bcma: move PCI IRQ control function to host specific code
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 * Documentation: S3C6410 User's Manual == PL080S
28 *
29 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
30 * channel.
31 *
32 * The PL080 has 8 channels available for simultaneous use, and the PL081
33 * has only two channels. So on these DMA controllers the number of channels
34 * and the number of incoming DMA signals are two totally different things.
35 * It is usually not possible to theoretically handle all physical signals,
36 * so a multiplexing scheme with possible denial of use is necessary.
37 *
38 * The PL080 has a dual bus master, PL081 has a single master.
39 *
40 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
41 * It differs in following aspects:
42 * - CH_CONFIG register at different offset,
43 * - separate CH_CONTROL2 register for transfer size,
44 * - bigger maximum transfer size,
45 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
46 * - no support for peripheral flow control.
47 *
48 * Memory to peripheral transfer may be visualized as
49 * Get data from memory to DMAC
50 * Until no data left
51 * On burst request from peripheral
52 * Destination burst from DMAC to peripheral
53 * Clear burst request
54 * Raise terminal count interrupt
55 *
56 * For peripherals with a FIFO:
57 * Source burst size == half the depth of the peripheral FIFO
58 * Destination burst size == the depth of the peripheral FIFO
59 *
60 * (Bursts are irrelevant for mem to mem transfers - there are no burst
61 * signals, the DMA controller will simply facilitate its AHB master.)
62 *
63 * ASSUMES default (little) endianness for DMA transfers
64 *
65 * The PL08x has two flow control settings:
66 * - DMAC flow control: the transfer size defines the number of transfers
67 * which occur for the current LLI entry, and the DMAC raises TC at the
68 * end of every LLI entry. Observed behaviour shows the DMAC listening
69 * to both the BREQ and SREQ signals (contrary to documented),
70 * transferring data if either is active. The LBREQ and LSREQ signals
71 * are ignored.
72 *
73 * - Peripheral flow control: the transfer size is ignored (and should be
74 * zero). The data is transferred from the current LLI entry, until
75 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
76 * will then move to the next LLI entry. Unsupported by PL080S.
77 */
78 #include <linux/amba/bus.h>
79 #include <linux/amba/pl08x.h>
80 #include <linux/debugfs.h>
81 #include <linux/delay.h>
82 #include <linux/device.h>
83 #include <linux/dmaengine.h>
84 #include <linux/dmapool.h>
85 #include <linux/dma-mapping.h>
86 #include <linux/export.h>
87 #include <linux/init.h>
88 #include <linux/interrupt.h>
89 #include <linux/module.h>
90 #include <linux/pm_runtime.h>
91 #include <linux/seq_file.h>
92 #include <linux/slab.h>
93 #include <linux/amba/pl080.h>
94
95 #include "dmaengine.h"
96 #include "virt-dma.h"
97
98 #define DRIVER_NAME "pl08xdmac"
99
100 static struct amba_driver pl08x_amba_driver;
101 struct pl08x_driver_data;
102
103 /**
104 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
105 * @channels: the number of channels available in this variant
106 * @dualmaster: whether this version supports dual AHB masters or not.
107 * @nomadik: whether the channels have Nomadik security extension bits
108 * that need to be checked for permission before use and some registers are
109 * missing
110 * @pl080s: whether this version is a PL080S, which has separate register and
111 * LLI word for transfer size.
112 */
113 struct vendor_data {
114 u8 config_offset;
115 u8 channels;
116 bool dualmaster;
117 bool nomadik;
118 bool pl080s;
119 u32 max_transfer_size;
120 };
121
122 /**
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 */
129 struct pl08x_bus_data {
130 dma_addr_t addr;
131 u8 maxwidth;
132 u8 buswidth;
133 };
134
135 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
136
137 /**
138 * struct pl08x_phy_chan - holder for the physical channels
139 * @id: physical index to this channel
140 * @lock: a lock to use when altering an instance of this struct
141 * @serving: the virtual channel currently being served by this physical
142 * channel
143 * @locked: channel unavailable for the system, e.g. dedicated to secure
144 * world
145 */
146 struct pl08x_phy_chan {
147 unsigned int id;
148 void __iomem *base;
149 void __iomem *reg_config;
150 spinlock_t lock;
151 struct pl08x_dma_chan *serving;
152 bool locked;
153 };
154
155 /**
156 * struct pl08x_sg - structure containing data per sg
157 * @src_addr: src address of sg
158 * @dst_addr: dst address of sg
159 * @len: transfer len in bytes
160 * @node: node for txd's dsg_list
161 */
162 struct pl08x_sg {
163 dma_addr_t src_addr;
164 dma_addr_t dst_addr;
165 size_t len;
166 struct list_head node;
167 };
168
169 /**
170 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
171 * @vd: virtual DMA descriptor
172 * @dsg_list: list of children sg's
173 * @llis_bus: DMA memory address (physical) start for the LLIs
174 * @llis_va: virtual memory address start for the LLIs
175 * @cctl: control reg values for current txd
176 * @ccfg: config reg values for current txd
177 * @done: this marks completed descriptors, which should not have their
178 * mux released.
179 * @cyclic: indicate cyclic transfers
180 */
181 struct pl08x_txd {
182 struct virt_dma_desc vd;
183 struct list_head dsg_list;
184 dma_addr_t llis_bus;
185 u32 *llis_va;
186 /* Default cctl value for LLIs */
187 u32 cctl;
188 /*
189 * Settings to be put into the physical channel when we
190 * trigger this txd. Other registers are in llis_va[0].
191 */
192 u32 ccfg;
193 bool done;
194 bool cyclic;
195 };
196
197 /**
198 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
199 * states
200 * @PL08X_CHAN_IDLE: the channel is idle
201 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
202 * channel and is running a transfer on it
203 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
204 * channel, but the transfer is currently paused
205 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
206 * channel to become available (only pertains to memcpy channels)
207 */
208 enum pl08x_dma_chan_state {
209 PL08X_CHAN_IDLE,
210 PL08X_CHAN_RUNNING,
211 PL08X_CHAN_PAUSED,
212 PL08X_CHAN_WAITING,
213 };
214
215 /**
216 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
217 * @vc: wrappped virtual channel
218 * @phychan: the physical channel utilized by this channel, if there is one
219 * @name: name of channel
220 * @cd: channel platform data
221 * @runtime_addr: address for RX/TX according to the runtime config
222 * @at: active transaction on this channel
223 * @lock: a lock for this channel data
224 * @host: a pointer to the host (internal use)
225 * @state: whether the channel is idle, paused, running etc
226 * @slave: whether this channel is a device (slave) or for memcpy
227 * @signal: the physical DMA request signal which this channel is using
228 * @mux_use: count of descriptors using this DMA request signal setting
229 */
230 struct pl08x_dma_chan {
231 struct virt_dma_chan vc;
232 struct pl08x_phy_chan *phychan;
233 const char *name;
234 const struct pl08x_channel_data *cd;
235 struct dma_slave_config cfg;
236 struct pl08x_txd *at;
237 struct pl08x_driver_data *host;
238 enum pl08x_dma_chan_state state;
239 bool slave;
240 int signal;
241 unsigned mux_use;
242 };
243
244 /**
245 * struct pl08x_driver_data - the local state holder for the PL08x
246 * @slave: slave engine for this instance
247 * @memcpy: memcpy engine for this instance
248 * @base: virtual memory base (remapped) for the PL08x
249 * @adev: the corresponding AMBA (PrimeCell) bus entry
250 * @vd: vendor data for this PL08x variant
251 * @pd: platform data passed in from the platform/machine
252 * @phy_chans: array of data for the physical channels
253 * @pool: a pool for the LLI descriptors
254 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
255 * fetches
256 * @mem_buses: set to indicate memory transfers on AHB2.
257 * @lock: a spinlock for this struct
258 */
259 struct pl08x_driver_data {
260 struct dma_device slave;
261 struct dma_device memcpy;
262 void __iomem *base;
263 struct amba_device *adev;
264 const struct vendor_data *vd;
265 struct pl08x_platform_data *pd;
266 struct pl08x_phy_chan *phy_chans;
267 struct dma_pool *pool;
268 u8 lli_buses;
269 u8 mem_buses;
270 u8 lli_words;
271 };
272
273 /*
274 * PL08X specific defines
275 */
276
277 /* The order of words in an LLI. */
278 #define PL080_LLI_SRC 0
279 #define PL080_LLI_DST 1
280 #define PL080_LLI_LLI 2
281 #define PL080_LLI_CCTL 3
282 #define PL080S_LLI_CCTL2 4
283
284 /* Total words in an LLI. */
285 #define PL080_LLI_WORDS 4
286 #define PL080S_LLI_WORDS 8
287
288 /*
289 * Number of LLIs in each LLI buffer allocated for one transfer
290 * (maximum times we call dma_pool_alloc on this pool without freeing)
291 */
292 #define MAX_NUM_TSFR_LLIS 512
293 #define PL08X_ALIGN 8
294
295 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
296 {
297 return container_of(chan, struct pl08x_dma_chan, vc.chan);
298 }
299
300 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
301 {
302 return container_of(tx, struct pl08x_txd, vd.tx);
303 }
304
305 /*
306 * Mux handling.
307 *
308 * This gives us the DMA request input to the PL08x primecell which the
309 * peripheral described by the channel data will be routed to, possibly
310 * via a board/SoC specific external MUX. One important point to note
311 * here is that this does not depend on the physical channel.
312 */
313 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
314 {
315 const struct pl08x_platform_data *pd = plchan->host->pd;
316 int ret;
317
318 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
319 ret = pd->get_xfer_signal(plchan->cd);
320 if (ret < 0) {
321 plchan->mux_use = 0;
322 return ret;
323 }
324
325 plchan->signal = ret;
326 }
327 return 0;
328 }
329
330 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
331 {
332 const struct pl08x_platform_data *pd = plchan->host->pd;
333
334 if (plchan->signal >= 0) {
335 WARN_ON(plchan->mux_use == 0);
336
337 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
338 pd->put_xfer_signal(plchan->cd, plchan->signal);
339 plchan->signal = -1;
340 }
341 }
342 }
343
344 /*
345 * Physical channel handling
346 */
347
348 /* Whether a certain channel is busy or not */
349 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
350 {
351 unsigned int val;
352
353 val = readl(ch->reg_config);
354 return val & PL080_CONFIG_ACTIVE;
355 }
356
357 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
358 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
359 {
360 if (pl08x->vd->pl080s)
361 dev_vdbg(&pl08x->adev->dev,
362 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
363 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
364 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
365 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
366 lli[PL080S_LLI_CCTL2], ccfg);
367 else
368 dev_vdbg(&pl08x->adev->dev,
369 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
370 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
371 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
372 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
373
374 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
375 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
376 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
377 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
378
379 if (pl08x->vd->pl080s)
380 writel_relaxed(lli[PL080S_LLI_CCTL2],
381 phychan->base + PL080S_CH_CONTROL2);
382
383 writel(ccfg, phychan->reg_config);
384 }
385
386 /*
387 * Set the initial DMA register values i.e. those for the first LLI
388 * The next LLI pointer and the configuration interrupt bit have
389 * been set when the LLIs were constructed. Poke them into the hardware
390 * and start the transfer.
391 */
392 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
393 {
394 struct pl08x_driver_data *pl08x = plchan->host;
395 struct pl08x_phy_chan *phychan = plchan->phychan;
396 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
397 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
398 u32 val;
399
400 list_del(&txd->vd.node);
401
402 plchan->at = txd;
403
404 /* Wait for channel inactive */
405 while (pl08x_phy_channel_busy(phychan))
406 cpu_relax();
407
408 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
409
410 /* Enable the DMA channel */
411 /* Do not access config register until channel shows as disabled */
412 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
413 cpu_relax();
414
415 /* Do not access config register until channel shows as inactive */
416 val = readl(phychan->reg_config);
417 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
418 val = readl(phychan->reg_config);
419
420 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
421 }
422
423 /*
424 * Pause the channel by setting the HALT bit.
425 *
426 * For M->P transfers, pause the DMAC first and then stop the peripheral -
427 * the FIFO can only drain if the peripheral is still requesting data.
428 * (note: this can still timeout if the DMAC FIFO never drains of data.)
429 *
430 * For P->M transfers, disable the peripheral first to stop it filling
431 * the DMAC FIFO, and then pause the DMAC.
432 */
433 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
434 {
435 u32 val;
436 int timeout;
437
438 /* Set the HALT bit and wait for the FIFO to drain */
439 val = readl(ch->reg_config);
440 val |= PL080_CONFIG_HALT;
441 writel(val, ch->reg_config);
442
443 /* Wait for channel inactive */
444 for (timeout = 1000; timeout; timeout--) {
445 if (!pl08x_phy_channel_busy(ch))
446 break;
447 udelay(1);
448 }
449 if (pl08x_phy_channel_busy(ch))
450 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
451 }
452
453 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
454 {
455 u32 val;
456
457 /* Clear the HALT bit */
458 val = readl(ch->reg_config);
459 val &= ~PL080_CONFIG_HALT;
460 writel(val, ch->reg_config);
461 }
462
463 /*
464 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
465 * clears any pending interrupt status. This should not be used for
466 * an on-going transfer, but as a method of shutting down a channel
467 * (eg, when it's no longer used) or terminating a transfer.
468 */
469 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
470 struct pl08x_phy_chan *ch)
471 {
472 u32 val = readl(ch->reg_config);
473
474 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
475 PL080_CONFIG_TC_IRQ_MASK);
476
477 writel(val, ch->reg_config);
478
479 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
480 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
481 }
482
483 static inline u32 get_bytes_in_cctl(u32 cctl)
484 {
485 /* The source width defines the number of bytes */
486 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
487
488 cctl &= PL080_CONTROL_SWIDTH_MASK;
489
490 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
491 case PL080_WIDTH_8BIT:
492 break;
493 case PL080_WIDTH_16BIT:
494 bytes *= 2;
495 break;
496 case PL080_WIDTH_32BIT:
497 bytes *= 4;
498 break;
499 }
500 return bytes;
501 }
502
503 static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
504 {
505 /* The source width defines the number of bytes */
506 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
507
508 cctl &= PL080_CONTROL_SWIDTH_MASK;
509
510 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
511 case PL080_WIDTH_8BIT:
512 break;
513 case PL080_WIDTH_16BIT:
514 bytes *= 2;
515 break;
516 case PL080_WIDTH_32BIT:
517 bytes *= 4;
518 break;
519 }
520 return bytes;
521 }
522
523 /* The channel should be paused when calling this */
524 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
525 {
526 struct pl08x_driver_data *pl08x = plchan->host;
527 const u32 *llis_va, *llis_va_limit;
528 struct pl08x_phy_chan *ch;
529 dma_addr_t llis_bus;
530 struct pl08x_txd *txd;
531 u32 llis_max_words;
532 size_t bytes;
533 u32 clli;
534
535 ch = plchan->phychan;
536 txd = plchan->at;
537
538 if (!ch || !txd)
539 return 0;
540
541 /*
542 * Follow the LLIs to get the number of remaining
543 * bytes in the currently active transaction.
544 */
545 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
546
547 /* First get the remaining bytes in the active transfer */
548 if (pl08x->vd->pl080s)
549 bytes = get_bytes_in_cctl_pl080s(
550 readl(ch->base + PL080_CH_CONTROL),
551 readl(ch->base + PL080S_CH_CONTROL2));
552 else
553 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
554
555 if (!clli)
556 return bytes;
557
558 llis_va = txd->llis_va;
559 llis_bus = txd->llis_bus;
560
561 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
562 BUG_ON(clli < llis_bus || clli >= llis_bus +
563 sizeof(u32) * llis_max_words);
564
565 /*
566 * Locate the next LLI - as this is an array,
567 * it's simple maths to find.
568 */
569 llis_va += (clli - llis_bus) / sizeof(u32);
570
571 llis_va_limit = llis_va + llis_max_words;
572
573 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
574 if (pl08x->vd->pl080s)
575 bytes += get_bytes_in_cctl_pl080s(
576 llis_va[PL080_LLI_CCTL],
577 llis_va[PL080S_LLI_CCTL2]);
578 else
579 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
580
581 /*
582 * A LLI pointer going backward terminates the LLI list
583 */
584 if (llis_va[PL080_LLI_LLI] <= clli)
585 break;
586 }
587
588 return bytes;
589 }
590
591 /*
592 * Allocate a physical channel for a virtual channel
593 *
594 * Try to locate a physical channel to be used for this transfer. If all
595 * are taken return NULL and the requester will have to cope by using
596 * some fallback PIO mode or retrying later.
597 */
598 static struct pl08x_phy_chan *
599 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
600 struct pl08x_dma_chan *virt_chan)
601 {
602 struct pl08x_phy_chan *ch = NULL;
603 unsigned long flags;
604 int i;
605
606 for (i = 0; i < pl08x->vd->channels; i++) {
607 ch = &pl08x->phy_chans[i];
608
609 spin_lock_irqsave(&ch->lock, flags);
610
611 if (!ch->locked && !ch->serving) {
612 ch->serving = virt_chan;
613 spin_unlock_irqrestore(&ch->lock, flags);
614 break;
615 }
616
617 spin_unlock_irqrestore(&ch->lock, flags);
618 }
619
620 if (i == pl08x->vd->channels) {
621 /* No physical channel available, cope with it */
622 return NULL;
623 }
624
625 return ch;
626 }
627
628 /* Mark the physical channel as free. Note, this write is atomic. */
629 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
630 struct pl08x_phy_chan *ch)
631 {
632 ch->serving = NULL;
633 }
634
635 /*
636 * Try to allocate a physical channel. When successful, assign it to
637 * this virtual channel, and initiate the next descriptor. The
638 * virtual channel lock must be held at this point.
639 */
640 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
641 {
642 struct pl08x_driver_data *pl08x = plchan->host;
643 struct pl08x_phy_chan *ch;
644
645 ch = pl08x_get_phy_channel(pl08x, plchan);
646 if (!ch) {
647 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
648 plchan->state = PL08X_CHAN_WAITING;
649 return;
650 }
651
652 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
653 ch->id, plchan->name);
654
655 plchan->phychan = ch;
656 plchan->state = PL08X_CHAN_RUNNING;
657 pl08x_start_next_txd(plchan);
658 }
659
660 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
661 struct pl08x_dma_chan *plchan)
662 {
663 struct pl08x_driver_data *pl08x = plchan->host;
664
665 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
666 ch->id, plchan->name);
667
668 /*
669 * We do this without taking the lock; we're really only concerned
670 * about whether this pointer is NULL or not, and we're guaranteed
671 * that this will only be called when it _already_ is non-NULL.
672 */
673 ch->serving = plchan;
674 plchan->phychan = ch;
675 plchan->state = PL08X_CHAN_RUNNING;
676 pl08x_start_next_txd(plchan);
677 }
678
679 /*
680 * Free a physical DMA channel, potentially reallocating it to another
681 * virtual channel if we have any pending.
682 */
683 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
684 {
685 struct pl08x_driver_data *pl08x = plchan->host;
686 struct pl08x_dma_chan *p, *next;
687
688 retry:
689 next = NULL;
690
691 /* Find a waiting virtual channel for the next transfer. */
692 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
693 if (p->state == PL08X_CHAN_WAITING) {
694 next = p;
695 break;
696 }
697
698 if (!next) {
699 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
700 if (p->state == PL08X_CHAN_WAITING) {
701 next = p;
702 break;
703 }
704 }
705
706 /* Ensure that the physical channel is stopped */
707 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
708
709 if (next) {
710 bool success;
711
712 /*
713 * Eww. We know this isn't going to deadlock
714 * but lockdep probably doesn't.
715 */
716 spin_lock(&next->vc.lock);
717 /* Re-check the state now that we have the lock */
718 success = next->state == PL08X_CHAN_WAITING;
719 if (success)
720 pl08x_phy_reassign_start(plchan->phychan, next);
721 spin_unlock(&next->vc.lock);
722
723 /* If the state changed, try to find another channel */
724 if (!success)
725 goto retry;
726 } else {
727 /* No more jobs, so free up the physical channel */
728 pl08x_put_phy_channel(pl08x, plchan->phychan);
729 }
730
731 plchan->phychan = NULL;
732 plchan->state = PL08X_CHAN_IDLE;
733 }
734
735 /*
736 * LLI handling
737 */
738
739 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
740 {
741 switch (coded) {
742 case PL080_WIDTH_8BIT:
743 return 1;
744 case PL080_WIDTH_16BIT:
745 return 2;
746 case PL080_WIDTH_32BIT:
747 return 4;
748 default:
749 break;
750 }
751 BUG();
752 return 0;
753 }
754
755 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
756 size_t tsize)
757 {
758 u32 retbits = cctl;
759
760 /* Remove all src, dst and transfer size bits */
761 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
762 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
763 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
764
765 /* Then set the bits according to the parameters */
766 switch (srcwidth) {
767 case 1:
768 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
769 break;
770 case 2:
771 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
772 break;
773 case 4:
774 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
775 break;
776 default:
777 BUG();
778 break;
779 }
780
781 switch (dstwidth) {
782 case 1:
783 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
784 break;
785 case 2:
786 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
787 break;
788 case 4:
789 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
790 break;
791 default:
792 BUG();
793 break;
794 }
795
796 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
797 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
798 return retbits;
799 }
800
801 struct pl08x_lli_build_data {
802 struct pl08x_txd *txd;
803 struct pl08x_bus_data srcbus;
804 struct pl08x_bus_data dstbus;
805 size_t remainder;
806 u32 lli_bus;
807 };
808
809 /*
810 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
811 * victim in case src & dest are not similarly aligned. i.e. If after aligning
812 * masters address with width requirements of transfer (by sending few byte by
813 * byte data), slave is still not aligned, then its width will be reduced to
814 * BYTE.
815 * - prefers the destination bus if both available
816 * - prefers bus with fixed address (i.e. peripheral)
817 */
818 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
819 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
820 {
821 if (!(cctl & PL080_CONTROL_DST_INCR)) {
822 *mbus = &bd->dstbus;
823 *sbus = &bd->srcbus;
824 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
825 *mbus = &bd->srcbus;
826 *sbus = &bd->dstbus;
827 } else {
828 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
829 *mbus = &bd->dstbus;
830 *sbus = &bd->srcbus;
831 } else {
832 *mbus = &bd->srcbus;
833 *sbus = &bd->dstbus;
834 }
835 }
836 }
837
838 /*
839 * Fills in one LLI for a certain transfer descriptor and advance the counter
840 */
841 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
842 struct pl08x_lli_build_data *bd,
843 int num_llis, int len, u32 cctl, u32 cctl2)
844 {
845 u32 offset = num_llis * pl08x->lli_words;
846 u32 *llis_va = bd->txd->llis_va + offset;
847 dma_addr_t llis_bus = bd->txd->llis_bus;
848
849 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
850
851 /* Advance the offset to next LLI. */
852 offset += pl08x->lli_words;
853
854 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
855 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
856 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
857 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
858 llis_va[PL080_LLI_CCTL] = cctl;
859 if (pl08x->vd->pl080s)
860 llis_va[PL080S_LLI_CCTL2] = cctl2;
861
862 if (cctl & PL080_CONTROL_SRC_INCR)
863 bd->srcbus.addr += len;
864 if (cctl & PL080_CONTROL_DST_INCR)
865 bd->dstbus.addr += len;
866
867 BUG_ON(bd->remainder < len);
868
869 bd->remainder -= len;
870 }
871
872 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
873 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
874 int num_llis, size_t *total_bytes)
875 {
876 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
877 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
878 (*total_bytes) += len;
879 }
880
881 #ifdef VERBOSE_DEBUG
882 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
883 const u32 *llis_va, int num_llis)
884 {
885 int i;
886
887 if (pl08x->vd->pl080s) {
888 dev_vdbg(&pl08x->adev->dev,
889 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
890 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
891 for (i = 0; i < num_llis; i++) {
892 dev_vdbg(&pl08x->adev->dev,
893 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
894 i, llis_va, llis_va[PL080_LLI_SRC],
895 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
896 llis_va[PL080_LLI_CCTL],
897 llis_va[PL080S_LLI_CCTL2]);
898 llis_va += pl08x->lli_words;
899 }
900 } else {
901 dev_vdbg(&pl08x->adev->dev,
902 "%-3s %-9s %-10s %-10s %-10s %s\n",
903 "lli", "", "csrc", "cdst", "clli", "cctl");
904 for (i = 0; i < num_llis; i++) {
905 dev_vdbg(&pl08x->adev->dev,
906 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
907 i, llis_va, llis_va[PL080_LLI_SRC],
908 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
909 llis_va[PL080_LLI_CCTL]);
910 llis_va += pl08x->lli_words;
911 }
912 }
913 }
914 #else
915 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
916 const u32 *llis_va, int num_llis) {}
917 #endif
918
919 /*
920 * This fills in the table of LLIs for the transfer descriptor
921 * Note that we assume we never have to change the burst sizes
922 * Return 0 for error
923 */
924 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
925 struct pl08x_txd *txd)
926 {
927 struct pl08x_bus_data *mbus, *sbus;
928 struct pl08x_lli_build_data bd;
929 int num_llis = 0;
930 u32 cctl, early_bytes = 0;
931 size_t max_bytes_per_lli, total_bytes;
932 u32 *llis_va, *last_lli;
933 struct pl08x_sg *dsg;
934
935 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
936 if (!txd->llis_va) {
937 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
938 return 0;
939 }
940
941 bd.txd = txd;
942 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
943 cctl = txd->cctl;
944
945 /* Find maximum width of the source bus */
946 bd.srcbus.maxwidth =
947 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
948 PL080_CONTROL_SWIDTH_SHIFT);
949
950 /* Find maximum width of the destination bus */
951 bd.dstbus.maxwidth =
952 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
953 PL080_CONTROL_DWIDTH_SHIFT);
954
955 list_for_each_entry(dsg, &txd->dsg_list, node) {
956 total_bytes = 0;
957 cctl = txd->cctl;
958
959 bd.srcbus.addr = dsg->src_addr;
960 bd.dstbus.addr = dsg->dst_addr;
961 bd.remainder = dsg->len;
962 bd.srcbus.buswidth = bd.srcbus.maxwidth;
963 bd.dstbus.buswidth = bd.dstbus.maxwidth;
964
965 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
966
967 dev_vdbg(&pl08x->adev->dev,
968 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
969 (u64)bd.srcbus.addr,
970 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
971 bd.srcbus.buswidth,
972 (u64)bd.dstbus.addr,
973 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
974 bd.dstbus.buswidth,
975 bd.remainder);
976 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
977 mbus == &bd.srcbus ? "src" : "dst",
978 sbus == &bd.srcbus ? "src" : "dst");
979
980 /*
981 * Zero length is only allowed if all these requirements are
982 * met:
983 * - flow controller is peripheral.
984 * - src.addr is aligned to src.width
985 * - dst.addr is aligned to dst.width
986 *
987 * sg_len == 1 should be true, as there can be two cases here:
988 *
989 * - Memory addresses are contiguous and are not scattered.
990 * Here, Only one sg will be passed by user driver, with
991 * memory address and zero length. We pass this to controller
992 * and after the transfer it will receive the last burst
993 * request from peripheral and so transfer finishes.
994 *
995 * - Memory addresses are scattered and are not contiguous.
996 * Here, Obviously as DMA controller doesn't know when a lli's
997 * transfer gets over, it can't load next lli. So in this
998 * case, there has to be an assumption that only one lli is
999 * supported. Thus, we can't have scattered addresses.
1000 */
1001 if (!bd.remainder) {
1002 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1003 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1004 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1005 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1006 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1007 __func__);
1008 return 0;
1009 }
1010
1011 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1012 !IS_BUS_ALIGNED(&bd.dstbus)) {
1013 dev_err(&pl08x->adev->dev,
1014 "%s src & dst address must be aligned to src"
1015 " & dst width if peripheral is flow controller",
1016 __func__);
1017 return 0;
1018 }
1019
1020 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1021 bd.dstbus.buswidth, 0);
1022 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1023 0, cctl, 0);
1024 break;
1025 }
1026
1027 /*
1028 * Send byte by byte for following cases
1029 * - Less than a bus width available
1030 * - until master bus is aligned
1031 */
1032 if (bd.remainder < mbus->buswidth)
1033 early_bytes = bd.remainder;
1034 else if (!IS_BUS_ALIGNED(mbus)) {
1035 early_bytes = mbus->buswidth -
1036 (mbus->addr & (mbus->buswidth - 1));
1037 if ((bd.remainder - early_bytes) < mbus->buswidth)
1038 early_bytes = bd.remainder;
1039 }
1040
1041 if (early_bytes) {
1042 dev_vdbg(&pl08x->adev->dev,
1043 "%s byte width LLIs (remain 0x%08zx)\n",
1044 __func__, bd.remainder);
1045 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1046 num_llis++, &total_bytes);
1047 }
1048
1049 if (bd.remainder) {
1050 /*
1051 * Master now aligned
1052 * - if slave is not then we must set its width down
1053 */
1054 if (!IS_BUS_ALIGNED(sbus)) {
1055 dev_dbg(&pl08x->adev->dev,
1056 "%s set down bus width to one byte\n",
1057 __func__);
1058
1059 sbus->buswidth = 1;
1060 }
1061
1062 /*
1063 * Bytes transferred = tsize * src width, not
1064 * MIN(buswidths)
1065 */
1066 max_bytes_per_lli = bd.srcbus.buswidth *
1067 pl08x->vd->max_transfer_size;
1068 dev_vdbg(&pl08x->adev->dev,
1069 "%s max bytes per lli = %zu\n",
1070 __func__, max_bytes_per_lli);
1071
1072 /*
1073 * Make largest possible LLIs until less than one bus
1074 * width left
1075 */
1076 while (bd.remainder > (mbus->buswidth - 1)) {
1077 size_t lli_len, tsize, width;
1078
1079 /*
1080 * If enough left try to send max possible,
1081 * otherwise try to send the remainder
1082 */
1083 lli_len = min(bd.remainder, max_bytes_per_lli);
1084
1085 /*
1086 * Check against maximum bus alignment:
1087 * Calculate actual transfer size in relation to
1088 * bus width an get a maximum remainder of the
1089 * highest bus width - 1
1090 */
1091 width = max(mbus->buswidth, sbus->buswidth);
1092 lli_len = (lli_len / width) * width;
1093 tsize = lli_len / bd.srcbus.buswidth;
1094
1095 dev_vdbg(&pl08x->adev->dev,
1096 "%s fill lli with single lli chunk of "
1097 "size 0x%08zx (remainder 0x%08zx)\n",
1098 __func__, lli_len, bd.remainder);
1099
1100 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1101 bd.dstbus.buswidth, tsize);
1102 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1103 lli_len, cctl, tsize);
1104 total_bytes += lli_len;
1105 }
1106
1107 /*
1108 * Send any odd bytes
1109 */
1110 if (bd.remainder) {
1111 dev_vdbg(&pl08x->adev->dev,
1112 "%s align with boundary, send odd bytes (remain %zu)\n",
1113 __func__, bd.remainder);
1114 prep_byte_width_lli(pl08x, &bd, &cctl,
1115 bd.remainder, num_llis++, &total_bytes);
1116 }
1117 }
1118
1119 if (total_bytes != dsg->len) {
1120 dev_err(&pl08x->adev->dev,
1121 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1122 __func__, total_bytes, dsg->len);
1123 return 0;
1124 }
1125
1126 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1127 dev_err(&pl08x->adev->dev,
1128 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1129 __func__, MAX_NUM_TSFR_LLIS);
1130 return 0;
1131 }
1132 }
1133
1134 llis_va = txd->llis_va;
1135 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1136
1137 if (txd->cyclic) {
1138 /* Link back to the first LLI. */
1139 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1140 } else {
1141 /* The final LLI terminates the LLI. */
1142 last_lli[PL080_LLI_LLI] = 0;
1143 /* The final LLI element shall also fire an interrupt. */
1144 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1145 }
1146
1147 pl08x_dump_lli(pl08x, llis_va, num_llis);
1148
1149 return num_llis;
1150 }
1151
1152 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1153 struct pl08x_txd *txd)
1154 {
1155 struct pl08x_sg *dsg, *_dsg;
1156
1157 if (txd->llis_va)
1158 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1159
1160 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1161 list_del(&dsg->node);
1162 kfree(dsg);
1163 }
1164
1165 kfree(txd);
1166 }
1167
1168 static void pl08x_desc_free(struct virt_dma_desc *vd)
1169 {
1170 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1171 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1172
1173 dma_descriptor_unmap(&vd->tx);
1174 if (!txd->done)
1175 pl08x_release_mux(plchan);
1176
1177 pl08x_free_txd(plchan->host, txd);
1178 }
1179
1180 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1181 struct pl08x_dma_chan *plchan)
1182 {
1183 LIST_HEAD(head);
1184
1185 vchan_get_all_descriptors(&plchan->vc, &head);
1186 vchan_dma_desc_free_list(&plchan->vc, &head);
1187 }
1188
1189 /*
1190 * The DMA ENGINE API
1191 */
1192 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1193 {
1194 return 0;
1195 }
1196
1197 static void pl08x_free_chan_resources(struct dma_chan *chan)
1198 {
1199 /* Ensure all queued descriptors are freed */
1200 vchan_free_chan_resources(to_virt_chan(chan));
1201 }
1202
1203 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1204 struct dma_chan *chan, unsigned long flags)
1205 {
1206 struct dma_async_tx_descriptor *retval = NULL;
1207
1208 return retval;
1209 }
1210
1211 /*
1212 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1213 * If slaves are relying on interrupts to signal completion this function
1214 * must not be called with interrupts disabled.
1215 */
1216 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1217 dma_cookie_t cookie, struct dma_tx_state *txstate)
1218 {
1219 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1220 struct virt_dma_desc *vd;
1221 unsigned long flags;
1222 enum dma_status ret;
1223 size_t bytes = 0;
1224
1225 ret = dma_cookie_status(chan, cookie, txstate);
1226 if (ret == DMA_COMPLETE)
1227 return ret;
1228
1229 /*
1230 * There's no point calculating the residue if there's
1231 * no txstate to store the value.
1232 */
1233 if (!txstate) {
1234 if (plchan->state == PL08X_CHAN_PAUSED)
1235 ret = DMA_PAUSED;
1236 return ret;
1237 }
1238
1239 spin_lock_irqsave(&plchan->vc.lock, flags);
1240 ret = dma_cookie_status(chan, cookie, txstate);
1241 if (ret != DMA_COMPLETE) {
1242 vd = vchan_find_desc(&plchan->vc, cookie);
1243 if (vd) {
1244 /* On the issued list, so hasn't been processed yet */
1245 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1246 struct pl08x_sg *dsg;
1247
1248 list_for_each_entry(dsg, &txd->dsg_list, node)
1249 bytes += dsg->len;
1250 } else {
1251 bytes = pl08x_getbytes_chan(plchan);
1252 }
1253 }
1254 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1255
1256 /*
1257 * This cookie not complete yet
1258 * Get number of bytes left in the active transactions and queue
1259 */
1260 dma_set_residue(txstate, bytes);
1261
1262 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1263 ret = DMA_PAUSED;
1264
1265 /* Whether waiting or running, we're in progress */
1266 return ret;
1267 }
1268
1269 /* PrimeCell DMA extension */
1270 struct burst_table {
1271 u32 burstwords;
1272 u32 reg;
1273 };
1274
1275 static const struct burst_table burst_sizes[] = {
1276 {
1277 .burstwords = 256,
1278 .reg = PL080_BSIZE_256,
1279 },
1280 {
1281 .burstwords = 128,
1282 .reg = PL080_BSIZE_128,
1283 },
1284 {
1285 .burstwords = 64,
1286 .reg = PL080_BSIZE_64,
1287 },
1288 {
1289 .burstwords = 32,
1290 .reg = PL080_BSIZE_32,
1291 },
1292 {
1293 .burstwords = 16,
1294 .reg = PL080_BSIZE_16,
1295 },
1296 {
1297 .burstwords = 8,
1298 .reg = PL080_BSIZE_8,
1299 },
1300 {
1301 .burstwords = 4,
1302 .reg = PL080_BSIZE_4,
1303 },
1304 {
1305 .burstwords = 0,
1306 .reg = PL080_BSIZE_1,
1307 },
1308 };
1309
1310 /*
1311 * Given the source and destination available bus masks, select which
1312 * will be routed to each port. We try to have source and destination
1313 * on separate ports, but always respect the allowable settings.
1314 */
1315 static u32 pl08x_select_bus(u8 src, u8 dst)
1316 {
1317 u32 cctl = 0;
1318
1319 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1320 cctl |= PL080_CONTROL_DST_AHB2;
1321 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1322 cctl |= PL080_CONTROL_SRC_AHB2;
1323
1324 return cctl;
1325 }
1326
1327 static u32 pl08x_cctl(u32 cctl)
1328 {
1329 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1330 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1331 PL080_CONTROL_PROT_MASK);
1332
1333 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1334 return cctl | PL080_CONTROL_PROT_SYS;
1335 }
1336
1337 static u32 pl08x_width(enum dma_slave_buswidth width)
1338 {
1339 switch (width) {
1340 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1341 return PL080_WIDTH_8BIT;
1342 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1343 return PL080_WIDTH_16BIT;
1344 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1345 return PL080_WIDTH_32BIT;
1346 default:
1347 return ~0;
1348 }
1349 }
1350
1351 static u32 pl08x_burst(u32 maxburst)
1352 {
1353 int i;
1354
1355 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1356 if (burst_sizes[i].burstwords <= maxburst)
1357 break;
1358
1359 return burst_sizes[i].reg;
1360 }
1361
1362 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1363 enum dma_slave_buswidth addr_width, u32 maxburst)
1364 {
1365 u32 width, burst, cctl = 0;
1366
1367 width = pl08x_width(addr_width);
1368 if (width == ~0)
1369 return ~0;
1370
1371 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1372 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1373
1374 /*
1375 * If this channel will only request single transfers, set this
1376 * down to ONE element. Also select one element if no maxburst
1377 * is specified.
1378 */
1379 if (plchan->cd->single)
1380 maxburst = 1;
1381
1382 burst = pl08x_burst(maxburst);
1383 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1384 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1385
1386 return pl08x_cctl(cctl);
1387 }
1388
1389 /*
1390 * Slave transactions callback to the slave device to allow
1391 * synchronization of slave DMA signals with the DMAC enable
1392 */
1393 static void pl08x_issue_pending(struct dma_chan *chan)
1394 {
1395 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1396 unsigned long flags;
1397
1398 spin_lock_irqsave(&plchan->vc.lock, flags);
1399 if (vchan_issue_pending(&plchan->vc)) {
1400 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1401 pl08x_phy_alloc_and_start(plchan);
1402 }
1403 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1404 }
1405
1406 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1407 {
1408 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1409
1410 if (txd) {
1411 INIT_LIST_HEAD(&txd->dsg_list);
1412
1413 /* Always enable error and terminal interrupts */
1414 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1415 PL080_CONFIG_TC_IRQ_MASK;
1416 }
1417 return txd;
1418 }
1419
1420 /*
1421 * Initialize a descriptor to be used by memcpy submit
1422 */
1423 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1424 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1425 size_t len, unsigned long flags)
1426 {
1427 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1428 struct pl08x_driver_data *pl08x = plchan->host;
1429 struct pl08x_txd *txd;
1430 struct pl08x_sg *dsg;
1431 int ret;
1432
1433 txd = pl08x_get_txd(plchan);
1434 if (!txd) {
1435 dev_err(&pl08x->adev->dev,
1436 "%s no memory for descriptor\n", __func__);
1437 return NULL;
1438 }
1439
1440 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1441 if (!dsg) {
1442 pl08x_free_txd(pl08x, txd);
1443 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1444 __func__);
1445 return NULL;
1446 }
1447 list_add_tail(&dsg->node, &txd->dsg_list);
1448
1449 dsg->src_addr = src;
1450 dsg->dst_addr = dest;
1451 dsg->len = len;
1452
1453 /* Set platform data for m2m */
1454 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1455 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1456 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1457
1458 /* Both to be incremented or the code will break */
1459 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1460
1461 if (pl08x->vd->dualmaster)
1462 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1463 pl08x->mem_buses);
1464
1465 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1466 if (!ret) {
1467 pl08x_free_txd(pl08x, txd);
1468 return NULL;
1469 }
1470
1471 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1472 }
1473
1474 static struct pl08x_txd *pl08x_init_txd(
1475 struct dma_chan *chan,
1476 enum dma_transfer_direction direction,
1477 dma_addr_t *slave_addr)
1478 {
1479 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1480 struct pl08x_driver_data *pl08x = plchan->host;
1481 struct pl08x_txd *txd;
1482 enum dma_slave_buswidth addr_width;
1483 int ret, tmp;
1484 u8 src_buses, dst_buses;
1485 u32 maxburst, cctl;
1486
1487 txd = pl08x_get_txd(plchan);
1488 if (!txd) {
1489 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1490 return NULL;
1491 }
1492
1493 /*
1494 * Set up addresses, the PrimeCell configured address
1495 * will take precedence since this may configure the
1496 * channel target address dynamically at runtime.
1497 */
1498 if (direction == DMA_MEM_TO_DEV) {
1499 cctl = PL080_CONTROL_SRC_INCR;
1500 *slave_addr = plchan->cfg.dst_addr;
1501 addr_width = plchan->cfg.dst_addr_width;
1502 maxburst = plchan->cfg.dst_maxburst;
1503 src_buses = pl08x->mem_buses;
1504 dst_buses = plchan->cd->periph_buses;
1505 } else if (direction == DMA_DEV_TO_MEM) {
1506 cctl = PL080_CONTROL_DST_INCR;
1507 *slave_addr = plchan->cfg.src_addr;
1508 addr_width = plchan->cfg.src_addr_width;
1509 maxburst = plchan->cfg.src_maxburst;
1510 src_buses = plchan->cd->periph_buses;
1511 dst_buses = pl08x->mem_buses;
1512 } else {
1513 pl08x_free_txd(pl08x, txd);
1514 dev_err(&pl08x->adev->dev,
1515 "%s direction unsupported\n", __func__);
1516 return NULL;
1517 }
1518
1519 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1520 if (cctl == ~0) {
1521 pl08x_free_txd(pl08x, txd);
1522 dev_err(&pl08x->adev->dev,
1523 "DMA slave configuration botched?\n");
1524 return NULL;
1525 }
1526
1527 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1528
1529 if (plchan->cfg.device_fc)
1530 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1531 PL080_FLOW_PER2MEM_PER;
1532 else
1533 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1534 PL080_FLOW_PER2MEM;
1535
1536 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1537
1538 ret = pl08x_request_mux(plchan);
1539 if (ret < 0) {
1540 pl08x_free_txd(pl08x, txd);
1541 dev_dbg(&pl08x->adev->dev,
1542 "unable to mux for transfer on %s due to platform restrictions\n",
1543 plchan->name);
1544 return NULL;
1545 }
1546
1547 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1548 plchan->signal, plchan->name);
1549
1550 /* Assign the flow control signal to this channel */
1551 if (direction == DMA_MEM_TO_DEV)
1552 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1553 else
1554 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1555
1556 return txd;
1557 }
1558
1559 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1560 enum dma_transfer_direction direction,
1561 dma_addr_t slave_addr,
1562 dma_addr_t buf_addr,
1563 unsigned int len)
1564 {
1565 struct pl08x_sg *dsg;
1566
1567 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1568 if (!dsg)
1569 return -ENOMEM;
1570
1571 list_add_tail(&dsg->node, &txd->dsg_list);
1572
1573 dsg->len = len;
1574 if (direction == DMA_MEM_TO_DEV) {
1575 dsg->src_addr = buf_addr;
1576 dsg->dst_addr = slave_addr;
1577 } else {
1578 dsg->src_addr = slave_addr;
1579 dsg->dst_addr = buf_addr;
1580 }
1581
1582 return 0;
1583 }
1584
1585 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1586 struct dma_chan *chan, struct scatterlist *sgl,
1587 unsigned int sg_len, enum dma_transfer_direction direction,
1588 unsigned long flags, void *context)
1589 {
1590 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1591 struct pl08x_driver_data *pl08x = plchan->host;
1592 struct pl08x_txd *txd;
1593 struct scatterlist *sg;
1594 int ret, tmp;
1595 dma_addr_t slave_addr;
1596
1597 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1598 __func__, sg_dma_len(sgl), plchan->name);
1599
1600 txd = pl08x_init_txd(chan, direction, &slave_addr);
1601 if (!txd)
1602 return NULL;
1603
1604 for_each_sg(sgl, sg, sg_len, tmp) {
1605 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1606 sg_dma_address(sg),
1607 sg_dma_len(sg));
1608 if (ret) {
1609 pl08x_release_mux(plchan);
1610 pl08x_free_txd(pl08x, txd);
1611 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1612 __func__);
1613 return NULL;
1614 }
1615 }
1616
1617 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1618 if (!ret) {
1619 pl08x_release_mux(plchan);
1620 pl08x_free_txd(pl08x, txd);
1621 return NULL;
1622 }
1623
1624 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1625 }
1626
1627 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1628 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1629 size_t period_len, enum dma_transfer_direction direction,
1630 unsigned long flags)
1631 {
1632 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1633 struct pl08x_driver_data *pl08x = plchan->host;
1634 struct pl08x_txd *txd;
1635 int ret, tmp;
1636 dma_addr_t slave_addr;
1637
1638 dev_dbg(&pl08x->adev->dev,
1639 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1640 __func__, period_len, buf_len,
1641 direction == DMA_MEM_TO_DEV ? "to" : "from",
1642 plchan->name);
1643
1644 txd = pl08x_init_txd(chan, direction, &slave_addr);
1645 if (!txd)
1646 return NULL;
1647
1648 txd->cyclic = true;
1649 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1650 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1651 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1652 buf_addr + tmp, period_len);
1653 if (ret) {
1654 pl08x_release_mux(plchan);
1655 pl08x_free_txd(pl08x, txd);
1656 return NULL;
1657 }
1658 }
1659
1660 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1661 if (!ret) {
1662 pl08x_release_mux(plchan);
1663 pl08x_free_txd(pl08x, txd);
1664 return NULL;
1665 }
1666
1667 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1668 }
1669
1670 static int pl08x_config(struct dma_chan *chan,
1671 struct dma_slave_config *config)
1672 {
1673 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1674 struct pl08x_driver_data *pl08x = plchan->host;
1675
1676 if (!plchan->slave)
1677 return -EINVAL;
1678
1679 /* Reject definitely invalid configurations */
1680 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1681 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1682 return -EINVAL;
1683
1684 if (config->device_fc && pl08x->vd->pl080s) {
1685 dev_err(&pl08x->adev->dev,
1686 "%s: PL080S does not support peripheral flow control\n",
1687 __func__);
1688 return -EINVAL;
1689 }
1690
1691 plchan->cfg = *config;
1692
1693 return 0;
1694 }
1695
1696 static int pl08x_terminate_all(struct dma_chan *chan)
1697 {
1698 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1699 struct pl08x_driver_data *pl08x = plchan->host;
1700 unsigned long flags;
1701
1702 spin_lock_irqsave(&plchan->vc.lock, flags);
1703 if (!plchan->phychan && !plchan->at) {
1704 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1705 return 0;
1706 }
1707
1708 plchan->state = PL08X_CHAN_IDLE;
1709
1710 if (plchan->phychan) {
1711 /*
1712 * Mark physical channel as free and free any slave
1713 * signal
1714 */
1715 pl08x_phy_free(plchan);
1716 }
1717 /* Dequeue jobs and free LLIs */
1718 if (plchan->at) {
1719 pl08x_desc_free(&plchan->at->vd);
1720 plchan->at = NULL;
1721 }
1722 /* Dequeue jobs not yet fired as well */
1723 pl08x_free_txd_list(pl08x, plchan);
1724
1725 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1726
1727 return 0;
1728 }
1729
1730 static int pl08x_pause(struct dma_chan *chan)
1731 {
1732 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1733 unsigned long flags;
1734
1735 /*
1736 * Anything succeeds on channels with no physical allocation and
1737 * no queued transfers.
1738 */
1739 spin_lock_irqsave(&plchan->vc.lock, flags);
1740 if (!plchan->phychan && !plchan->at) {
1741 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1742 return 0;
1743 }
1744
1745 pl08x_pause_phy_chan(plchan->phychan);
1746 plchan->state = PL08X_CHAN_PAUSED;
1747
1748 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1749
1750 return 0;
1751 }
1752
1753 static int pl08x_resume(struct dma_chan *chan)
1754 {
1755 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1756 unsigned long flags;
1757
1758 /*
1759 * Anything succeeds on channels with no physical allocation and
1760 * no queued transfers.
1761 */
1762 spin_lock_irqsave(&plchan->vc.lock, flags);
1763 if (!plchan->phychan && !plchan->at) {
1764 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1765 return 0;
1766 }
1767
1768 pl08x_resume_phy_chan(plchan->phychan);
1769 plchan->state = PL08X_CHAN_RUNNING;
1770
1771 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1772
1773 return 0;
1774 }
1775
1776 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1777 {
1778 struct pl08x_dma_chan *plchan;
1779 char *name = chan_id;
1780
1781 /* Reject channels for devices not bound to this driver */
1782 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1783 return false;
1784
1785 plchan = to_pl08x_chan(chan);
1786
1787 /* Check that the channel is not taken! */
1788 if (!strcmp(plchan->name, name))
1789 return true;
1790
1791 return false;
1792 }
1793 EXPORT_SYMBOL_GPL(pl08x_filter_id);
1794
1795 /*
1796 * Just check that the device is there and active
1797 * TODO: turn this bit on/off depending on the number of physical channels
1798 * actually used, if it is zero... well shut it off. That will save some
1799 * power. Cut the clock at the same time.
1800 */
1801 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1802 {
1803 /* The Nomadik variant does not have the config register */
1804 if (pl08x->vd->nomadik)
1805 return;
1806 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1807 }
1808
1809 static irqreturn_t pl08x_irq(int irq, void *dev)
1810 {
1811 struct pl08x_driver_data *pl08x = dev;
1812 u32 mask = 0, err, tc, i;
1813
1814 /* check & clear - ERR & TC interrupts */
1815 err = readl(pl08x->base + PL080_ERR_STATUS);
1816 if (err) {
1817 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1818 __func__, err);
1819 writel(err, pl08x->base + PL080_ERR_CLEAR);
1820 }
1821 tc = readl(pl08x->base + PL080_TC_STATUS);
1822 if (tc)
1823 writel(tc, pl08x->base + PL080_TC_CLEAR);
1824
1825 if (!err && !tc)
1826 return IRQ_NONE;
1827
1828 for (i = 0; i < pl08x->vd->channels; i++) {
1829 if (((1 << i) & err) || ((1 << i) & tc)) {
1830 /* Locate physical channel */
1831 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1832 struct pl08x_dma_chan *plchan = phychan->serving;
1833 struct pl08x_txd *tx;
1834
1835 if (!plchan) {
1836 dev_err(&pl08x->adev->dev,
1837 "%s Error TC interrupt on unused channel: 0x%08x\n",
1838 __func__, i);
1839 continue;
1840 }
1841
1842 spin_lock(&plchan->vc.lock);
1843 tx = plchan->at;
1844 if (tx && tx->cyclic) {
1845 vchan_cyclic_callback(&tx->vd);
1846 } else if (tx) {
1847 plchan->at = NULL;
1848 /*
1849 * This descriptor is done, release its mux
1850 * reservation.
1851 */
1852 pl08x_release_mux(plchan);
1853 tx->done = true;
1854 vchan_cookie_complete(&tx->vd);
1855
1856 /*
1857 * And start the next descriptor (if any),
1858 * otherwise free this channel.
1859 */
1860 if (vchan_next_desc(&plchan->vc))
1861 pl08x_start_next_txd(plchan);
1862 else
1863 pl08x_phy_free(plchan);
1864 }
1865 spin_unlock(&plchan->vc.lock);
1866
1867 mask |= (1 << i);
1868 }
1869 }
1870
1871 return mask ? IRQ_HANDLED : IRQ_NONE;
1872 }
1873
1874 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1875 {
1876 chan->slave = true;
1877 chan->name = chan->cd->bus_id;
1878 chan->cfg.src_addr = chan->cd->addr;
1879 chan->cfg.dst_addr = chan->cd->addr;
1880 }
1881
1882 /*
1883 * Initialise the DMAC memcpy/slave channels.
1884 * Make a local wrapper to hold required data
1885 */
1886 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1887 struct dma_device *dmadev, unsigned int channels, bool slave)
1888 {
1889 struct pl08x_dma_chan *chan;
1890 int i;
1891
1892 INIT_LIST_HEAD(&dmadev->channels);
1893
1894 /*
1895 * Register as many many memcpy as we have physical channels,
1896 * we won't always be able to use all but the code will have
1897 * to cope with that situation.
1898 */
1899 for (i = 0; i < channels; i++) {
1900 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1901 if (!chan) {
1902 dev_err(&pl08x->adev->dev,
1903 "%s no memory for channel\n", __func__);
1904 return -ENOMEM;
1905 }
1906
1907 chan->host = pl08x;
1908 chan->state = PL08X_CHAN_IDLE;
1909 chan->signal = -1;
1910
1911 if (slave) {
1912 chan->cd = &pl08x->pd->slave_channels[i];
1913 pl08x_dma_slave_init(chan);
1914 } else {
1915 chan->cd = &pl08x->pd->memcpy_channel;
1916 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1917 if (!chan->name) {
1918 kfree(chan);
1919 return -ENOMEM;
1920 }
1921 }
1922 dev_dbg(&pl08x->adev->dev,
1923 "initialize virtual channel \"%s\"\n",
1924 chan->name);
1925
1926 chan->vc.desc_free = pl08x_desc_free;
1927 vchan_init(&chan->vc, dmadev);
1928 }
1929 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1930 i, slave ? "slave" : "memcpy");
1931 return i;
1932 }
1933
1934 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1935 {
1936 struct pl08x_dma_chan *chan = NULL;
1937 struct pl08x_dma_chan *next;
1938
1939 list_for_each_entry_safe(chan,
1940 next, &dmadev->channels, vc.chan.device_node) {
1941 list_del(&chan->vc.chan.device_node);
1942 kfree(chan);
1943 }
1944 }
1945
1946 #ifdef CONFIG_DEBUG_FS
1947 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1948 {
1949 switch (state) {
1950 case PL08X_CHAN_IDLE:
1951 return "idle";
1952 case PL08X_CHAN_RUNNING:
1953 return "running";
1954 case PL08X_CHAN_PAUSED:
1955 return "paused";
1956 case PL08X_CHAN_WAITING:
1957 return "waiting";
1958 default:
1959 break;
1960 }
1961 return "UNKNOWN STATE";
1962 }
1963
1964 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1965 {
1966 struct pl08x_driver_data *pl08x = s->private;
1967 struct pl08x_dma_chan *chan;
1968 struct pl08x_phy_chan *ch;
1969 unsigned long flags;
1970 int i;
1971
1972 seq_printf(s, "PL08x physical channels:\n");
1973 seq_printf(s, "CHANNEL:\tUSER:\n");
1974 seq_printf(s, "--------\t-----\n");
1975 for (i = 0; i < pl08x->vd->channels; i++) {
1976 struct pl08x_dma_chan *virt_chan;
1977
1978 ch = &pl08x->phy_chans[i];
1979
1980 spin_lock_irqsave(&ch->lock, flags);
1981 virt_chan = ch->serving;
1982
1983 seq_printf(s, "%d\t\t%s%s\n",
1984 ch->id,
1985 virt_chan ? virt_chan->name : "(none)",
1986 ch->locked ? " LOCKED" : "");
1987
1988 spin_unlock_irqrestore(&ch->lock, flags);
1989 }
1990
1991 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1992 seq_printf(s, "CHANNEL:\tSTATE:\n");
1993 seq_printf(s, "--------\t------\n");
1994 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1995 seq_printf(s, "%s\t\t%s\n", chan->name,
1996 pl08x_state_str(chan->state));
1997 }
1998
1999 seq_printf(s, "\nPL08x virtual slave channels:\n");
2000 seq_printf(s, "CHANNEL:\tSTATE:\n");
2001 seq_printf(s, "--------\t------\n");
2002 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2003 seq_printf(s, "%s\t\t%s\n", chan->name,
2004 pl08x_state_str(chan->state));
2005 }
2006
2007 return 0;
2008 }
2009
2010 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2011 {
2012 return single_open(file, pl08x_debugfs_show, inode->i_private);
2013 }
2014
2015 static const struct file_operations pl08x_debugfs_operations = {
2016 .open = pl08x_debugfs_open,
2017 .read = seq_read,
2018 .llseek = seq_lseek,
2019 .release = single_release,
2020 };
2021
2022 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2023 {
2024 /* Expose a simple debugfs interface to view all clocks */
2025 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2026 S_IFREG | S_IRUGO, NULL, pl08x,
2027 &pl08x_debugfs_operations);
2028 }
2029
2030 #else
2031 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2032 {
2033 }
2034 #endif
2035
2036 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2037 {
2038 struct pl08x_driver_data *pl08x;
2039 const struct vendor_data *vd = id->data;
2040 u32 tsfr_size;
2041 int ret = 0;
2042 int i;
2043
2044 ret = amba_request_regions(adev, NULL);
2045 if (ret)
2046 return ret;
2047
2048 /* Ensure that we can do DMA */
2049 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2050 if (ret)
2051 goto out_no_pl08x;
2052
2053 /* Create the driver state holder */
2054 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2055 if (!pl08x) {
2056 ret = -ENOMEM;
2057 goto out_no_pl08x;
2058 }
2059
2060 /* Initialize memcpy engine */
2061 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2062 pl08x->memcpy.dev = &adev->dev;
2063 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2064 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2065 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2066 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2067 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2068 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2069 pl08x->memcpy.device_config = pl08x_config;
2070 pl08x->memcpy.device_pause = pl08x_pause;
2071 pl08x->memcpy.device_resume = pl08x_resume;
2072 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2073
2074 /* Initialize slave engine */
2075 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2076 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2077 pl08x->slave.dev = &adev->dev;
2078 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
2079 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2080 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2081 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2082 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2083 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2084 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2085 pl08x->slave.device_config = pl08x_config;
2086 pl08x->slave.device_pause = pl08x_pause;
2087 pl08x->slave.device_resume = pl08x_resume;
2088 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2089
2090 /* Get the platform data */
2091 pl08x->pd = dev_get_platdata(&adev->dev);
2092 if (!pl08x->pd) {
2093 dev_err(&adev->dev, "no platform data supplied\n");
2094 ret = -EINVAL;
2095 goto out_no_platdata;
2096 }
2097
2098 /* Assign useful pointers to the driver state */
2099 pl08x->adev = adev;
2100 pl08x->vd = vd;
2101
2102 /* By default, AHB1 only. If dualmaster, from platform */
2103 pl08x->lli_buses = PL08X_AHB1;
2104 pl08x->mem_buses = PL08X_AHB1;
2105 if (pl08x->vd->dualmaster) {
2106 pl08x->lli_buses = pl08x->pd->lli_buses;
2107 pl08x->mem_buses = pl08x->pd->mem_buses;
2108 }
2109
2110 if (vd->pl080s)
2111 pl08x->lli_words = PL080S_LLI_WORDS;
2112 else
2113 pl08x->lli_words = PL080_LLI_WORDS;
2114 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2115
2116 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2117 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2118 tsfr_size, PL08X_ALIGN, 0);
2119 if (!pl08x->pool) {
2120 ret = -ENOMEM;
2121 goto out_no_lli_pool;
2122 }
2123
2124 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2125 if (!pl08x->base) {
2126 ret = -ENOMEM;
2127 goto out_no_ioremap;
2128 }
2129
2130 /* Turn on the PL08x */
2131 pl08x_ensure_on(pl08x);
2132
2133 /* Attach the interrupt handler */
2134 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2135 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2136
2137 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2138 if (ret) {
2139 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2140 __func__, adev->irq[0]);
2141 goto out_no_irq;
2142 }
2143
2144 /* Initialize physical channels */
2145 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2146 GFP_KERNEL);
2147 if (!pl08x->phy_chans) {
2148 dev_err(&adev->dev, "%s failed to allocate "
2149 "physical channel holders\n",
2150 __func__);
2151 ret = -ENOMEM;
2152 goto out_no_phychans;
2153 }
2154
2155 for (i = 0; i < vd->channels; i++) {
2156 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2157
2158 ch->id = i;
2159 ch->base = pl08x->base + PL080_Cx_BASE(i);
2160 ch->reg_config = ch->base + vd->config_offset;
2161 spin_lock_init(&ch->lock);
2162
2163 /*
2164 * Nomadik variants can have channels that are locked
2165 * down for the secure world only. Lock up these channels
2166 * by perpetually serving a dummy virtual channel.
2167 */
2168 if (vd->nomadik) {
2169 u32 val;
2170
2171 val = readl(ch->reg_config);
2172 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2173 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2174 ch->locked = true;
2175 }
2176 }
2177
2178 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2179 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2180 }
2181
2182 /* Register as many memcpy channels as there are physical channels */
2183 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2184 pl08x->vd->channels, false);
2185 if (ret <= 0) {
2186 dev_warn(&pl08x->adev->dev,
2187 "%s failed to enumerate memcpy channels - %d\n",
2188 __func__, ret);
2189 goto out_no_memcpy;
2190 }
2191
2192 /* Register slave channels */
2193 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2194 pl08x->pd->num_slave_channels, true);
2195 if (ret < 0) {
2196 dev_warn(&pl08x->adev->dev,
2197 "%s failed to enumerate slave channels - %d\n",
2198 __func__, ret);
2199 goto out_no_slave;
2200 }
2201
2202 ret = dma_async_device_register(&pl08x->memcpy);
2203 if (ret) {
2204 dev_warn(&pl08x->adev->dev,
2205 "%s failed to register memcpy as an async device - %d\n",
2206 __func__, ret);
2207 goto out_no_memcpy_reg;
2208 }
2209
2210 ret = dma_async_device_register(&pl08x->slave);
2211 if (ret) {
2212 dev_warn(&pl08x->adev->dev,
2213 "%s failed to register slave as an async device - %d\n",
2214 __func__, ret);
2215 goto out_no_slave_reg;
2216 }
2217
2218 amba_set_drvdata(adev, pl08x);
2219 init_pl08x_debugfs(pl08x);
2220 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2221 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2222 (unsigned long long)adev->res.start, adev->irq[0]);
2223
2224 return 0;
2225
2226 out_no_slave_reg:
2227 dma_async_device_unregister(&pl08x->memcpy);
2228 out_no_memcpy_reg:
2229 pl08x_free_virtual_channels(&pl08x->slave);
2230 out_no_slave:
2231 pl08x_free_virtual_channels(&pl08x->memcpy);
2232 out_no_memcpy:
2233 kfree(pl08x->phy_chans);
2234 out_no_phychans:
2235 free_irq(adev->irq[0], pl08x);
2236 out_no_irq:
2237 iounmap(pl08x->base);
2238 out_no_ioremap:
2239 dma_pool_destroy(pl08x->pool);
2240 out_no_lli_pool:
2241 out_no_platdata:
2242 kfree(pl08x);
2243 out_no_pl08x:
2244 amba_release_regions(adev);
2245 return ret;
2246 }
2247
2248 /* PL080 has 8 channels and the PL080 have just 2 */
2249 static struct vendor_data vendor_pl080 = {
2250 .config_offset = PL080_CH_CONFIG,
2251 .channels = 8,
2252 .dualmaster = true,
2253 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2254 };
2255
2256 static struct vendor_data vendor_nomadik = {
2257 .config_offset = PL080_CH_CONFIG,
2258 .channels = 8,
2259 .dualmaster = true,
2260 .nomadik = true,
2261 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2262 };
2263
2264 static struct vendor_data vendor_pl080s = {
2265 .config_offset = PL080S_CH_CONFIG,
2266 .channels = 8,
2267 .pl080s = true,
2268 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2269 };
2270
2271 static struct vendor_data vendor_pl081 = {
2272 .config_offset = PL080_CH_CONFIG,
2273 .channels = 2,
2274 .dualmaster = false,
2275 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2276 };
2277
2278 static struct amba_id pl08x_ids[] = {
2279 /* Samsung PL080S variant */
2280 {
2281 .id = 0x0a141080,
2282 .mask = 0xffffffff,
2283 .data = &vendor_pl080s,
2284 },
2285 /* PL080 */
2286 {
2287 .id = 0x00041080,
2288 .mask = 0x000fffff,
2289 .data = &vendor_pl080,
2290 },
2291 /* PL081 */
2292 {
2293 .id = 0x00041081,
2294 .mask = 0x000fffff,
2295 .data = &vendor_pl081,
2296 },
2297 /* Nomadik 8815 PL080 variant */
2298 {
2299 .id = 0x00280080,
2300 .mask = 0x00ffffff,
2301 .data = &vendor_nomadik,
2302 },
2303 { 0, 0 },
2304 };
2305
2306 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2307
2308 static struct amba_driver pl08x_amba_driver = {
2309 .drv.name = DRIVER_NAME,
2310 .id_table = pl08x_ids,
2311 .probe = pl08x_probe,
2312 };
2313
2314 static int __init pl08x_init(void)
2315 {
2316 int retval;
2317 retval = amba_driver_register(&pl08x_amba_driver);
2318 if (retval)
2319 printk(KERN_WARNING DRIVER_NAME
2320 "failed to register as an AMBA device (%d)\n",
2321 retval);
2322 return retval;
2323 }
2324 subsys_initcall(pl08x_init);
This page took 0.11142 seconds and 5 git commands to generate.