_priority = 300,
1177 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1178 CRYPTO_ALG_ASYNC,
1179 .cra_blocksize = AES_BLOCK_SIZE,
1180 .cra_ctxsize = sizeof(struct cryp_ctx),
1181 .cra_alignmask = 3,
1182 .cra_type = &crypto_ablkcipher_type,
1183 .cra_init = cryp_cra_init,
1184 .cra_module = THIS_MODULE,
1185 .cra_u = {
1186 .ablkcipher = {
1187 .min_keysize = AES_MIN_KEY_SIZE,
1188 .max_keysize = AES_MAX_KEY_SIZE,
1189 .setkey = aes_ablkcipher_setkey,
1190 .encrypt = cryp_blk_encrypt,
1191 .decrypt = cryp_blk_decrypt,
1192 .ivsize = AES_BLOCK_SIZE,
1193 }
1194 }
1195 }
1196 },
1197 {
1198 .algomode = CRYP_ALGO_DES_ECB,
1199 .crypto = {
1200 .cra_name = "des",
1201 .cra_driver_name = "des-ux500",
1202 .cra_priority = 300,
1203 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1204 CRYPTO_ALG_ASYNC,
1205 .cra_blocksize = DES_BLOCK_SIZE,
1206 .cra_ctxsize = sizeof(struct cryp_ctx),
1207 .cra_alignmask = 3,
1208 .cra_type = &crypto_ablkcipher_type,
1209 .cra_init = cryp_cra_init,
1210 .cra_module = THIS_MODULE,
1211 .cra_u = {
1212 .ablkcipher = {
1213 .min_keysize = DES_KEY_SIZE,
1214 .max_keysize = DES_KEY_SIZE,
1215 .setkey = des_ablkcipher_setkey,
1216 .encrypt = cryp_blk_encrypt,
1217 .decrypt = cryp_blk_decrypt
1218 }
1219 }
1220 }
1221
1222 },
1223 {
1224 .algomode = CRYP_ALGO_TDES_ECB,
1225 .crypto = {
1226 .cra_name = "des3_ede",
1227 .cra_driver_name = "des3_ede-ux500",
1228 .cra_priority = 300,
1229 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1230 CRYPTO_ALG_ASYNC,
1231 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1232 .cra_ctxsize = sizeof(struct cryp_ctx),
1233 .cra_alignmask = 3,
1234 .cra_type = &crypto_ablkcipher_type,
1235 .cra_init = cryp_cra_init,
1236 .cra_module = THIS_MODULE,
1237 .cra_u = {
1238 .ablkcipher = {
1239 .min_keysize = DES3_EDE_KEY_SIZE,
1240 .max_keysize = DES3_EDE_KEY_SIZE,
1241 .setkey = des_ablkcipher_setkey,
1242 .encrypt = cryp_blk_encrypt,
1243 .decrypt = cryp_blk_decrypt
1244 }
1245 }
1246 }
1247 },
1248 {
1249 .algomode = CRYP_ALGO_DES_ECB,
1250 .crypto = {
1251 .cra_name = "ecb(des)",
1252 .cra_driver_name = "ecb-des-ux500",
1253 .cra_priority = 300,
1254 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1255 CRYPTO_ALG_ASYNC,
1256 .cra_blocksize = DES_BLOCK_SIZE,
1257 .cra_ctxsize = sizeof(struct cryp_ctx),
1258 .cra_alignmask = 3,
1259 .cra_type = &crypto_ablkcipher_type,
1260 .cra_init = cryp_cra_init,
1261 .cra_module = THIS_MODULE,
1262 .cra_u = {
1263 .ablkcipher = {
1264 .min_keysize = DES_KEY_SIZE,
1265 .max_keysize = DES_KEY_SIZE,
1266 .setkey = des_ablkcipher_setkey,
1267 .encrypt = cryp_blk_encrypt,
1268 .decrypt = cryp_blk_decrypt,
1269 }
1270 }
1271 }
1272 },
1273 {
1274 .algomode = CRYP_ALGO_TDES_ECB,
1275 .crypto = {
1276 .cra_name = "ecb(des3_ede)",
1277 .cra_driver_name = "ecb-des3_ede-ux500",
1278 .cra_priority = 300,
1279 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1280 CRYPTO_ALG_ASYNC,
1281 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1282 .cra_ctxsize = sizeof(struct cryp_ctx),
1283 .cra_alignmask = 3,
1284 .cra_type = &crypto_ablkcipher_type,
1285 .cra_init = cryp_cra_init,
1286 .cra_module = THIS_MODULE,
1287 .cra_u = {
1288 .ablkcipher = {
1289 .min_keysize = DES3_EDE_KEY_SIZE,
1290 .max_keysize = DES3_EDE_KEY_SIZE,
1291 .setkey = des3_ablkcipher_setkey,
1292 .encrypt = cryp_blk_encrypt,
1293 .decrypt = cryp_blk_decrypt,
1294 }
1295 }
1296 }
1297 },
1298 {
1299 .algomode = CRYP_ALGO_DES_CBC,
1300 .crypto = {
1301 .cra_name = "cbc(des)",
1302 .cra_driver_name = "cbc-des-ux500",
1303 .cra_priority = 300,
1304 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1305 CRYPTO_ALG_ASYNC,
1306 .cra_blocksize = DES_BLOCK_SIZE,
1307 .cra_ctxsize = sizeof(struct cryp_ctx),
1308 .cra_alignmask = 3,
1309 .cra_type = &crypto_ablkcipher_type,
1310 .cra_init = cryp_cra_init,
1311 .cra_module = THIS_MODULE,
1312 .cra_u = {
1313 .ablkcipher = {
1314 .min_keysize = DES_KEY_SIZE,
1315 .max_keysize = DES_KEY_SIZE,
1316 .setkey = des_ablkcipher_setkey,
1317 .encrypt = cryp_blk_encrypt,
1318 .decrypt = cryp_blk_decrypt,
1319 }
1320 }
1321 }
1322 },
1323 {
1324 .algomode = CRYP_ALGO_TDES_CBC,
1325 .crypto = {
1326 .cra_name = "cbc(des3_ede)",
1327 .cra_driver_name = "cbc-des3_ede-ux500",
1328 .cra_priority = 300,
1329 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1330 CRYPTO_ALG_ASYNC,
1331 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1332 .cra_ctxsize = sizeof(struct cryp_ctx),
1333 .cra_alignmask = 3,
1334 .cra_type = &crypto_ablkcipher_type,
1335 .cra_init = cryp_cra_init,
1336 .cra_module = THIS_MODULE,
1337 .cra_u = {
1338 .ablkcipher = {
1339 .min_keysize = DES3_EDE_KEY_SIZE,
1340 .max_keysize = DES3_EDE_KEY_SIZE,
1341 .setkey = des3_ablkcipher_setkey,
1342 .encrypt = cryp_blk_encrypt,
1343 .decrypt = cryp_blk_decrypt,
1344 .ivsize = DES3_EDE_BLOCK_SIZE,
1345 }
1346 }
1347 }
1348 }
1349 };
1350
1351 /**
1352 * cryp_algs_register_all -
1353 */
1354 static int cryp_algs_register_all(void)
1355 {
1356 int ret;
1357 int i;
1358 int count;
1359
1360 pr_debug("[%s]", __func__);
1361
1362 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++) {
1363 ret = crypto_register_alg(&cryp_algs[i].crypto);
1364 if (ret) {
1365 count = i;
1366 pr_err("[%s] alg registration failed",
1367 cryp_algs[i].crypto.cra_driver_name);
1368 goto unreg;
1369 }
1370 }
1371 return 0;
1372 unreg:
1373 for (i = 0; i < count; i++)
1374 crypto_unregister_alg(&cryp_algs[i].crypto);
1375 return ret;
1376 }
1377
1378 /**
1379 * cryp_algs_unregister_all -
1380 */
1381 static void cryp_algs_unregister_all(void)
1382 {
1383 int i;
1384
1385 pr_debug(DEV_DBG_NAME " [%s]", __func__);
1386
1387 for (i = 0; i < ARRAY_SIZE(cryp_algs); i++)
1388 crypto_unregister_alg(&cryp_algs[i].crypto);
1389 }
1390
1391 static int ux500_cryp_probe(struct platform_device *pdev)
1392 {
1393 int ret;
1394 int cryp_error = 0;
1395 struct resource *res = NULL;
1396 struct resource *res_irq = NULL;
1397 struct cryp_device_data *device_data;
1398 struct cryp_protection_config prot = {
1399 .privilege_access = CRYP_STATE_ENABLE
1400 };
1401 struct device *dev = &pdev->dev;
1402
1403 dev_dbg(dev, "[%s]", __func__);
1404 device_data = kzalloc(sizeof(struct cryp_device_data), GFP_ATOMIC);
1405 if (!device_data) {
1406 dev_err(dev, "[%s]: kzalloc() failed!", __func__);
1407 ret = -ENOMEM;
1408 goto out;
1409 }
1410
1411 device_data->dev = dev;
1412 device_data->current_ctx = NULL;
1413
1414 /* Grab the DMA configuration from platform data. */
1415 mem_to_engine = &((struct cryp_platform_data *)
1416 dev->platform_data)->mem_to_engine;
1417 engine_to_mem = &((struct cryp_platform_data *)
1418 dev->platform_data)->engine_to_mem;
1419
1420 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1421 if (!res) {
1422 dev_err(dev, "[%s]: platform_get_resource() failed",
1423 __func__);
1424 ret = -ENODEV;
1425 goto out_kfree;
1426 }
1427
1428 res = request_mem_region(res->start, resource_size(res), pdev->name);
1429 if (res == NULL) {
1430 dev_err(dev, "[%s]: request_mem_region() failed",
1431 __func__);
1432 ret = -EBUSY;
1433 goto out_kfree;
1434 }
1435
1436 device_data->base = ioremap(res->start, resource_size(res));
1437 if (!device_data->base) {
1438 dev_err(dev, "[%s]: ioremap failed!", __func__);
1439 ret = -ENOMEM;
1440 goto out_free_mem;
1441 }
1442
1443 spin_lock_init(&device_data->ctx_lock);
1444 spin_lock_init(&device_data->power_state_spinlock);
1445
1446 /* Enable power for CRYP hardware block */
1447 device_data->pwr_regulator = regulator_get(&pdev->dev, "v-ape");
1448 if (IS_ERR(device_data->pwr_regulator)) {
1449 dev_err(dev, "[%s]: could not get cryp regulator", __func__);
1450 ret = PTR_ERR(device_data->pwr_regulator);
1451 device_data->pwr_regulator = NULL;
1452 goto out_unmap;
1453 }
1454
1455 /* Enable the clk for CRYP hardware block */
1456 device_data->clk = clk_get(&pdev->dev, NULL);
1457 if (IS_ERR(device_data->clk)) {
1458 dev_err(dev, "[%s]: clk_get() failed!", __func__);
1459 ret = PTR_ERR(device_data->clk);
1460 goto out_regulator;
1461 }
1462
1463 /* Enable device power (and clock) */
1464 ret = cryp_enable_power(device_data->dev, device_data, false);
1465 if (ret) {
1466 dev_err(dev, "[%s]: cryp_enable_power() failed!", __func__);
1467 goto out_clk;
1468 }
1469
1470 cryp_error = cryp_check(device_data);
1471 if (cryp_error != 0) {
1472 dev_err(dev, "[%s]: cryp_init() failed!", __func__);
1473 ret = -EINVAL;
1474 goto out_power;
1475 }
1476
1477 cryp_error = cryp_configure_protection(device_data, &prot);
1478 if (cryp_error != 0) {
1479 dev_err(dev, "[%s]: cryp_configure_protection() failed!",
1480 __func__);
1481 ret = -EINVAL;
1482 goto out_power;
1483 }
1484
1485 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1486 if (!res_irq) {
1487 dev_err(dev, "[%s]: IORESOURCE_IRQ unavailable",
1488 __func__);
1489 goto out_power;
1490 }
1491
1492 ret = request_irq(res_irq->start,
1493 cryp_interrupt_handler,
1494 0,
1495 "cryp1",
1496 device_data);
1497 if (ret) {
1498 dev_err(dev, "[%s]: Unable to request IRQ", __func__);
1499 goto out_power;
1500 }
1501
1502 if (cryp_mode == CRYP_MODE_DMA)
1503 cryp_dma_setup_channel(device_data, dev);
1504
1505 platform_set_drvdata(pdev, device_data);
1506
1507 /* Put the new device into the device list... */
1508 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1509
1510 /* ... and signal that a new device is available. */
1511 up(&driver_data.device_allocation);
1512
1513 atomic_set(&session_id, 1);
1514
1515 ret = cryp_algs_register_all();
1516 if (ret) {
1517 dev_err(dev, "[%s]: cryp_algs_register_all() failed!",
1518 __func__);
1519 goto out_power;
1520 }
1521
1522 return 0;
1523
1524 out_power:
1525 cryp_disable_power(device_data->dev, device_data, false);
1526
1527 out_clk:
1528 clk_put(device_data->clk);
1529
1530 out_regulator:
1531 regulator_put(device_data->pwr_regulator);
1532
1533 out_unmap:
1534 iounmap(device_data->base);
1535
1536 out_free_mem:
1537 release_mem_region(res->start, resource_size(res));
1538
1539 out_kfree:
1540 kfree(device_data);
1541 out:
1542 return ret;
1543 }
1544
1545 static int ux500_cryp_remove(struct platform_device *pdev)
1546 {
1547 struct resource *res = NULL;
1548 struct resource *res_irq = NULL;
1549 struct cryp_device_data *device_data;
1550
1551 dev_dbg(&pdev->dev, "[%s]", __func__);
1552 device_data = platform_get_drvdata(pdev);
1553 if (!device_data) {
1554 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1555 __func__);
1556 return -ENOMEM;
1557 }
1558
1559 /* Try to decrease the number of available devices. */
1560 if (down_trylock(&driver_data.device_allocation))
1561 return -EBUSY;
1562
1563 /* Check that the device is free */
1564 spin_lock(&device_data->ctx_lock);
1565 /* current_ctx allocates a device, NULL = unallocated */
1566 if (device_data->current_ctx) {
1567 /* The device is busy */
1568 spin_unlock(&device_data->ctx_lock);
1569 /* Return the device to the pool. */
1570 up(&driver_data.device_allocation);
1571 return -EBUSY;
1572 }
1573
1574 spin_unlock(&device_data->ctx_lock);
1575
1576 /* Remove the device from the list */
1577 if (klist_node_attached(&device_data->list_node))
1578 klist_remove(&device_data->list_node);
1579
1580 /* If this was the last device, remove the services */
1581 if (list_empty(&driver_data.device_list.k_list))
1582 cryp_algs_unregister_all();
1583
1584 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1585 if (!res_irq)
1586 dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
1587 __func__);
1588 else {
1589 disable_irq(res_irq->start);
1590 free_irq(res_irq->start, device_data);
1591 }
1592
1593 if (cryp_disable_power(&pdev->dev, device_data, false))
1594 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1595 __func__);
1596
1597 clk_put(device_data->clk);
1598 regulator_put(device_data->pwr_regulator);
1599
1600 iounmap(device_data->base);
1601
1602 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1603 if (res)
1604 release_mem_region(res->start, res->end - res->start + 1);
1605
1606 kfree(device_data);
1607
1608 return 0;
1609 }
1610
1611 static void ux500_cryp_shutdown(struct platform_device *pdev)
1612 {
1613 struct resource *res_irq = NULL;
1614 struct cryp_device_data *device_data;
1615
1616 dev_dbg(&pdev->dev, "[%s]", __func__);
1617
1618 device_data = platform_get_drvdata(pdev);
1619 if (!device_data) {
1620 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1621 __func__);
1622 return;
1623 }
1624
1625 /* Check that the device is free */
1626 spin_lock(&device_data->ctx_lock);
1627 /* current_ctx allocates a device, NULL = unallocated */
1628 if (!device_data->current_ctx) {
1629 if (down_trylock(&driver_data.device_allocation))
1630 dev_dbg(&pdev->dev, "[%s]: Cryp still in use!"
1631 "Shutting down anyway...", __func__);
1632 /**
1633 * (Allocate the device)
1634 * Need to set this to non-null (dummy) value,
1635 * to avoid usage if context switching.
1636 */
1637 device_data->current_ctx++;
1638 }
1639 spin_unlock(&device_data->ctx_lock);
1640
1641 /* Remove the device from the list */
1642 if (klist_node_attached(&device_data->list_node))
1643 klist_remove(&device_data->list_node);
1644
1645 /* If this was the last device, remove the services */
1646 if (list_empty(&driver_data.device_list.k_list))
1647 cryp_algs_unregister_all();
1648
1649 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1650 if (!res_irq)
1651 dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
1652 __func__);
1653 else {
1654 disable_irq(res_irq->start);
1655 free_irq(res_irq->start, device_data);
1656 }
1657
1658 if (cryp_disable_power(&pdev->dev, device_data, false))
1659 dev_err(&pdev->dev, "[%s]: cryp_disable_power() failed",
1660 __func__);
1661
1662 }
1663
1664 static int ux500_cryp_suspend(struct platform_device *pdev, pm_message_t state)
1665 {
1666 int ret;
1667 struct cryp_device_data *device_data;
1668 struct resource *res_irq;
1669 struct cryp_ctx *temp_ctx = NULL;
1670
1671 dev_dbg(&pdev->dev, "[%s]", __func__);
1672
1673 /* Handle state? */
1674 device_data = platform_get_drvdata(pdev);
1675 if (!device_data) {
1676 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1677 __func__);
1678 return -ENOMEM;
1679 }
1680
1681 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1682 if (!res_irq)
1683 dev_err(&pdev->dev, "[%s]: IORESOURCE_IRQ, unavailable",
1684 __func__);
1685 else
1686 disable_irq(res_irq->start);
1687
1688 spin_lock(&device_data->ctx_lock);
1689 if (!device_data->current_ctx)
1690 device_data->current_ctx++;
1691 spin_unlock(&device_data->ctx_lock);
1692
1693 if (device_data->current_ctx == ++temp_ctx) {
1694 if (down_interruptible(&driver_data.device_allocation))
1695 dev_dbg(&pdev->dev, "[%s]: down_interruptible() "
1696 "failed", __func__);
1697 ret = cryp_disable_power(&pdev->dev, device_data, false);
1698
1699 } else
1700 ret = cryp_disable_power(&pdev->dev, device_data, true);
1701
1702 if (ret)
1703 dev_err(&pdev->dev, "[%s]: cryp_disable_power()", __func__);
1704
1705 return ret;
1706 }
1707
1708 static int ux500_cryp_resume(struct platform_device *pdev)
1709 {
1710 int ret = 0;
1711 struct cryp_device_data *device_data;
1712 struct resource *res_irq;
1713 struct cryp_ctx *temp_ctx = NULL;
1714
1715 dev_dbg(&pdev->dev, "[%s]", __func__);
1716
1717 device_data = platform_get_drvdata(pdev);
1718 if (!device_data) {
1719 dev_err(&pdev->dev, "[%s]: platform_get_drvdata() failed!",
1720 __func__);
1721 return -ENOMEM;
1722 }
1723
1724 spin_lock(&device_data->ctx_lock);
1725 if (device_data->current_ctx == ++temp_ctx)
1726 device_data->current_ctx = NULL;
1727 spin_unlock(&device_data->ctx_lock);
1728
1729
1730 if (!device_data->current_ctx)
1731 up(&driver_data.device_allocation);
1732 else
1733 ret = cryp_enable_power(&pdev->dev, device_data, true);
1734
1735 if (ret)
1736 dev_err(&pdev->dev, "[%s]: cryp_enable_power() failed!",
1737 __func__);
1738 else {
1739 res_irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1740 if (res_irq)
1741 enable_irq(res_irq->start);
1742 }
1743
1744 return ret;
1745 }
1746
1747 static struct platform_driver cryp_driver = {
1748 .probe = ux500_cryp_probe,
1749 .remove = ux500_cryp_remove,
1750 .shutdown = ux500_cryp_shutdown,
1751 .suspend = ux500_cryp_suspend,
1752 .resume = ux500_cryp_resume,
1753 .driver = {
1754 .owner = THIS_MODULE,
1755 .name = "cryp1"
1756 }
1757 };
1758
1759 static int __init ux500_cryp_mod_init(void)
1760 {
1761 pr_debug("[%s] is called!", __func__);
1762 klist_init(&driver_data.device_list, NULL, NULL);
1763 /* Initialize the semaphore to 0 devices (locked state) */
1764 sema_init(&driver_data.device_allocation, 0);
1765 return platform_driver_register(&cryp_driver);
1766 }
1767
1768 static void __exit ux500_cryp_mod_fini(void)
1769 {
1770 pr_debug("[%s] is called!", __func__);
1771 platform_driver_unregister(&cryp_driver);
1772 return;
1773 }
1774
1775 module_init(ux500_cryp_mod_init);
1776 module_exit(ux500_cryp_mod_fini);
1777
1778 module_param(cryp_mode, int, 0);
1779
1780 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 CRYP crypto engine.");
1781 MODULE_ALIAS("aes-all");
1782 MODULE_ALIAS("des-all");
1783
1784 MODULE_LICENSE("GPL");
This page took 0.069396 seconds and 5 git commands to generate.