ASoC: wm8753: Replace magic number
[deliverable/linux.git] / drivers / crypto / ux500 / hash / hash_core.c
1 /*
2 * Cryptographic API.
3 * Support for Nomadik hardware crypto engine.
4
5 * Copyright (C) ST-Ericsson SA 2010
6 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11 * License terms: GNU General Public License (GPL) version 2
12 */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/crypto.h>
26
27 #include <linux/regulator/consumer.h>
28 #include <linux/dmaengine.h>
29 #include <linux/bitops.h>
30
31 #include <crypto/internal/hash.h>
32 #include <crypto/sha.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
35
36 #include <linux/platform_data/crypto-ux500.h>
37
38 #include "hash_alg.h"
39
40 static int hash_mode;
41 module_param(hash_mode, int, 0);
42 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
43
44 /* HMAC-SHA1, no key */
45 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
46 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
47 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
48 0x70, 0x69, 0x0e, 0x1d
49 };
50
51 /* HMAC-SHA256, no key */
52 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
53 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
54 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
55 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
56 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
57 };
58
59 /**
60 * struct hash_driver_data - data specific to the driver.
61 *
62 * @device_list: A list of registered devices to choose from.
63 * @device_allocation: A semaphore initialized with number of devices.
64 */
65 struct hash_driver_data {
66 struct klist device_list;
67 struct semaphore device_allocation;
68 };
69
70 static struct hash_driver_data driver_data;
71
72 /* Declaration of functions */
73 /**
74 * hash_messagepad - Pads a message and write the nblw bits.
75 * @device_data: Structure for the hash device.
76 * @message: Last word of a message
77 * @index_bytes: The number of bytes in the last message
78 *
79 * This function manages the final part of the digest calculation, when less
80 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
81 *
82 */
83 static void hash_messagepad(struct hash_device_data *device_data,
84 const u32 *message, u8 index_bytes);
85
86 /**
87 * release_hash_device - Releases a previously allocated hash device.
88 * @device_data: Structure for the hash device.
89 *
90 */
91 static void release_hash_device(struct hash_device_data *device_data)
92 {
93 spin_lock(&device_data->ctx_lock);
94 device_data->current_ctx->device = NULL;
95 device_data->current_ctx = NULL;
96 spin_unlock(&device_data->ctx_lock);
97
98 /*
99 * The down_interruptible part for this semaphore is called in
100 * cryp_get_device_data.
101 */
102 up(&driver_data.device_allocation);
103 }
104
105 static void hash_dma_setup_channel(struct hash_device_data *device_data,
106 struct device *dev)
107 {
108 struct hash_platform_data *platform_data = dev->platform_data;
109 struct dma_slave_config conf = {
110 .direction = DMA_MEM_TO_DEV,
111 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
112 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
113 .dst_maxburst = 16,
114 };
115
116 dma_cap_zero(device_data->dma.mask);
117 dma_cap_set(DMA_SLAVE, device_data->dma.mask);
118
119 device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
120 device_data->dma.chan_mem2hash =
121 dma_request_channel(device_data->dma.mask,
122 platform_data->dma_filter,
123 device_data->dma.cfg_mem2hash);
124
125 dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
126
127 init_completion(&device_data->dma.complete);
128 }
129
130 static void hash_dma_callback(void *data)
131 {
132 struct hash_ctx *ctx = data;
133
134 complete(&ctx->device->dma.complete);
135 }
136
137 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
138 int len, enum dma_data_direction direction)
139 {
140 struct dma_async_tx_descriptor *desc = NULL;
141 struct dma_chan *channel = NULL;
142 dma_cookie_t cookie;
143
144 if (direction != DMA_TO_DEVICE) {
145 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
146 __func__);
147 return -EFAULT;
148 }
149
150 sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
151
152 channel = ctx->device->dma.chan_mem2hash;
153 ctx->device->dma.sg = sg;
154 ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
155 ctx->device->dma.sg, ctx->device->dma.nents,
156 direction);
157
158 if (!ctx->device->dma.sg_len) {
159 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
160 __func__);
161 return -EFAULT;
162 }
163
164 dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
165 __func__);
166 desc = dmaengine_prep_slave_sg(channel,
167 ctx->device->dma.sg, ctx->device->dma.sg_len,
168 direction, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
169 if (!desc) {
170 dev_err(ctx->device->dev,
171 "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
172 return -EFAULT;
173 }
174
175 desc->callback = hash_dma_callback;
176 desc->callback_param = ctx;
177
178 cookie = dmaengine_submit(desc);
179 dma_async_issue_pending(channel);
180
181 return 0;
182 }
183
184 static void hash_dma_done(struct hash_ctx *ctx)
185 {
186 struct dma_chan *chan;
187
188 chan = ctx->device->dma.chan_mem2hash;
189 dmaengine_terminate_all(chan);
190 dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
191 ctx->device->dma.sg_len, DMA_TO_DEVICE);
192 }
193
194 static int hash_dma_write(struct hash_ctx *ctx,
195 struct scatterlist *sg, int len)
196 {
197 int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
198 if (error) {
199 dev_dbg(ctx->device->dev,
200 "%s: hash_set_dma_transfer() failed\n", __func__);
201 return error;
202 }
203
204 return len;
205 }
206
207 /**
208 * get_empty_message_digest - Returns a pre-calculated digest for
209 * the empty message.
210 * @device_data: Structure for the hash device.
211 * @zero_hash: Buffer to return the empty message digest.
212 * @zero_hash_size: Hash size of the empty message digest.
213 * @zero_digest: True if zero_digest returned.
214 */
215 static int get_empty_message_digest(
216 struct hash_device_data *device_data,
217 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
218 {
219 int ret = 0;
220 struct hash_ctx *ctx = device_data->current_ctx;
221 *zero_digest = false;
222
223 /**
224 * Caller responsible for ctx != NULL.
225 */
226
227 if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
228 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
229 memcpy(zero_hash, &sha1_zero_message_hash[0],
230 SHA1_DIGEST_SIZE);
231 *zero_hash_size = SHA1_DIGEST_SIZE;
232 *zero_digest = true;
233 } else if (HASH_ALGO_SHA256 ==
234 ctx->config.algorithm) {
235 memcpy(zero_hash, &sha256_zero_message_hash[0],
236 SHA256_DIGEST_SIZE);
237 *zero_hash_size = SHA256_DIGEST_SIZE;
238 *zero_digest = true;
239 } else {
240 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
241 __func__);
242 ret = -EINVAL;
243 goto out;
244 }
245 } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
246 if (!ctx->keylen) {
247 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
248 memcpy(zero_hash, &zero_message_hmac_sha1[0],
249 SHA1_DIGEST_SIZE);
250 *zero_hash_size = SHA1_DIGEST_SIZE;
251 *zero_digest = true;
252 } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
253 memcpy(zero_hash, &zero_message_hmac_sha256[0],
254 SHA256_DIGEST_SIZE);
255 *zero_hash_size = SHA256_DIGEST_SIZE;
256 *zero_digest = true;
257 } else {
258 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
259 __func__);
260 ret = -EINVAL;
261 goto out;
262 }
263 } else {
264 dev_dbg(device_data->dev,
265 "%s: Continue hash calculation, since hmac key available\n",
266 __func__);
267 }
268 }
269 out:
270
271 return ret;
272 }
273
274 /**
275 * hash_disable_power - Request to disable power and clock.
276 * @device_data: Structure for the hash device.
277 * @save_device_state: If true, saves the current hw state.
278 *
279 * This function request for disabling power (regulator) and clock,
280 * and could also save current hw state.
281 */
282 static int hash_disable_power(struct hash_device_data *device_data,
283 bool save_device_state)
284 {
285 int ret = 0;
286 struct device *dev = device_data->dev;
287
288 spin_lock(&device_data->power_state_lock);
289 if (!device_data->power_state)
290 goto out;
291
292 if (save_device_state) {
293 hash_save_state(device_data,
294 &device_data->state);
295 device_data->restore_dev_state = true;
296 }
297
298 clk_disable(device_data->clk);
299 ret = regulator_disable(device_data->regulator);
300 if (ret)
301 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
302
303 device_data->power_state = false;
304
305 out:
306 spin_unlock(&device_data->power_state_lock);
307
308 return ret;
309 }
310
311 /**
312 * hash_enable_power - Request to enable power and clock.
313 * @device_data: Structure for the hash device.
314 * @restore_device_state: If true, restores a previous saved hw state.
315 *
316 * This function request for enabling power (regulator) and clock,
317 * and could also restore a previously saved hw state.
318 */
319 static int hash_enable_power(struct hash_device_data *device_data,
320 bool restore_device_state)
321 {
322 int ret = 0;
323 struct device *dev = device_data->dev;
324
325 spin_lock(&device_data->power_state_lock);
326 if (!device_data->power_state) {
327 ret = regulator_enable(device_data->regulator);
328 if (ret) {
329 dev_err(dev, "%s: regulator_enable() failed!\n",
330 __func__);
331 goto out;
332 }
333 ret = clk_enable(device_data->clk);
334 if (ret) {
335 dev_err(dev, "%s: clk_enable() failed!\n", __func__);
336 ret = regulator_disable(
337 device_data->regulator);
338 goto out;
339 }
340 device_data->power_state = true;
341 }
342
343 if (device_data->restore_dev_state) {
344 if (restore_device_state) {
345 device_data->restore_dev_state = false;
346 hash_resume_state(device_data, &device_data->state);
347 }
348 }
349 out:
350 spin_unlock(&device_data->power_state_lock);
351
352 return ret;
353 }
354
355 /**
356 * hash_get_device_data - Checks for an available hash device and return it.
357 * @hash_ctx: Structure for the hash context.
358 * @device_data: Structure for the hash device.
359 *
360 * This function check for an available hash device and return it to
361 * the caller.
362 * Note! Caller need to release the device, calling up().
363 */
364 static int hash_get_device_data(struct hash_ctx *ctx,
365 struct hash_device_data **device_data)
366 {
367 int ret;
368 struct klist_iter device_iterator;
369 struct klist_node *device_node;
370 struct hash_device_data *local_device_data = NULL;
371
372 /* Wait until a device is available */
373 ret = down_interruptible(&driver_data.device_allocation);
374 if (ret)
375 return ret; /* Interrupted */
376
377 /* Select a device */
378 klist_iter_init(&driver_data.device_list, &device_iterator);
379 device_node = klist_next(&device_iterator);
380 while (device_node) {
381 local_device_data = container_of(device_node,
382 struct hash_device_data, list_node);
383 spin_lock(&local_device_data->ctx_lock);
384 /* current_ctx allocates a device, NULL = unallocated */
385 if (local_device_data->current_ctx) {
386 device_node = klist_next(&device_iterator);
387 } else {
388 local_device_data->current_ctx = ctx;
389 ctx->device = local_device_data;
390 spin_unlock(&local_device_data->ctx_lock);
391 break;
392 }
393 spin_unlock(&local_device_data->ctx_lock);
394 }
395 klist_iter_exit(&device_iterator);
396
397 if (!device_node) {
398 /**
399 * No free device found.
400 * Since we allocated a device with down_interruptible, this
401 * should not be able to happen.
402 * Number of available devices, which are contained in
403 * device_allocation, is therefore decremented by not doing
404 * an up(device_allocation).
405 */
406 return -EBUSY;
407 }
408
409 *device_data = local_device_data;
410
411 return 0;
412 }
413
414 /**
415 * hash_hw_write_key - Writes the key to the hardware registries.
416 *
417 * @device_data: Structure for the hash device.
418 * @key: Key to be written.
419 * @keylen: The lengt of the key.
420 *
421 * Note! This function DOES NOT write to the NBLW registry, even though
422 * specified in the the hw design spec. Either due to incorrect info in the
423 * spec or due to a bug in the hw.
424 */
425 static void hash_hw_write_key(struct hash_device_data *device_data,
426 const u8 *key, unsigned int keylen)
427 {
428 u32 word = 0;
429 int nwords = 1;
430
431 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
432
433 while (keylen >= 4) {
434 u32 *key_word = (u32 *)key;
435
436 HASH_SET_DIN(key_word, nwords);
437 keylen -= 4;
438 key += 4;
439 }
440
441 /* Take care of the remaining bytes in the last word */
442 if (keylen) {
443 word = 0;
444 while (keylen) {
445 word |= (key[keylen - 1] << (8 * (keylen - 1)));
446 keylen--;
447 }
448
449 HASH_SET_DIN(&word, nwords);
450 }
451
452 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
453 cpu_relax();
454
455 HASH_SET_DCAL;
456
457 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
458 cpu_relax();
459 }
460
461 /**
462 * init_hash_hw - Initialise the hash hardware for a new calculation.
463 * @device_data: Structure for the hash device.
464 * @ctx: The hash context.
465 *
466 * This function will enable the bits needed to clear and start a new
467 * calculation.
468 */
469 static int init_hash_hw(struct hash_device_data *device_data,
470 struct hash_ctx *ctx)
471 {
472 int ret = 0;
473
474 ret = hash_setconfiguration(device_data, &ctx->config);
475 if (ret) {
476 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
477 __func__);
478 return ret;
479 }
480
481 hash_begin(device_data, ctx);
482
483 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
484 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
485
486 return ret;
487 }
488
489 /**
490 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
491 *
492 * @sg: Scatterlist.
493 * @size: Size in bytes.
494 * @aligned: True if sg data aligned to work in DMA mode.
495 *
496 */
497 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
498 {
499 int nents = 0;
500 bool aligned_data = true;
501
502 while (size > 0 && sg) {
503 nents++;
504 size -= sg->length;
505
506 /* hash_set_dma_transfer will align last nent */
507 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
508 (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
509 aligned_data = false;
510
511 sg = sg_next(sg);
512 }
513
514 if (aligned)
515 *aligned = aligned_data;
516
517 if (size != 0)
518 return -EFAULT;
519
520 return nents;
521 }
522
523 /**
524 * hash_dma_valid_data - checks for dma valid sg data.
525 * @sg: Scatterlist.
526 * @datasize: Datasize in bytes.
527 *
528 * NOTE! This function checks for dma valid sg data, since dma
529 * only accept datasizes of even wordsize.
530 */
531 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
532 {
533 bool aligned;
534
535 /* Need to include at least one nent, else error */
536 if (hash_get_nents(sg, datasize, &aligned) < 1)
537 return false;
538
539 return aligned;
540 }
541
542 /**
543 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
544 * @req: The hash request for the job.
545 *
546 * Initialize structures.
547 */
548 static int hash_init(struct ahash_request *req)
549 {
550 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
551 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
552 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
553
554 if (!ctx->key)
555 ctx->keylen = 0;
556
557 memset(&req_ctx->state, 0, sizeof(struct hash_state));
558 req_ctx->updated = 0;
559 if (hash_mode == HASH_MODE_DMA) {
560 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
561 req_ctx->dma_mode = false; /* Don't use DMA */
562
563 pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
564 __func__, HASH_DMA_ALIGN_SIZE);
565 } else {
566 if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
567 hash_dma_valid_data(req->src, req->nbytes)) {
568 req_ctx->dma_mode = true;
569 } else {
570 req_ctx->dma_mode = false;
571 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
572 __func__,
573 HASH_DMA_PERFORMANCE_MIN_SIZE);
574 }
575 }
576 }
577 return 0;
578 }
579
580 /**
581 * hash_processblock - This function processes a single block of 512 bits (64
582 * bytes), word aligned, starting at message.
583 * @device_data: Structure for the hash device.
584 * @message: Block (512 bits) of message to be written to
585 * the HASH hardware.
586 *
587 */
588 static void hash_processblock(struct hash_device_data *device_data,
589 const u32 *message, int length)
590 {
591 int len = length / HASH_BYTES_PER_WORD;
592 /*
593 * NBLW bits. Reset the number of bits in last word (NBLW).
594 */
595 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
596
597 /*
598 * Write message data to the HASH_DIN register.
599 */
600 HASH_SET_DIN(message, len);
601 }
602
603 /**
604 * hash_messagepad - Pads a message and write the nblw bits.
605 * @device_data: Structure for the hash device.
606 * @message: Last word of a message.
607 * @index_bytes: The number of bytes in the last message.
608 *
609 * This function manages the final part of the digest calculation, when less
610 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
611 *
612 */
613 static void hash_messagepad(struct hash_device_data *device_data,
614 const u32 *message, u8 index_bytes)
615 {
616 int nwords = 1;
617
618 /*
619 * Clear hash str register, only clear NBLW
620 * since DCAL will be reset by hardware.
621 */
622 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
623
624 /* Main loop */
625 while (index_bytes >= 4) {
626 HASH_SET_DIN(message, nwords);
627 index_bytes -= 4;
628 message++;
629 }
630
631 if (index_bytes)
632 HASH_SET_DIN(message, nwords);
633
634 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
635 cpu_relax();
636
637 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
638 HASH_SET_NBLW(index_bytes * 8);
639 dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
640 __func__, readl_relaxed(&device_data->base->din),
641 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
642 HASH_SET_DCAL;
643 dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
644 __func__, readl_relaxed(&device_data->base->din),
645 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
646
647 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
648 cpu_relax();
649 }
650
651 /**
652 * hash_incrementlength - Increments the length of the current message.
653 * @ctx: Hash context
654 * @incr: Length of message processed already
655 *
656 * Overflow cannot occur, because conditions for overflow are checked in
657 * hash_hw_update.
658 */
659 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
660 {
661 ctx->state.length.low_word += incr;
662
663 /* Check for wrap-around */
664 if (ctx->state.length.low_word < incr)
665 ctx->state.length.high_word++;
666 }
667
668 /**
669 * hash_setconfiguration - Sets the required configuration for the hash
670 * hardware.
671 * @device_data: Structure for the hash device.
672 * @config: Pointer to a configuration structure.
673 */
674 int hash_setconfiguration(struct hash_device_data *device_data,
675 struct hash_config *config)
676 {
677 int ret = 0;
678
679 if (config->algorithm != HASH_ALGO_SHA1 &&
680 config->algorithm != HASH_ALGO_SHA256)
681 return -EPERM;
682
683 /*
684 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
685 * to be written to HASH_DIN is considered as 32 bits.
686 */
687 HASH_SET_DATA_FORMAT(config->data_format);
688
689 /*
690 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
691 */
692 switch (config->algorithm) {
693 case HASH_ALGO_SHA1:
694 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
695 break;
696
697 case HASH_ALGO_SHA256:
698 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
699 break;
700
701 default:
702 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
703 __func__);
704 return -EPERM;
705 }
706
707 /*
708 * MODE bit. This bit selects between HASH or HMAC mode for the
709 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
710 */
711 if (HASH_OPER_MODE_HASH == config->oper_mode)
712 HASH_CLEAR_BITS(&device_data->base->cr,
713 HASH_CR_MODE_MASK);
714 else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
715 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
716 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
717 /* Truncate key to blocksize */
718 dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
719 HASH_SET_BITS(&device_data->base->cr,
720 HASH_CR_LKEY_MASK);
721 } else {
722 dev_dbg(device_data->dev, "%s: LKEY cleared\n",
723 __func__);
724 HASH_CLEAR_BITS(&device_data->base->cr,
725 HASH_CR_LKEY_MASK);
726 }
727 } else { /* Wrong hash mode */
728 ret = -EPERM;
729 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
730 __func__);
731 }
732 return ret;
733 }
734
735 /**
736 * hash_begin - This routine resets some globals and initializes the hash
737 * hardware.
738 * @device_data: Structure for the hash device.
739 * @ctx: Hash context.
740 */
741 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
742 {
743 /* HW and SW initializations */
744 /* Note: there is no need to initialize buffer and digest members */
745
746 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
747 cpu_relax();
748
749 /*
750 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
751 * prepare the initialize the HASH accelerator to compute the message
752 * digest of a new message.
753 */
754 HASH_INITIALIZE;
755
756 /*
757 * NBLW bits. Reset the number of bits in last word (NBLW).
758 */
759 HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
760 }
761
762 static int hash_process_data(struct hash_device_data *device_data,
763 struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
764 int msg_length, u8 *data_buffer, u8 *buffer,
765 u8 *index)
766 {
767 int ret = 0;
768 u32 count;
769
770 do {
771 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
772 for (count = 0; count < msg_length; count++) {
773 buffer[*index + count] =
774 *(data_buffer + count);
775 }
776 *index += msg_length;
777 msg_length = 0;
778 } else {
779 if (req_ctx->updated) {
780 ret = hash_resume_state(device_data,
781 &device_data->state);
782 memmove(req_ctx->state.buffer,
783 device_data->state.buffer,
784 HASH_BLOCK_SIZE / sizeof(u32));
785 if (ret) {
786 dev_err(device_data->dev,
787 "%s: hash_resume_state() failed!\n",
788 __func__);
789 goto out;
790 }
791 } else {
792 ret = init_hash_hw(device_data, ctx);
793 if (ret) {
794 dev_err(device_data->dev,
795 "%s: init_hash_hw() failed!\n",
796 __func__);
797 goto out;
798 }
799 req_ctx->updated = 1;
800 }
801 /*
802 * If 'data_buffer' is four byte aligned and
803 * local buffer does not have any data, we can
804 * write data directly from 'data_buffer' to
805 * HW peripheral, otherwise we first copy data
806 * to a local buffer
807 */
808 if ((0 == (((u32)data_buffer) % 4)) &&
809 (0 == *index))
810 hash_processblock(device_data,
811 (const u32 *)data_buffer,
812 HASH_BLOCK_SIZE);
813 else {
814 for (count = 0;
815 count < (u32)(HASH_BLOCK_SIZE - *index);
816 count++) {
817 buffer[*index + count] =
818 *(data_buffer + count);
819 }
820 hash_processblock(device_data,
821 (const u32 *)buffer,
822 HASH_BLOCK_SIZE);
823 }
824 hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
825 data_buffer += (HASH_BLOCK_SIZE - *index);
826
827 msg_length -= (HASH_BLOCK_SIZE - *index);
828 *index = 0;
829
830 ret = hash_save_state(device_data,
831 &device_data->state);
832
833 memmove(device_data->state.buffer,
834 req_ctx->state.buffer,
835 HASH_BLOCK_SIZE / sizeof(u32));
836 if (ret) {
837 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
838 __func__);
839 goto out;
840 }
841 }
842 } while (msg_length != 0);
843 out:
844
845 return ret;
846 }
847
848 /**
849 * hash_dma_final - The hash dma final function for SHA1/SHA256.
850 * @req: The hash request for the job.
851 */
852 static int hash_dma_final(struct ahash_request *req)
853 {
854 int ret = 0;
855 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
856 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
857 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
858 struct hash_device_data *device_data;
859 u8 digest[SHA256_DIGEST_SIZE];
860 int bytes_written = 0;
861
862 ret = hash_get_device_data(ctx, &device_data);
863 if (ret)
864 return ret;
865
866 dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
867
868 if (req_ctx->updated) {
869 ret = hash_resume_state(device_data, &device_data->state);
870
871 if (ret) {
872 dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
873 __func__);
874 goto out;
875 }
876 }
877
878 if (!req_ctx->updated) {
879 ret = hash_setconfiguration(device_data, &ctx->config);
880 if (ret) {
881 dev_err(device_data->dev,
882 "%s: hash_setconfiguration() failed!\n",
883 __func__);
884 goto out;
885 }
886
887 /* Enable DMA input */
888 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
889 HASH_CLEAR_BITS(&device_data->base->cr,
890 HASH_CR_DMAE_MASK);
891 } else {
892 HASH_SET_BITS(&device_data->base->cr,
893 HASH_CR_DMAE_MASK);
894 HASH_SET_BITS(&device_data->base->cr,
895 HASH_CR_PRIVN_MASK);
896 }
897
898 HASH_INITIALIZE;
899
900 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
901 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
902
903 /* Number of bits in last word = (nbytes * 8) % 32 */
904 HASH_SET_NBLW((req->nbytes * 8) % 32);
905 req_ctx->updated = 1;
906 }
907
908 /* Store the nents in the dma struct. */
909 ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
910 if (!ctx->device->dma.nents) {
911 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
912 __func__);
913 ret = ctx->device->dma.nents;
914 goto out;
915 }
916
917 bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
918 if (bytes_written != req->nbytes) {
919 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
920 __func__);
921 ret = bytes_written;
922 goto out;
923 }
924
925 wait_for_completion(&ctx->device->dma.complete);
926 hash_dma_done(ctx);
927
928 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
929 cpu_relax();
930
931 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
932 unsigned int keylen = ctx->keylen;
933 u8 *key = ctx->key;
934
935 dev_dbg(device_data->dev, "%s: keylen: %d\n",
936 __func__, ctx->keylen);
937 hash_hw_write_key(device_data, key, keylen);
938 }
939
940 hash_get_digest(device_data, digest, ctx->config.algorithm);
941 memcpy(req->result, digest, ctx->digestsize);
942
943 out:
944 release_hash_device(device_data);
945
946 /**
947 * Allocated in setkey, and only used in HMAC.
948 */
949 kfree(ctx->key);
950
951 return ret;
952 }
953
954 /**
955 * hash_hw_final - The final hash calculation function
956 * @req: The hash request for the job.
957 */
958 static int hash_hw_final(struct ahash_request *req)
959 {
960 int ret = 0;
961 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
962 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
963 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
964 struct hash_device_data *device_data;
965 u8 digest[SHA256_DIGEST_SIZE];
966
967 ret = hash_get_device_data(ctx, &device_data);
968 if (ret)
969 return ret;
970
971 dev_dbg(device_data->dev, "%s: (ctx=0x%x)!\n", __func__, (u32) ctx);
972
973 if (req_ctx->updated) {
974 ret = hash_resume_state(device_data, &device_data->state);
975
976 if (ret) {
977 dev_err(device_data->dev,
978 "%s: hash_resume_state() failed!\n", __func__);
979 goto out;
980 }
981 } else if (req->nbytes == 0 && ctx->keylen == 0) {
982 u8 zero_hash[SHA256_DIGEST_SIZE];
983 u32 zero_hash_size = 0;
984 bool zero_digest = false;
985 /**
986 * Use a pre-calculated empty message digest
987 * (workaround since hw return zeroes, hw bug!?)
988 */
989 ret = get_empty_message_digest(device_data, &zero_hash[0],
990 &zero_hash_size, &zero_digest);
991 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
992 zero_digest) {
993 memcpy(req->result, &zero_hash[0], ctx->digestsize);
994 goto out;
995 } else if (!ret && !zero_digest) {
996 dev_dbg(device_data->dev,
997 "%s: HMAC zero msg with key, continue...\n",
998 __func__);
999 } else {
1000 dev_err(device_data->dev,
1001 "%s: ret=%d, or wrong digest size? %s\n",
1002 __func__, ret,
1003 zero_hash_size == ctx->digestsize ?
1004 "true" : "false");
1005 /* Return error */
1006 goto out;
1007 }
1008 } else if (req->nbytes == 0 && ctx->keylen > 0) {
1009 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1010 __func__);
1011 goto out;
1012 }
1013
1014 if (!req_ctx->updated) {
1015 ret = init_hash_hw(device_data, ctx);
1016 if (ret) {
1017 dev_err(device_data->dev,
1018 "%s: init_hash_hw() failed!\n", __func__);
1019 goto out;
1020 }
1021 }
1022
1023 if (req_ctx->state.index) {
1024 hash_messagepad(device_data, req_ctx->state.buffer,
1025 req_ctx->state.index);
1026 } else {
1027 HASH_SET_DCAL;
1028 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1029 cpu_relax();
1030 }
1031
1032 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1033 unsigned int keylen = ctx->keylen;
1034 u8 *key = ctx->key;
1035
1036 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1037 __func__, ctx->keylen);
1038 hash_hw_write_key(device_data, key, keylen);
1039 }
1040
1041 hash_get_digest(device_data, digest, ctx->config.algorithm);
1042 memcpy(req->result, digest, ctx->digestsize);
1043
1044 out:
1045 release_hash_device(device_data);
1046
1047 /**
1048 * Allocated in setkey, and only used in HMAC.
1049 */
1050 kfree(ctx->key);
1051
1052 return ret;
1053 }
1054
1055 /**
1056 * hash_hw_update - Updates current HASH computation hashing another part of
1057 * the message.
1058 * @req: Byte array containing the message to be hashed (caller
1059 * allocated).
1060 */
1061 int hash_hw_update(struct ahash_request *req)
1062 {
1063 int ret = 0;
1064 u8 index = 0;
1065 u8 *buffer;
1066 struct hash_device_data *device_data;
1067 u8 *data_buffer;
1068 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1069 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1070 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1071 struct crypto_hash_walk walk;
1072 int msg_length = crypto_hash_walk_first(req, &walk);
1073
1074 /* Empty message ("") is correct indata */
1075 if (msg_length == 0)
1076 return ret;
1077
1078 index = req_ctx->state.index;
1079 buffer = (u8 *)req_ctx->state.buffer;
1080
1081 /* Check if ctx->state.length + msg_length
1082 overflows */
1083 if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1084 HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1085 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1086 return -EPERM;
1087 }
1088
1089 ret = hash_get_device_data(ctx, &device_data);
1090 if (ret)
1091 return ret;
1092
1093 /* Main loop */
1094 while (0 != msg_length) {
1095 data_buffer = walk.data;
1096 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1097 data_buffer, buffer, &index);
1098
1099 if (ret) {
1100 dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1101 __func__);
1102 goto out;
1103 }
1104
1105 msg_length = crypto_hash_walk_done(&walk, 0);
1106 }
1107
1108 req_ctx->state.index = index;
1109 dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1110 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1111
1112 out:
1113 release_hash_device(device_data);
1114
1115 return ret;
1116 }
1117
1118 /**
1119 * hash_resume_state - Function that resumes the state of an calculation.
1120 * @device_data: Pointer to the device structure.
1121 * @device_state: The state to be restored in the hash hardware
1122 */
1123 int hash_resume_state(struct hash_device_data *device_data,
1124 const struct hash_state *device_state)
1125 {
1126 u32 temp_cr;
1127 s32 count;
1128 int hash_mode = HASH_OPER_MODE_HASH;
1129
1130 if (NULL == device_state) {
1131 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1132 __func__);
1133 return -EPERM;
1134 }
1135
1136 /* Check correctness of index and length members */
1137 if (device_state->index > HASH_BLOCK_SIZE ||
1138 (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1139 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1140 __func__);
1141 return -EPERM;
1142 }
1143
1144 /*
1145 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1146 * prepare the initialize the HASH accelerator to compute the message
1147 * digest of a new message.
1148 */
1149 HASH_INITIALIZE;
1150
1151 temp_cr = device_state->temp_cr;
1152 writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1153
1154 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1155 hash_mode = HASH_OPER_MODE_HMAC;
1156 else
1157 hash_mode = HASH_OPER_MODE_HASH;
1158
1159 for (count = 0; count < HASH_CSR_COUNT; count++) {
1160 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1161 break;
1162
1163 writel_relaxed(device_state->csr[count],
1164 &device_data->base->csrx[count]);
1165 }
1166
1167 writel_relaxed(device_state->csfull, &device_data->base->csfull);
1168 writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1169
1170 writel_relaxed(device_state->str_reg, &device_data->base->str);
1171 writel_relaxed(temp_cr, &device_data->base->cr);
1172
1173 return 0;
1174 }
1175
1176 /**
1177 * hash_save_state - Function that saves the state of hardware.
1178 * @device_data: Pointer to the device structure.
1179 * @device_state: The strucure where the hardware state should be saved.
1180 */
1181 int hash_save_state(struct hash_device_data *device_data,
1182 struct hash_state *device_state)
1183 {
1184 u32 temp_cr;
1185 u32 count;
1186 int hash_mode = HASH_OPER_MODE_HASH;
1187
1188 if (NULL == device_state) {
1189 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1190 __func__);
1191 return -ENOTSUPP;
1192 }
1193
1194 /* Write dummy value to force digest intermediate calculation. This
1195 * actually makes sure that there isn't any ongoing calculation in the
1196 * hardware.
1197 */
1198 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1199 cpu_relax();
1200
1201 temp_cr = readl_relaxed(&device_data->base->cr);
1202
1203 device_state->str_reg = readl_relaxed(&device_data->base->str);
1204
1205 device_state->din_reg = readl_relaxed(&device_data->base->din);
1206
1207 if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1208 hash_mode = HASH_OPER_MODE_HMAC;
1209 else
1210 hash_mode = HASH_OPER_MODE_HASH;
1211
1212 for (count = 0; count < HASH_CSR_COUNT; count++) {
1213 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1214 break;
1215
1216 device_state->csr[count] =
1217 readl_relaxed(&device_data->base->csrx[count]);
1218 }
1219
1220 device_state->csfull = readl_relaxed(&device_data->base->csfull);
1221 device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1222
1223 device_state->temp_cr = temp_cr;
1224
1225 return 0;
1226 }
1227
1228 /**
1229 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1230 * @device_data:
1231 *
1232 */
1233 int hash_check_hw(struct hash_device_data *device_data)
1234 {
1235 /* Checking Peripheral Ids */
1236 if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1237 HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1238 HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1239 HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1240 HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1241 HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1242 HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1243 HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1244 return 0;
1245 }
1246
1247 dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1248 return -ENOTSUPP;
1249 }
1250
1251 /**
1252 * hash_get_digest - Gets the digest.
1253 * @device_data: Pointer to the device structure.
1254 * @digest: User allocated byte array for the calculated digest.
1255 * @algorithm: The algorithm in use.
1256 */
1257 void hash_get_digest(struct hash_device_data *device_data,
1258 u8 *digest, int algorithm)
1259 {
1260 u32 temp_hx_val, count;
1261 int loop_ctr;
1262
1263 if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1264 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1265 __func__, algorithm);
1266 return;
1267 }
1268
1269 if (algorithm == HASH_ALGO_SHA1)
1270 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1271 else
1272 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1273
1274 dev_dbg(device_data->dev, "%s: digest array:(0x%x)\n",
1275 __func__, (u32) digest);
1276
1277 /* Copy result into digest array */
1278 for (count = 0; count < loop_ctr; count++) {
1279 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1280 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1281 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1282 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1283 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1284 }
1285 }
1286
1287 /**
1288 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1289 * @req: The hash request for the job.
1290 */
1291 static int ahash_update(struct ahash_request *req)
1292 {
1293 int ret = 0;
1294 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1295
1296 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1297 ret = hash_hw_update(req);
1298 /* Skip update for DMA, all data will be passed to DMA in final */
1299
1300 if (ret) {
1301 pr_err("%s: hash_hw_update() failed!\n", __func__);
1302 }
1303
1304 return ret;
1305 }
1306
1307 /**
1308 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1309 * @req: The hash request for the job.
1310 */
1311 static int ahash_final(struct ahash_request *req)
1312 {
1313 int ret = 0;
1314 struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1315
1316 pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1317
1318 if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1319 ret = hash_dma_final(req);
1320 else
1321 ret = hash_hw_final(req);
1322
1323 if (ret) {
1324 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1325 }
1326
1327 return ret;
1328 }
1329
1330 static int hash_setkey(struct crypto_ahash *tfm,
1331 const u8 *key, unsigned int keylen, int alg)
1332 {
1333 int ret = 0;
1334 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1335
1336 /**
1337 * Freed in final.
1338 */
1339 ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1340 if (!ctx->key) {
1341 pr_err("%s: Failed to allocate ctx->key for %d\n",
1342 __func__, alg);
1343 return -ENOMEM;
1344 }
1345 ctx->keylen = keylen;
1346
1347 return ret;
1348 }
1349
1350 static int ahash_sha1_init(struct ahash_request *req)
1351 {
1352 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1353 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1354
1355 ctx->config.data_format = HASH_DATA_8_BITS;
1356 ctx->config.algorithm = HASH_ALGO_SHA1;
1357 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1358 ctx->digestsize = SHA1_DIGEST_SIZE;
1359
1360 return hash_init(req);
1361 }
1362
1363 static int ahash_sha256_init(struct ahash_request *req)
1364 {
1365 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1366 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1367
1368 ctx->config.data_format = HASH_DATA_8_BITS;
1369 ctx->config.algorithm = HASH_ALGO_SHA256;
1370 ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1371 ctx->digestsize = SHA256_DIGEST_SIZE;
1372
1373 return hash_init(req);
1374 }
1375
1376 static int ahash_sha1_digest(struct ahash_request *req)
1377 {
1378 int ret2, ret1;
1379
1380 ret1 = ahash_sha1_init(req);
1381 if (ret1)
1382 goto out;
1383
1384 ret1 = ahash_update(req);
1385 ret2 = ahash_final(req);
1386
1387 out:
1388 return ret1 ? ret1 : ret2;
1389 }
1390
1391 static int ahash_sha256_digest(struct ahash_request *req)
1392 {
1393 int ret2, ret1;
1394
1395 ret1 = ahash_sha256_init(req);
1396 if (ret1)
1397 goto out;
1398
1399 ret1 = ahash_update(req);
1400 ret2 = ahash_final(req);
1401
1402 out:
1403 return ret1 ? ret1 : ret2;
1404 }
1405
1406 static int hmac_sha1_init(struct ahash_request *req)
1407 {
1408 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1409 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1410
1411 ctx->config.data_format = HASH_DATA_8_BITS;
1412 ctx->config.algorithm = HASH_ALGO_SHA1;
1413 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1414 ctx->digestsize = SHA1_DIGEST_SIZE;
1415
1416 return hash_init(req);
1417 }
1418
1419 static int hmac_sha256_init(struct ahash_request *req)
1420 {
1421 struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1422 struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1423
1424 ctx->config.data_format = HASH_DATA_8_BITS;
1425 ctx->config.algorithm = HASH_ALGO_SHA256;
1426 ctx->config.oper_mode = HASH_OPER_MODE_HMAC;
1427 ctx->digestsize = SHA256_DIGEST_SIZE;
1428
1429 return hash_init(req);
1430 }
1431
1432 static int hmac_sha1_digest(struct ahash_request *req)
1433 {
1434 int ret2, ret1;
1435
1436 ret1 = hmac_sha1_init(req);
1437 if (ret1)
1438 goto out;
1439
1440 ret1 = ahash_update(req);
1441 ret2 = ahash_final(req);
1442
1443 out:
1444 return ret1 ? ret1 : ret2;
1445 }
1446
1447 static int hmac_sha256_digest(struct ahash_request *req)
1448 {
1449 int ret2, ret1;
1450
1451 ret1 = hmac_sha256_init(req);
1452 if (ret1)
1453 goto out;
1454
1455 ret1 = ahash_update(req);
1456 ret2 = ahash_final(req);
1457
1458 out:
1459 return ret1 ? ret1 : ret2;
1460 }
1461
1462 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1463 const u8 *key, unsigned int keylen)
1464 {
1465 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1466 }
1467
1468 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1469 const u8 *key, unsigned int keylen)
1470 {
1471 return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1472 }
1473
1474 struct hash_algo_template {
1475 struct hash_config conf;
1476 struct ahash_alg hash;
1477 };
1478
1479 static int hash_cra_init(struct crypto_tfm *tfm)
1480 {
1481 struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1482 struct crypto_alg *alg = tfm->__crt_alg;
1483 struct hash_algo_template *hash_alg;
1484
1485 hash_alg = container_of(__crypto_ahash_alg(alg),
1486 struct hash_algo_template,
1487 hash);
1488
1489 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1490 sizeof(struct hash_req_ctx));
1491
1492 ctx->config.data_format = HASH_DATA_8_BITS;
1493 ctx->config.algorithm = hash_alg->conf.algorithm;
1494 ctx->config.oper_mode = hash_alg->conf.oper_mode;
1495
1496 ctx->digestsize = hash_alg->hash.halg.digestsize;
1497
1498 return 0;
1499 }
1500
1501 static struct hash_algo_template hash_algs[] = {
1502 {
1503 .conf.algorithm = HASH_ALGO_SHA1,
1504 .conf.oper_mode = HASH_OPER_MODE_HASH,
1505 .hash = {
1506 .init = hash_init,
1507 .update = ahash_update,
1508 .final = ahash_final,
1509 .digest = ahash_sha1_digest,
1510 .halg.digestsize = SHA1_DIGEST_SIZE,
1511 .halg.statesize = sizeof(struct hash_ctx),
1512 .halg.base = {
1513 .cra_name = "sha1",
1514 .cra_driver_name = "sha1-ux500",
1515 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1516 CRYPTO_ALG_ASYNC),
1517 .cra_blocksize = SHA1_BLOCK_SIZE,
1518 .cra_ctxsize = sizeof(struct hash_ctx),
1519 .cra_init = hash_cra_init,
1520 .cra_module = THIS_MODULE,
1521 }
1522 }
1523 },
1524 {
1525 .conf.algorithm = HASH_ALGO_SHA256,
1526 .conf.oper_mode = HASH_OPER_MODE_HASH,
1527 .hash = {
1528 .init = hash_init,
1529 .update = ahash_update,
1530 .final = ahash_final,
1531 .digest = ahash_sha256_digest,
1532 .halg.digestsize = SHA256_DIGEST_SIZE,
1533 .halg.statesize = sizeof(struct hash_ctx),
1534 .halg.base = {
1535 .cra_name = "sha256",
1536 .cra_driver_name = "sha256-ux500",
1537 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1538 CRYPTO_ALG_ASYNC),
1539 .cra_blocksize = SHA256_BLOCK_SIZE,
1540 .cra_ctxsize = sizeof(struct hash_ctx),
1541 .cra_type = &crypto_ahash_type,
1542 .cra_init = hash_cra_init,
1543 .cra_module = THIS_MODULE,
1544 }
1545 }
1546 },
1547 {
1548 .conf.algorithm = HASH_ALGO_SHA1,
1549 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1550 .hash = {
1551 .init = hash_init,
1552 .update = ahash_update,
1553 .final = ahash_final,
1554 .digest = hmac_sha1_digest,
1555 .setkey = hmac_sha1_setkey,
1556 .halg.digestsize = SHA1_DIGEST_SIZE,
1557 .halg.statesize = sizeof(struct hash_ctx),
1558 .halg.base = {
1559 .cra_name = "hmac(sha1)",
1560 .cra_driver_name = "hmac-sha1-ux500",
1561 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1562 CRYPTO_ALG_ASYNC),
1563 .cra_blocksize = SHA1_BLOCK_SIZE,
1564 .cra_ctxsize = sizeof(struct hash_ctx),
1565 .cra_type = &crypto_ahash_type,
1566 .cra_init = hash_cra_init,
1567 .cra_module = THIS_MODULE,
1568 }
1569 }
1570 },
1571 {
1572 .conf.algorithm = HASH_ALGO_SHA256,
1573 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1574 .hash = {
1575 .init = hash_init,
1576 .update = ahash_update,
1577 .final = ahash_final,
1578 .digest = hmac_sha256_digest,
1579 .setkey = hmac_sha256_setkey,
1580 .halg.digestsize = SHA256_DIGEST_SIZE,
1581 .halg.statesize = sizeof(struct hash_ctx),
1582 .halg.base = {
1583 .cra_name = "hmac(sha256)",
1584 .cra_driver_name = "hmac-sha256-ux500",
1585 .cra_flags = (CRYPTO_ALG_TYPE_AHASH |
1586 CRYPTO_ALG_ASYNC),
1587 .cra_blocksize = SHA256_BLOCK_SIZE,
1588 .cra_ctxsize = sizeof(struct hash_ctx),
1589 .cra_type = &crypto_ahash_type,
1590 .cra_init = hash_cra_init,
1591 .cra_module = THIS_MODULE,
1592 }
1593 }
1594 }
1595 };
1596
1597 /**
1598 * hash_algs_register_all -
1599 */
1600 static int ahash_algs_register_all(struct hash_device_data *device_data)
1601 {
1602 int ret;
1603 int i;
1604 int count;
1605
1606 for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1607 ret = crypto_register_ahash(&hash_algs[i].hash);
1608 if (ret) {
1609 count = i;
1610 dev_err(device_data->dev, "%s: alg registration failed\n",
1611 hash_algs[i].hash.halg.base.cra_driver_name);
1612 goto unreg;
1613 }
1614 }
1615 return 0;
1616 unreg:
1617 for (i = 0; i < count; i++)
1618 crypto_unregister_ahash(&hash_algs[i].hash);
1619 return ret;
1620 }
1621
1622 /**
1623 * hash_algs_unregister_all -
1624 */
1625 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1626 {
1627 int i;
1628
1629 for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1630 crypto_unregister_ahash(&hash_algs[i].hash);
1631 }
1632
1633 /**
1634 * ux500_hash_probe - Function that probes the hash hardware.
1635 * @pdev: The platform device.
1636 */
1637 static int ux500_hash_probe(struct platform_device *pdev)
1638 {
1639 int ret = 0;
1640 struct resource *res = NULL;
1641 struct hash_device_data *device_data;
1642 struct device *dev = &pdev->dev;
1643
1644 device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1645 if (!device_data) {
1646 ret = -ENOMEM;
1647 goto out;
1648 }
1649
1650 device_data->dev = dev;
1651 device_data->current_ctx = NULL;
1652
1653 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1654 if (!res) {
1655 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1656 ret = -ENODEV;
1657 goto out;
1658 }
1659
1660 device_data->phybase = res->start;
1661 device_data->base = devm_ioremap_resource(dev, res);
1662 if (IS_ERR(device_data->base)) {
1663 dev_err(dev, "%s: ioremap() failed!\n", __func__);
1664 ret = PTR_ERR(device_data->base);
1665 goto out;
1666 }
1667 spin_lock_init(&device_data->ctx_lock);
1668 spin_lock_init(&device_data->power_state_lock);
1669
1670 /* Enable power for HASH1 hardware block */
1671 device_data->regulator = regulator_get(dev, "v-ape");
1672 if (IS_ERR(device_data->regulator)) {
1673 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1674 ret = PTR_ERR(device_data->regulator);
1675 device_data->regulator = NULL;
1676 goto out;
1677 }
1678
1679 /* Enable the clock for HASH1 hardware block */
1680 device_data->clk = devm_clk_get(dev, NULL);
1681 if (IS_ERR(device_data->clk)) {
1682 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1683 ret = PTR_ERR(device_data->clk);
1684 goto out_regulator;
1685 }
1686
1687 ret = clk_prepare(device_data->clk);
1688 if (ret) {
1689 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1690 goto out_regulator;
1691 }
1692
1693 /* Enable device power (and clock) */
1694 ret = hash_enable_power(device_data, false);
1695 if (ret) {
1696 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1697 goto out_clk_unprepare;
1698 }
1699
1700 ret = hash_check_hw(device_data);
1701 if (ret) {
1702 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1703 goto out_power;
1704 }
1705
1706 if (hash_mode == HASH_MODE_DMA)
1707 hash_dma_setup_channel(device_data, dev);
1708
1709 platform_set_drvdata(pdev, device_data);
1710
1711 /* Put the new device into the device list... */
1712 klist_add_tail(&device_data->list_node, &driver_data.device_list);
1713 /* ... and signal that a new device is available. */
1714 up(&driver_data.device_allocation);
1715
1716 ret = ahash_algs_register_all(device_data);
1717 if (ret) {
1718 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1719 __func__);
1720 goto out_power;
1721 }
1722
1723 dev_info(dev, "successfully registered\n");
1724 return 0;
1725
1726 out_power:
1727 hash_disable_power(device_data, false);
1728
1729 out_clk_unprepare:
1730 clk_unprepare(device_data->clk);
1731
1732 out_regulator:
1733 regulator_put(device_data->regulator);
1734
1735 out:
1736 return ret;
1737 }
1738
1739 /**
1740 * ux500_hash_remove - Function that removes the hash device from the platform.
1741 * @pdev: The platform device.
1742 */
1743 static int ux500_hash_remove(struct platform_device *pdev)
1744 {
1745 struct hash_device_data *device_data;
1746 struct device *dev = &pdev->dev;
1747
1748 device_data = platform_get_drvdata(pdev);
1749 if (!device_data) {
1750 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1751 return -ENOMEM;
1752 }
1753
1754 /* Try to decrease the number of available devices. */
1755 if (down_trylock(&driver_data.device_allocation))
1756 return -EBUSY;
1757
1758 /* Check that the device is free */
1759 spin_lock(&device_data->ctx_lock);
1760 /* current_ctx allocates a device, NULL = unallocated */
1761 if (device_data->current_ctx) {
1762 /* The device is busy */
1763 spin_unlock(&device_data->ctx_lock);
1764 /* Return the device to the pool. */
1765 up(&driver_data.device_allocation);
1766 return -EBUSY;
1767 }
1768
1769 spin_unlock(&device_data->ctx_lock);
1770
1771 /* Remove the device from the list */
1772 if (klist_node_attached(&device_data->list_node))
1773 klist_remove(&device_data->list_node);
1774
1775 /* If this was the last device, remove the services */
1776 if (list_empty(&driver_data.device_list.k_list))
1777 ahash_algs_unregister_all(device_data);
1778
1779 if (hash_disable_power(device_data, false))
1780 dev_err(dev, "%s: hash_disable_power() failed\n",
1781 __func__);
1782
1783 clk_unprepare(device_data->clk);
1784 regulator_put(device_data->regulator);
1785
1786 return 0;
1787 }
1788
1789 /**
1790 * ux500_hash_shutdown - Function that shutdown the hash device.
1791 * @pdev: The platform device
1792 */
1793 static void ux500_hash_shutdown(struct platform_device *pdev)
1794 {
1795 struct hash_device_data *device_data;
1796
1797 device_data = platform_get_drvdata(pdev);
1798 if (!device_data) {
1799 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1800 __func__);
1801 return;
1802 }
1803
1804 /* Check that the device is free */
1805 spin_lock(&device_data->ctx_lock);
1806 /* current_ctx allocates a device, NULL = unallocated */
1807 if (!device_data->current_ctx) {
1808 if (down_trylock(&driver_data.device_allocation))
1809 dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1810 __func__);
1811 /**
1812 * (Allocate the device)
1813 * Need to set this to non-null (dummy) value,
1814 * to avoid usage if context switching.
1815 */
1816 device_data->current_ctx++;
1817 }
1818 spin_unlock(&device_data->ctx_lock);
1819
1820 /* Remove the device from the list */
1821 if (klist_node_attached(&device_data->list_node))
1822 klist_remove(&device_data->list_node);
1823
1824 /* If this was the last device, remove the services */
1825 if (list_empty(&driver_data.device_list.k_list))
1826 ahash_algs_unregister_all(device_data);
1827
1828 if (hash_disable_power(device_data, false))
1829 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1830 __func__);
1831 }
1832
1833 #ifdef CONFIG_PM_SLEEP
1834 /**
1835 * ux500_hash_suspend - Function that suspends the hash device.
1836 * @dev: Device to suspend.
1837 */
1838 static int ux500_hash_suspend(struct device *dev)
1839 {
1840 int ret;
1841 struct hash_device_data *device_data;
1842 struct hash_ctx *temp_ctx = NULL;
1843
1844 device_data = dev_get_drvdata(dev);
1845 if (!device_data) {
1846 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1847 return -ENOMEM;
1848 }
1849
1850 spin_lock(&device_data->ctx_lock);
1851 if (!device_data->current_ctx)
1852 device_data->current_ctx++;
1853 spin_unlock(&device_data->ctx_lock);
1854
1855 if (device_data->current_ctx == ++temp_ctx) {
1856 if (down_interruptible(&driver_data.device_allocation))
1857 dev_dbg(dev, "%s: down_interruptible() failed\n",
1858 __func__);
1859 ret = hash_disable_power(device_data, false);
1860
1861 } else {
1862 ret = hash_disable_power(device_data, true);
1863 }
1864
1865 if (ret)
1866 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1867
1868 return ret;
1869 }
1870
1871 /**
1872 * ux500_hash_resume - Function that resume the hash device.
1873 * @dev: Device to resume.
1874 */
1875 static int ux500_hash_resume(struct device *dev)
1876 {
1877 int ret = 0;
1878 struct hash_device_data *device_data;
1879 struct hash_ctx *temp_ctx = NULL;
1880
1881 device_data = dev_get_drvdata(dev);
1882 if (!device_data) {
1883 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1884 return -ENOMEM;
1885 }
1886
1887 spin_lock(&device_data->ctx_lock);
1888 if (device_data->current_ctx == ++temp_ctx)
1889 device_data->current_ctx = NULL;
1890 spin_unlock(&device_data->ctx_lock);
1891
1892 if (!device_data->current_ctx)
1893 up(&driver_data.device_allocation);
1894 else
1895 ret = hash_enable_power(device_data, true);
1896
1897 if (ret)
1898 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1899
1900 return ret;
1901 }
1902 #endif
1903
1904 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1905
1906 static const struct of_device_id ux500_hash_match[] = {
1907 { .compatible = "stericsson,ux500-hash" },
1908 { },
1909 };
1910 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1911
1912 static struct platform_driver hash_driver = {
1913 .probe = ux500_hash_probe,
1914 .remove = ux500_hash_remove,
1915 .shutdown = ux500_hash_shutdown,
1916 .driver = {
1917 .name = "hash1",
1918 .of_match_table = ux500_hash_match,
1919 .pm = &ux500_hash_pm,
1920 }
1921 };
1922
1923 /**
1924 * ux500_hash_mod_init - The kernel module init function.
1925 */
1926 static int __init ux500_hash_mod_init(void)
1927 {
1928 klist_init(&driver_data.device_list, NULL, NULL);
1929 /* Initialize the semaphore to 0 devices (locked state) */
1930 sema_init(&driver_data.device_allocation, 0);
1931
1932 return platform_driver_register(&hash_driver);
1933 }
1934
1935 /**
1936 * ux500_hash_mod_fini - The kernel module exit function.
1937 */
1938 static void __exit ux500_hash_mod_fini(void)
1939 {
1940 platform_driver_unregister(&hash_driver);
1941 }
1942
1943 module_init(ux500_hash_mod_init);
1944 module_exit(ux500_hash_mod_fini);
1945
1946 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1947 MODULE_LICENSE("GPL");
1948
1949 MODULE_ALIAS_CRYPTO("sha1-all");
1950 MODULE_ALIAS_CRYPTO("sha256-all");
1951 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1952 MODULE_ALIAS_CRYPTO("hmac-sha256-all");
This page took 0.076597 seconds and 5 git commands to generate.