5d9a15652dba8846eba33447c5b5c1abcb61bf54
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * Only DMAC flow control is implemented
57 *
58 * Global TODO:
59 * - Break out common code from arch/arm/mach-s3c64xx and share
60 */
61 #include <linux/device.h>
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/pci.h>
65 #include <linux/interrupt.h>
66 #include <linux/slab.h>
67 #include <linux/dmapool.h>
68 #include <linux/amba/bus.h>
69 #include <linux/dmaengine.h>
70 #include <linux/amba/pl08x.h>
71 #include <linux/debugfs.h>
72 #include <linux/seq_file.h>
73
74 #include <asm/hardware/pl080.h>
75 #include <asm/dma.h>
76 #include <asm/mach/dma.h>
77 #include <asm/processor.h>
78 #include <asm/cacheflush.h>
79
80 #define DRIVER_NAME "pl08xdmac"
81
82 /**
83 * struct vendor_data - vendor-specific config parameters
84 * for PL08x derivatives
85 * @name: the name of this specific variant
86 * @channels: the number of channels available in this variant
87 * @dualmaster: whether this version supports dual AHB masters
88 * or not.
89 */
90 struct vendor_data {
91 char *name;
92 u8 channels;
93 bool dualmaster;
94 };
95
96 /*
97 * PL08X private data structures
98 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
99 * start & end do not - their bus bit info is in cctl.
100 */
101 struct lli {
102 dma_addr_t src;
103 dma_addr_t dst;
104 dma_addr_t next;
105 u32 cctl;
106 };
107
108 /**
109 * struct pl08x_driver_data - the local state holder for the PL08x
110 * @slave: slave engine for this instance
111 * @memcpy: memcpy engine for this instance
112 * @base: virtual memory base (remapped) for the PL08x
113 * @adev: the corresponding AMBA (PrimeCell) bus entry
114 * @vd: vendor data for this PL08x variant
115 * @pd: platform data passed in from the platform/machine
116 * @phy_chans: array of data for the physical channels
117 * @pool: a pool for the LLI descriptors
118 * @pool_ctr: counter of LLIs in the pool
119 * @lock: a spinlock for this struct
120 */
121 struct pl08x_driver_data {
122 struct dma_device slave;
123 struct dma_device memcpy;
124 void __iomem *base;
125 struct amba_device *adev;
126 struct vendor_data *vd;
127 struct pl08x_platform_data *pd;
128 struct pl08x_phy_chan *phy_chans;
129 struct dma_pool *pool;
130 int pool_ctr;
131 spinlock_t lock;
132 };
133
134 /*
135 * PL08X specific defines
136 */
137
138 /*
139 * Memory boundaries: the manual for PL08x says that the controller
140 * cannot read past a 1KiB boundary, so these defines are used to
141 * create transfer LLIs that do not cross such boundaries.
142 */
143 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
144 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
145
146 /* Minimum period between work queue runs */
147 #define PL08X_WQ_PERIODMIN 20
148
149 /* Size (bytes) of each LLI buffer allocated for one transfer */
150 # define PL08X_LLI_TSFR_SIZE 0x2000
151
152 /* Maximum times we call dma_pool_alloc on this pool without freeing */
153 #define PL08X_MAX_ALLOCS 0x40
154 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct lli))
155 #define PL08X_ALIGN 8
156
157 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
158 {
159 return container_of(chan, struct pl08x_dma_chan, chan);
160 }
161
162 /*
163 * Physical channel handling
164 */
165
166 /* Whether a certain channel is busy or not */
167 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
168 {
169 unsigned int val;
170
171 val = readl(ch->base + PL080_CH_CONFIG);
172 return val & PL080_CONFIG_ACTIVE;
173 }
174
175 /*
176 * Set the initial DMA register values i.e. those for the first LLI
177 * The next LLI pointer and the configuration interrupt bit have
178 * been set when the LLIs were constructed
179 */
180 static void pl08x_set_cregs(struct pl08x_driver_data *pl08x,
181 struct pl08x_phy_chan *ch)
182 {
183 /* Wait for channel inactive */
184 while (pl08x_phy_channel_busy(ch))
185 ;
186
187 dev_vdbg(&pl08x->adev->dev,
188 "WRITE channel %d: csrc=%08x, cdst=%08x, "
189 "cctl=%08x, clli=%08x, ccfg=%08x\n",
190 ch->id,
191 ch->csrc,
192 ch->cdst,
193 ch->cctl,
194 ch->clli,
195 ch->ccfg);
196
197 writel(ch->csrc, ch->base + PL080_CH_SRC_ADDR);
198 writel(ch->cdst, ch->base + PL080_CH_DST_ADDR);
199 writel(ch->clli, ch->base + PL080_CH_LLI);
200 writel(ch->cctl, ch->base + PL080_CH_CONTROL);
201 writel(ch->ccfg, ch->base + PL080_CH_CONFIG);
202 }
203
204 static inline void pl08x_config_phychan_for_txd(struct pl08x_dma_chan *plchan)
205 {
206 struct pl08x_channel_data *cd = plchan->cd;
207 struct pl08x_phy_chan *phychan = plchan->phychan;
208 struct pl08x_txd *txd = plchan->at;
209
210 /* Copy the basic control register calculated at transfer config */
211 phychan->csrc = txd->csrc;
212 phychan->cdst = txd->cdst;
213 phychan->clli = txd->clli;
214 phychan->cctl = txd->cctl;
215
216 /* Assign the signal to the proper control registers */
217 phychan->ccfg = cd->ccfg;
218 phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK;
219 phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK;
220 /* If it wasn't set from AMBA, ignore it */
221 if (txd->direction == DMA_TO_DEVICE)
222 /* Select signal as destination */
223 phychan->ccfg |=
224 (phychan->signal << PL080_CONFIG_DST_SEL_SHIFT);
225 else if (txd->direction == DMA_FROM_DEVICE)
226 /* Select signal as source */
227 phychan->ccfg |=
228 (phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT);
229 /* Always enable error interrupts */
230 phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK;
231 /* Always enable terminal interrupts */
232 phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK;
233 }
234
235 /*
236 * Enable the DMA channel
237 * Assumes all other configuration bits have been set
238 * as desired before this code is called
239 */
240 static void pl08x_enable_phy_chan(struct pl08x_driver_data *pl08x,
241 struct pl08x_phy_chan *ch)
242 {
243 u32 val;
244
245 /*
246 * Do not access config register until channel shows as disabled
247 */
248 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << ch->id))
249 ;
250
251 /*
252 * Do not access config register until channel shows as inactive
253 */
254 val = readl(ch->base + PL080_CH_CONFIG);
255 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
256 val = readl(ch->base + PL080_CH_CONFIG);
257
258 writel(val | PL080_CONFIG_ENABLE, ch->base + PL080_CH_CONFIG);
259 }
260
261 /*
262 * Overall DMAC remains enabled always.
263 *
264 * Disabling individual channels could lose data.
265 *
266 * Disable the peripheral DMA after disabling the DMAC
267 * in order to allow the DMAC FIFO to drain, and
268 * hence allow the channel to show inactive
269 *
270 */
271 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
272 {
273 u32 val;
274
275 /* Set the HALT bit and wait for the FIFO to drain */
276 val = readl(ch->base + PL080_CH_CONFIG);
277 val |= PL080_CONFIG_HALT;
278 writel(val, ch->base + PL080_CH_CONFIG);
279
280 /* Wait for channel inactive */
281 while (pl08x_phy_channel_busy(ch))
282 ;
283 }
284
285 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
286 {
287 u32 val;
288
289 /* Clear the HALT bit */
290 val = readl(ch->base + PL080_CH_CONFIG);
291 val &= ~PL080_CONFIG_HALT;
292 writel(val, ch->base + PL080_CH_CONFIG);
293 }
294
295
296 /* Stops the channel */
297 static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
298 {
299 u32 val;
300
301 pl08x_pause_phy_chan(ch);
302
303 /* Disable channel */
304 val = readl(ch->base + PL080_CH_CONFIG);
305 val &= ~PL080_CONFIG_ENABLE;
306 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
307 val &= ~PL080_CONFIG_TC_IRQ_MASK;
308 writel(val, ch->base + PL080_CH_CONFIG);
309 }
310
311 static inline u32 get_bytes_in_cctl(u32 cctl)
312 {
313 /* The source width defines the number of bytes */
314 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
315
316 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
317 case PL080_WIDTH_8BIT:
318 break;
319 case PL080_WIDTH_16BIT:
320 bytes *= 2;
321 break;
322 case PL080_WIDTH_32BIT:
323 bytes *= 4;
324 break;
325 }
326 return bytes;
327 }
328
329 /* The channel should be paused when calling this */
330 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
331 {
332 struct pl08x_phy_chan *ch;
333 struct pl08x_txd *txdi = NULL;
334 struct pl08x_txd *txd;
335 unsigned long flags;
336 u32 bytes = 0;
337
338 spin_lock_irqsave(&plchan->lock, flags);
339
340 ch = plchan->phychan;
341 txd = plchan->at;
342
343 /*
344 * Next follow the LLIs to get the number of pending bytes in the
345 * currently active transaction.
346 */
347 if (ch && txd) {
348 struct lli *llis_va = txd->llis_va;
349 struct lli *llis_bus = (struct lli *) txd->llis_bus;
350 u32 clli = readl(ch->base + PL080_CH_LLI);
351
352 /* First get the bytes in the current active LLI */
353 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
354
355 if (clli) {
356 int i = 0;
357
358 /* Forward to the LLI pointed to by clli */
359 while ((clli != (u32) &(llis_bus[i])) &&
360 (i < MAX_NUM_TSFR_LLIS))
361 i++;
362
363 while (clli) {
364 bytes += get_bytes_in_cctl(llis_va[i].cctl);
365 /*
366 * A LLI pointer of 0 terminates the LLI list
367 */
368 clli = llis_va[i].next;
369 i++;
370 }
371 }
372 }
373
374 /* Sum up all queued transactions */
375 if (!list_empty(&plchan->desc_list)) {
376 list_for_each_entry(txdi, &plchan->desc_list, node) {
377 bytes += txdi->len;
378 }
379
380 }
381
382 spin_unlock_irqrestore(&plchan->lock, flags);
383
384 return bytes;
385 }
386
387 /*
388 * Allocate a physical channel for a virtual channel
389 */
390 static struct pl08x_phy_chan *
391 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
392 struct pl08x_dma_chan *virt_chan)
393 {
394 struct pl08x_phy_chan *ch = NULL;
395 unsigned long flags;
396 int i;
397
398 /*
399 * Try to locate a physical channel to be used for
400 * this transfer. If all are taken return NULL and
401 * the requester will have to cope by using some fallback
402 * PIO mode or retrying later.
403 */
404 for (i = 0; i < pl08x->vd->channels; i++) {
405 ch = &pl08x->phy_chans[i];
406
407 spin_lock_irqsave(&ch->lock, flags);
408
409 if (!ch->serving) {
410 ch->serving = virt_chan;
411 ch->signal = -1;
412 spin_unlock_irqrestore(&ch->lock, flags);
413 break;
414 }
415
416 spin_unlock_irqrestore(&ch->lock, flags);
417 }
418
419 if (i == pl08x->vd->channels) {
420 /* No physical channel available, cope with it */
421 return NULL;
422 }
423
424 return ch;
425 }
426
427 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
428 struct pl08x_phy_chan *ch)
429 {
430 unsigned long flags;
431
432 /* Stop the channel and clear its interrupts */
433 pl08x_stop_phy_chan(ch);
434 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
435 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
436
437 /* Mark it as free */
438 spin_lock_irqsave(&ch->lock, flags);
439 ch->serving = NULL;
440 spin_unlock_irqrestore(&ch->lock, flags);
441 }
442
443 /*
444 * LLI handling
445 */
446
447 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
448 {
449 switch (coded) {
450 case PL080_WIDTH_8BIT:
451 return 1;
452 case PL080_WIDTH_16BIT:
453 return 2;
454 case PL080_WIDTH_32BIT:
455 return 4;
456 default:
457 break;
458 }
459 BUG();
460 return 0;
461 }
462
463 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
464 u32 tsize)
465 {
466 u32 retbits = cctl;
467
468 /* Remove all src, dst and transfer size bits */
469 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
470 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
471 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
472
473 /* Then set the bits according to the parameters */
474 switch (srcwidth) {
475 case 1:
476 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
477 break;
478 case 2:
479 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
480 break;
481 case 4:
482 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
483 break;
484 default:
485 BUG();
486 break;
487 }
488
489 switch (dstwidth) {
490 case 1:
491 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
492 break;
493 case 2:
494 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
495 break;
496 case 4:
497 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
498 break;
499 default:
500 BUG();
501 break;
502 }
503
504 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
505 return retbits;
506 }
507
508 /*
509 * Autoselect a master bus to use for the transfer
510 * this prefers the destination bus if both available
511 * if fixed address on one bus the other will be chosen
512 */
513 void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
514 struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
515 struct pl08x_bus_data **sbus, u32 cctl)
516 {
517 if (!(cctl & PL080_CONTROL_DST_INCR)) {
518 *mbus = src_bus;
519 *sbus = dst_bus;
520 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
521 *mbus = dst_bus;
522 *sbus = src_bus;
523 } else {
524 if (dst_bus->buswidth == 4) {
525 *mbus = dst_bus;
526 *sbus = src_bus;
527 } else if (src_bus->buswidth == 4) {
528 *mbus = src_bus;
529 *sbus = dst_bus;
530 } else if (dst_bus->buswidth == 2) {
531 *mbus = dst_bus;
532 *sbus = src_bus;
533 } else if (src_bus->buswidth == 2) {
534 *mbus = src_bus;
535 *sbus = dst_bus;
536 } else {
537 /* src_bus->buswidth == 1 */
538 *mbus = dst_bus;
539 *sbus = src_bus;
540 }
541 }
542 }
543
544 /*
545 * Fills in one LLI for a certain transfer descriptor
546 * and advance the counter
547 */
548 int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
549 struct pl08x_txd *txd, int num_llis, int len,
550 u32 cctl, u32 *remainder)
551 {
552 struct lli *llis_va = txd->llis_va;
553 struct lli *llis_bus = (struct lli *) txd->llis_bus;
554
555 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
556
557 llis_va[num_llis].cctl = cctl;
558 llis_va[num_llis].src = txd->srcbus.addr;
559 llis_va[num_llis].dst = txd->dstbus.addr;
560
561 /*
562 * On versions with dual masters, you can optionally AND on
563 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
564 * in new LLIs with that controller, but we always try to
565 * choose AHB1 to point into memory. The idea is to have AHB2
566 * fixed on the peripheral and AHB1 messing around in the
567 * memory. So we don't manipulate this bit currently.
568 */
569
570 llis_va[num_llis].next =
571 (dma_addr_t)((u32) &(llis_bus[num_llis + 1]));
572
573 if (cctl & PL080_CONTROL_SRC_INCR)
574 txd->srcbus.addr += len;
575 if (cctl & PL080_CONTROL_DST_INCR)
576 txd->dstbus.addr += len;
577
578 *remainder -= len;
579
580 return num_llis + 1;
581 }
582
583 /*
584 * Return number of bytes to fill to boundary, or len
585 */
586 static inline u32 pl08x_pre_boundary(u32 addr, u32 len)
587 {
588 u32 boundary;
589
590 boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
591 << PL08X_BOUNDARY_SHIFT;
592
593 if (boundary < addr + len)
594 return boundary - addr;
595 else
596 return len;
597 }
598
599 /*
600 * This fills in the table of LLIs for the transfer descriptor
601 * Note that we assume we never have to change the burst sizes
602 * Return 0 for error
603 */
604 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
605 struct pl08x_txd *txd)
606 {
607 struct pl08x_channel_data *cd = txd->cd;
608 struct pl08x_bus_data *mbus, *sbus;
609 u32 remainder;
610 int num_llis = 0;
611 u32 cctl;
612 int max_bytes_per_lli;
613 int total_bytes = 0;
614 struct lli *llis_va;
615 struct lli *llis_bus;
616
617 if (!txd) {
618 dev_err(&pl08x->adev->dev, "%s no descriptor\n", __func__);
619 return 0;
620 }
621
622 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
623 &txd->llis_bus);
624 if (!txd->llis_va) {
625 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
626 return 0;
627 }
628
629 pl08x->pool_ctr++;
630
631 /*
632 * Initialize bus values for this transfer
633 * from the passed optimal values
634 */
635 if (!cd) {
636 dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__);
637 return 0;
638 }
639
640 /* Get the default CCTL from the platform data */
641 cctl = cd->cctl;
642
643 /*
644 * On the PL080 we have two bus masters and we
645 * should select one for source and one for
646 * destination. We try to use AHB2 for the
647 * bus which does not increment (typically the
648 * peripheral) else we just choose something.
649 */
650 cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
651 if (pl08x->vd->dualmaster) {
652 if (cctl & PL080_CONTROL_SRC_INCR)
653 /* Source increments, use AHB2 for destination */
654 cctl |= PL080_CONTROL_DST_AHB2;
655 else if (cctl & PL080_CONTROL_DST_INCR)
656 /* Destination increments, use AHB2 for source */
657 cctl |= PL080_CONTROL_SRC_AHB2;
658 else
659 /* Just pick something, source AHB1 dest AHB2 */
660 cctl |= PL080_CONTROL_DST_AHB2;
661 }
662
663 /* Find maximum width of the source bus */
664 txd->srcbus.maxwidth =
665 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
666 PL080_CONTROL_SWIDTH_SHIFT);
667
668 /* Find maximum width of the destination bus */
669 txd->dstbus.maxwidth =
670 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
671 PL080_CONTROL_DWIDTH_SHIFT);
672
673 /* Set up the bus widths to the maximum */
674 txd->srcbus.buswidth = txd->srcbus.maxwidth;
675 txd->dstbus.buswidth = txd->dstbus.maxwidth;
676 dev_vdbg(&pl08x->adev->dev,
677 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
678 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
679
680
681 /*
682 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
683 */
684 max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
685 PL080_CONTROL_TRANSFER_SIZE_MASK;
686 dev_vdbg(&pl08x->adev->dev,
687 "%s max bytes per lli = %d\n",
688 __func__, max_bytes_per_lli);
689
690 /* We need to count this down to zero */
691 remainder = txd->len;
692 dev_vdbg(&pl08x->adev->dev,
693 "%s remainder = %d\n",
694 __func__, remainder);
695
696 /*
697 * Choose bus to align to
698 * - prefers destination bus if both available
699 * - if fixed address on one bus chooses other
700 * - modifies cctl to choose an appropriate master
701 */
702 pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
703 &mbus, &sbus, cctl);
704
705
706 /*
707 * The lowest bit of the LLI register
708 * is also used to indicate which master to
709 * use for reading the LLIs.
710 */
711
712 if (txd->len < mbus->buswidth) {
713 /*
714 * Less than a bus width available
715 * - send as single bytes
716 */
717 while (remainder) {
718 dev_vdbg(&pl08x->adev->dev,
719 "%s single byte LLIs for a transfer of "
720 "less than a bus width (remain %08x)\n",
721 __func__, remainder);
722 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
723 num_llis =
724 pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
725 cctl, &remainder);
726 total_bytes++;
727 }
728 } else {
729 /*
730 * Make one byte LLIs until master bus is aligned
731 * - slave will then be aligned also
732 */
733 while ((mbus->addr) % (mbus->buswidth)) {
734 dev_vdbg(&pl08x->adev->dev,
735 "%s adjustment lli for less than bus width "
736 "(remain %08x)\n",
737 __func__, remainder);
738 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
739 num_llis = pl08x_fill_lli_for_desc
740 (pl08x, txd, num_llis, 1, cctl, &remainder);
741 total_bytes++;
742 }
743
744 /*
745 * Master now aligned
746 * - if slave is not then we must set its width down
747 */
748 if (sbus->addr % sbus->buswidth) {
749 dev_dbg(&pl08x->adev->dev,
750 "%s set down bus width to one byte\n",
751 __func__);
752
753 sbus->buswidth = 1;
754 }
755
756 /*
757 * Make largest possible LLIs until less than one bus
758 * width left
759 */
760 while (remainder > (mbus->buswidth - 1)) {
761 int lli_len, target_len;
762 int tsize;
763 int odd_bytes;
764
765 /*
766 * If enough left try to send max possible,
767 * otherwise try to send the remainder
768 */
769 target_len = remainder;
770 if (remainder > max_bytes_per_lli)
771 target_len = max_bytes_per_lli;
772
773 /*
774 * Set bus lengths for incrementing buses
775 * to number of bytes which fill to next memory
776 * boundary
777 */
778 if (cctl & PL080_CONTROL_SRC_INCR)
779 txd->srcbus.fill_bytes =
780 pl08x_pre_boundary(
781 txd->srcbus.addr,
782 remainder);
783 else
784 txd->srcbus.fill_bytes =
785 max_bytes_per_lli;
786
787 if (cctl & PL080_CONTROL_DST_INCR)
788 txd->dstbus.fill_bytes =
789 pl08x_pre_boundary(
790 txd->dstbus.addr,
791 remainder);
792 else
793 txd->dstbus.fill_bytes =
794 max_bytes_per_lli;
795
796 /*
797 * Find the nearest
798 */
799 lli_len = min(txd->srcbus.fill_bytes,
800 txd->dstbus.fill_bytes);
801
802 BUG_ON(lli_len > remainder);
803
804 if (lli_len <= 0) {
805 dev_err(&pl08x->adev->dev,
806 "%s lli_len is %d, <= 0\n",
807 __func__, lli_len);
808 return 0;
809 }
810
811 if (lli_len == target_len) {
812 /*
813 * Can send what we wanted
814 */
815 /*
816 * Maintain alignment
817 */
818 lli_len = (lli_len/mbus->buswidth) *
819 mbus->buswidth;
820 odd_bytes = 0;
821 } else {
822 /*
823 * So now we know how many bytes to transfer
824 * to get to the nearest boundary
825 * The next LLI will past the boundary
826 * - however we may be working to a boundary
827 * on the slave bus
828 * We need to ensure the master stays aligned
829 */
830 odd_bytes = lli_len % mbus->buswidth;
831 /*
832 * - and that we are working in multiples
833 * of the bus widths
834 */
835 lli_len -= odd_bytes;
836
837 }
838
839 if (lli_len) {
840 /*
841 * Check against minimum bus alignment:
842 * Calculate actual transfer size in relation
843 * to bus width an get a maximum remainder of
844 * the smallest bus width - 1
845 */
846 /* FIXME: use round_down()? */
847 tsize = lli_len / min(mbus->buswidth,
848 sbus->buswidth);
849 lli_len = tsize * min(mbus->buswidth,
850 sbus->buswidth);
851
852 if (target_len != lli_len) {
853 dev_vdbg(&pl08x->adev->dev,
854 "%s can't send what we want. Desired %08x, lli of %08x bytes in txd of %08x\n",
855 __func__, target_len, lli_len, txd->len);
856 }
857
858 cctl = pl08x_cctl_bits(cctl,
859 txd->srcbus.buswidth,
860 txd->dstbus.buswidth,
861 tsize);
862
863 dev_vdbg(&pl08x->adev->dev,
864 "%s fill lli with single lli chunk of size %08x (remainder %08x)\n",
865 __func__, lli_len, remainder);
866 num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
867 num_llis, lli_len, cctl,
868 &remainder);
869 total_bytes += lli_len;
870 }
871
872
873 if (odd_bytes) {
874 /*
875 * Creep past the boundary,
876 * maintaining master alignment
877 */
878 int j;
879 for (j = 0; (j < mbus->buswidth)
880 && (remainder); j++) {
881 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
882 dev_vdbg(&pl08x->adev->dev,
883 "%s align with boundary, single byte (remain %08x)\n",
884 __func__, remainder);
885 num_llis =
886 pl08x_fill_lli_for_desc(pl08x,
887 txd, num_llis, 1,
888 cctl, &remainder);
889 total_bytes++;
890 }
891 }
892 }
893
894 /*
895 * Send any odd bytes
896 */
897 if (remainder < 0) {
898 dev_err(&pl08x->adev->dev, "%s remainder not fitted 0x%08x bytes\n",
899 __func__, remainder);
900 return 0;
901 }
902
903 while (remainder) {
904 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
905 dev_vdbg(&pl08x->adev->dev,
906 "%s align with boundary, single odd byte (remain %d)\n",
907 __func__, remainder);
908 num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
909 1, cctl, &remainder);
910 total_bytes++;
911 }
912 }
913 if (total_bytes != txd->len) {
914 dev_err(&pl08x->adev->dev,
915 "%s size of encoded lli:s don't match total txd, transferred 0x%08x from size 0x%08x\n",
916 __func__, total_bytes, txd->len);
917 return 0;
918 }
919
920 if (num_llis >= MAX_NUM_TSFR_LLIS) {
921 dev_err(&pl08x->adev->dev,
922 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
923 __func__, (u32) MAX_NUM_TSFR_LLIS);
924 return 0;
925 }
926 /*
927 * Decide whether this is a loop or a terminated transfer
928 */
929 llis_va = txd->llis_va;
930 llis_bus = (struct lli *) txd->llis_bus;
931
932 if (cd->circular_buffer) {
933 /*
934 * Loop the circular buffer so that the next element
935 * points back to the beginning of the LLI.
936 */
937 llis_va[num_llis - 1].next =
938 (dma_addr_t)((unsigned int)&(llis_bus[0]));
939 } else {
940 /*
941 * On non-circular buffers, the final LLI terminates
942 * the LLI.
943 */
944 llis_va[num_llis - 1].next = 0;
945 /*
946 * The final LLI element shall also fire an interrupt
947 */
948 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
949 }
950
951 /* Now store the channel register values */
952 txd->csrc = llis_va[0].src;
953 txd->cdst = llis_va[0].dst;
954 if (num_llis > 1)
955 txd->clli = llis_va[0].next;
956 else
957 txd->clli = 0;
958
959 txd->cctl = llis_va[0].cctl;
960 /* ccfg will be set at physical channel allocation time */
961
962 #ifdef VERBOSE_DEBUG
963 {
964 int i;
965
966 for (i = 0; i < num_llis; i++) {
967 dev_vdbg(&pl08x->adev->dev,
968 "lli %d @%p: csrc=%08x, cdst=%08x, cctl=%08x, clli=%08x\n",
969 i,
970 &llis_va[i],
971 llis_va[i].src,
972 llis_va[i].dst,
973 llis_va[i].cctl,
974 llis_va[i].next
975 );
976 }
977 }
978 #endif
979
980 return num_llis;
981 }
982
983 /* You should call this with the struct pl08x lock held */
984 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
985 struct pl08x_txd *txd)
986 {
987 if (!txd)
988 dev_err(&pl08x->adev->dev,
989 "%s no descriptor to free\n",
990 __func__);
991
992 /* Free the LLI */
993 dma_pool_free(pl08x->pool, txd->llis_va,
994 txd->llis_bus);
995
996 pl08x->pool_ctr--;
997
998 kfree(txd);
999 }
1000
1001 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1002 struct pl08x_dma_chan *plchan)
1003 {
1004 struct pl08x_txd *txdi = NULL;
1005 struct pl08x_txd *next;
1006
1007 if (!list_empty(&plchan->desc_list)) {
1008 list_for_each_entry_safe(txdi,
1009 next, &plchan->desc_list, node) {
1010 list_del(&txdi->node);
1011 pl08x_free_txd(pl08x, txdi);
1012 }
1013
1014 }
1015 }
1016
1017 /*
1018 * The DMA ENGINE API
1019 */
1020 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1021 {
1022 return 0;
1023 }
1024
1025 static void pl08x_free_chan_resources(struct dma_chan *chan)
1026 {
1027 }
1028
1029 /*
1030 * This should be called with the channel plchan->lock held
1031 */
1032 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
1033 struct pl08x_txd *txd)
1034 {
1035 struct pl08x_driver_data *pl08x = plchan->host;
1036 struct pl08x_phy_chan *ch;
1037 int ret;
1038
1039 /* Check if we already have a channel */
1040 if (plchan->phychan)
1041 return 0;
1042
1043 ch = pl08x_get_phy_channel(pl08x, plchan);
1044 if (!ch) {
1045 /* No physical channel available, cope with it */
1046 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
1047 return -EBUSY;
1048 }
1049
1050 /*
1051 * OK we have a physical channel: for memcpy() this is all we
1052 * need, but for slaves the physical signals may be muxed!
1053 * Can the platform allow us to use this channel?
1054 */
1055 if (plchan->slave &&
1056 ch->signal < 0 &&
1057 pl08x->pd->get_signal) {
1058 ret = pl08x->pd->get_signal(plchan);
1059 if (ret < 0) {
1060 dev_dbg(&pl08x->adev->dev,
1061 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
1062 ch->id, plchan->name);
1063 /* Release physical channel & return */
1064 pl08x_put_phy_channel(pl08x, ch);
1065 return -EBUSY;
1066 }
1067 ch->signal = ret;
1068 }
1069
1070 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
1071 ch->id,
1072 ch->signal,
1073 plchan->name);
1074
1075 plchan->phychan = ch;
1076
1077 return 0;
1078 }
1079
1080 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1081 {
1082 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1083
1084 plchan->chan.cookie += 1;
1085 if (plchan->chan.cookie < 0)
1086 plchan->chan.cookie = 1;
1087 tx->cookie = plchan->chan.cookie;
1088 /* This unlock follows the lock in the prep() function */
1089 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1090
1091 return tx->cookie;
1092 }
1093
1094 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1095 struct dma_chan *chan, unsigned long flags)
1096 {
1097 struct dma_async_tx_descriptor *retval = NULL;
1098
1099 return retval;
1100 }
1101
1102 /*
1103 * Code accessing dma_async_is_complete() in a tight loop
1104 * may give problems - could schedule where indicated.
1105 * If slaves are relying on interrupts to signal completion this
1106 * function must not be called with interrupts disabled
1107 */
1108 static enum dma_status
1109 pl08x_dma_tx_status(struct dma_chan *chan,
1110 dma_cookie_t cookie,
1111 struct dma_tx_state *txstate)
1112 {
1113 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1114 dma_cookie_t last_used;
1115 dma_cookie_t last_complete;
1116 enum dma_status ret;
1117 u32 bytesleft = 0;
1118
1119 last_used = plchan->chan.cookie;
1120 last_complete = plchan->lc;
1121
1122 ret = dma_async_is_complete(cookie, last_complete, last_used);
1123 if (ret == DMA_SUCCESS) {
1124 dma_set_tx_state(txstate, last_complete, last_used, 0);
1125 return ret;
1126 }
1127
1128 /*
1129 * schedule(); could be inserted here
1130 */
1131
1132 /*
1133 * This cookie not complete yet
1134 */
1135 last_used = plchan->chan.cookie;
1136 last_complete = plchan->lc;
1137
1138 /* Get number of bytes left in the active transactions and queue */
1139 bytesleft = pl08x_getbytes_chan(plchan);
1140
1141 dma_set_tx_state(txstate, last_complete, last_used,
1142 bytesleft);
1143
1144 if (plchan->state == PL08X_CHAN_PAUSED)
1145 return DMA_PAUSED;
1146
1147 /* Whether waiting or running, we're in progress */
1148 return DMA_IN_PROGRESS;
1149 }
1150
1151 /* PrimeCell DMA extension */
1152 struct burst_table {
1153 int burstwords;
1154 u32 reg;
1155 };
1156
1157 static const struct burst_table burst_sizes[] = {
1158 {
1159 .burstwords = 256,
1160 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1161 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1162 },
1163 {
1164 .burstwords = 128,
1165 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1166 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1167 },
1168 {
1169 .burstwords = 64,
1170 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1171 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1172 },
1173 {
1174 .burstwords = 32,
1175 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1176 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1177 },
1178 {
1179 .burstwords = 16,
1180 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1181 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1182 },
1183 {
1184 .burstwords = 8,
1185 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1186 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1187 },
1188 {
1189 .burstwords = 4,
1190 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1191 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1192 },
1193 {
1194 .burstwords = 1,
1195 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1196 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1197 },
1198 };
1199
1200 static void dma_set_runtime_config(struct dma_chan *chan,
1201 struct dma_slave_config *config)
1202 {
1203 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1204 struct pl08x_driver_data *pl08x = plchan->host;
1205 struct pl08x_channel_data *cd = plchan->cd;
1206 enum dma_slave_buswidth addr_width;
1207 u32 maxburst;
1208 u32 cctl = 0;
1209 /* Mask out all except src and dst channel */
1210 u32 ccfg = cd->ccfg & 0x000003DEU;
1211 int i;
1212
1213 /* Transfer direction */
1214 plchan->runtime_direction = config->direction;
1215 if (config->direction == DMA_TO_DEVICE) {
1216 plchan->runtime_addr = config->dst_addr;
1217 cctl |= PL080_CONTROL_SRC_INCR;
1218 ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1219 addr_width = config->dst_addr_width;
1220 maxburst = config->dst_maxburst;
1221 } else if (config->direction == DMA_FROM_DEVICE) {
1222 plchan->runtime_addr = config->src_addr;
1223 cctl |= PL080_CONTROL_DST_INCR;
1224 ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1225 addr_width = config->src_addr_width;
1226 maxburst = config->src_maxburst;
1227 } else {
1228 dev_err(&pl08x->adev->dev,
1229 "bad runtime_config: alien transfer direction\n");
1230 return;
1231 }
1232
1233 switch (addr_width) {
1234 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1235 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1236 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1237 break;
1238 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1239 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1240 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1241 break;
1242 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1243 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1244 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1245 break;
1246 default:
1247 dev_err(&pl08x->adev->dev,
1248 "bad runtime_config: alien address width\n");
1249 return;
1250 }
1251
1252 /*
1253 * Now decide on a maxburst:
1254 * If this channel will only request single transfers, set this
1255 * down to ONE element. Also select one element if no maxburst
1256 * is specified.
1257 */
1258 if (plchan->cd->single || maxburst == 0) {
1259 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1260 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1261 } else {
1262 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1263 if (burst_sizes[i].burstwords <= maxburst)
1264 break;
1265 cctl |= burst_sizes[i].reg;
1266 }
1267
1268 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1269 cctl &= ~PL080_CONTROL_PROT_MASK;
1270 cctl |= PL080_CONTROL_PROT_SYS;
1271
1272 /* Modify the default channel data to fit PrimeCell request */
1273 cd->cctl = cctl;
1274 cd->ccfg = ccfg;
1275
1276 dev_dbg(&pl08x->adev->dev,
1277 "configured channel %s (%s) for %s, data width %d, "
1278 "maxburst %d words, LE, CCTL=%08x, CCFG=%08x\n",
1279 dma_chan_name(chan), plchan->name,
1280 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1281 addr_width,
1282 maxburst,
1283 cctl, ccfg);
1284 }
1285
1286 /*
1287 * Slave transactions callback to the slave device to allow
1288 * synchronization of slave DMA signals with the DMAC enable
1289 */
1290 static void pl08x_issue_pending(struct dma_chan *chan)
1291 {
1292 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1293 struct pl08x_driver_data *pl08x = plchan->host;
1294 unsigned long flags;
1295
1296 spin_lock_irqsave(&plchan->lock, flags);
1297 /* Something is already active */
1298 if (plchan->at) {
1299 spin_unlock_irqrestore(&plchan->lock, flags);
1300 return;
1301 }
1302
1303 /* Didn't get a physical channel so waiting for it ... */
1304 if (plchan->state == PL08X_CHAN_WAITING)
1305 return;
1306
1307 /* Take the first element in the queue and execute it */
1308 if (!list_empty(&plchan->desc_list)) {
1309 struct pl08x_txd *next;
1310
1311 next = list_first_entry(&plchan->desc_list,
1312 struct pl08x_txd,
1313 node);
1314 list_del(&next->node);
1315 plchan->at = next;
1316 plchan->state = PL08X_CHAN_RUNNING;
1317
1318 /* Configure the physical channel for the active txd */
1319 pl08x_config_phychan_for_txd(plchan);
1320 pl08x_set_cregs(pl08x, plchan->phychan);
1321 pl08x_enable_phy_chan(pl08x, plchan->phychan);
1322 }
1323
1324 spin_unlock_irqrestore(&plchan->lock, flags);
1325 }
1326
1327 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1328 struct pl08x_txd *txd)
1329 {
1330 int num_llis;
1331 struct pl08x_driver_data *pl08x = plchan->host;
1332 int ret;
1333
1334 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1335
1336 if (!num_llis)
1337 return -EINVAL;
1338
1339 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1340
1341 /*
1342 * If this device is not using a circular buffer then
1343 * queue this new descriptor for transfer.
1344 * The descriptor for a circular buffer continues
1345 * to be used until the channel is freed.
1346 */
1347 if (txd->cd->circular_buffer)
1348 dev_err(&pl08x->adev->dev,
1349 "%s attempting to queue a circular buffer\n",
1350 __func__);
1351 else
1352 list_add_tail(&txd->node,
1353 &plchan->desc_list);
1354
1355 /*
1356 * See if we already have a physical channel allocated,
1357 * else this is the time to try to get one.
1358 */
1359 ret = prep_phy_channel(plchan, txd);
1360 if (ret) {
1361 /*
1362 * No physical channel available, we will
1363 * stack up the memcpy channels until there is a channel
1364 * available to handle it whereas slave transfers may
1365 * have been denied due to platform channel muxing restrictions
1366 * and since there is no guarantee that this will ever be
1367 * resolved, and since the signal must be acquired AFTER
1368 * acquiring the physical channel, we will let them be NACK:ed
1369 * with -EBUSY here. The drivers can alway retry the prep()
1370 * call if they are eager on doing this using DMA.
1371 */
1372 if (plchan->slave) {
1373 pl08x_free_txd_list(pl08x, plchan);
1374 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1375 return -EBUSY;
1376 }
1377 /* Do this memcpy whenever there is a channel ready */
1378 plchan->state = PL08X_CHAN_WAITING;
1379 plchan->waiting = txd;
1380 } else
1381 /*
1382 * Else we're all set, paused and ready to roll,
1383 * status will switch to PL08X_CHAN_RUNNING when
1384 * we call issue_pending(). If there is something
1385 * running on the channel already we don't change
1386 * its state.
1387 */
1388 if (plchan->state == PL08X_CHAN_IDLE)
1389 plchan->state = PL08X_CHAN_PAUSED;
1390
1391 /*
1392 * Notice that we leave plchan->lock locked on purpose:
1393 * it will be unlocked in the subsequent tx_submit()
1394 * call. This is a consequence of the current API.
1395 */
1396
1397 return 0;
1398 }
1399
1400 /*
1401 * Initialize a descriptor to be used by memcpy submit
1402 */
1403 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1404 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1405 size_t len, unsigned long flags)
1406 {
1407 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1408 struct pl08x_driver_data *pl08x = plchan->host;
1409 struct pl08x_txd *txd;
1410 int ret;
1411
1412 txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1413 if (!txd) {
1414 dev_err(&pl08x->adev->dev,
1415 "%s no memory for descriptor\n", __func__);
1416 return NULL;
1417 }
1418
1419 dma_async_tx_descriptor_init(&txd->tx, chan);
1420 txd->direction = DMA_NONE;
1421 txd->srcbus.addr = src;
1422 txd->dstbus.addr = dest;
1423
1424 /* Set platform data for m2m */
1425 txd->cd = &pl08x->pd->memcpy_channel;
1426 /* Both to be incremented or the code will break */
1427 txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1428 txd->tx.tx_submit = pl08x_tx_submit;
1429 txd->tx.callback = NULL;
1430 txd->tx.callback_param = NULL;
1431 txd->len = len;
1432
1433 INIT_LIST_HEAD(&txd->node);
1434 ret = pl08x_prep_channel_resources(plchan, txd);
1435 if (ret)
1436 return NULL;
1437 /*
1438 * NB: the channel lock is held at this point so tx_submit()
1439 * must be called in direct succession.
1440 */
1441
1442 return &txd->tx;
1443 }
1444
1445 struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1446 struct dma_chan *chan, struct scatterlist *sgl,
1447 unsigned int sg_len, enum dma_data_direction direction,
1448 unsigned long flags)
1449 {
1450 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1451 struct pl08x_driver_data *pl08x = plchan->host;
1452 struct pl08x_txd *txd;
1453 int ret;
1454
1455 /*
1456 * Current implementation ASSUMES only one sg
1457 */
1458 if (sg_len != 1) {
1459 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1460 __func__);
1461 BUG();
1462 }
1463
1464 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1465 __func__, sgl->length, plchan->name);
1466
1467 txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1468 if (!txd) {
1469 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1470 return NULL;
1471 }
1472
1473 dma_async_tx_descriptor_init(&txd->tx, chan);
1474
1475 if (direction != plchan->runtime_direction)
1476 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1477 "the direction configured for the PrimeCell\n",
1478 __func__);
1479
1480 /*
1481 * Set up addresses, the PrimeCell configured address
1482 * will take precedence since this may configure the
1483 * channel target address dynamically at runtime.
1484 */
1485 txd->direction = direction;
1486 if (direction == DMA_TO_DEVICE) {
1487 txd->srcbus.addr = sgl->dma_address;
1488 if (plchan->runtime_addr)
1489 txd->dstbus.addr = plchan->runtime_addr;
1490 else
1491 txd->dstbus.addr = plchan->cd->addr;
1492 } else if (direction == DMA_FROM_DEVICE) {
1493 if (plchan->runtime_addr)
1494 txd->srcbus.addr = plchan->runtime_addr;
1495 else
1496 txd->srcbus.addr = plchan->cd->addr;
1497 txd->dstbus.addr = sgl->dma_address;
1498 } else {
1499 dev_err(&pl08x->adev->dev,
1500 "%s direction unsupported\n", __func__);
1501 return NULL;
1502 }
1503 txd->cd = plchan->cd;
1504 txd->tx.tx_submit = pl08x_tx_submit;
1505 txd->tx.callback = NULL;
1506 txd->tx.callback_param = NULL;
1507 txd->len = sgl->length;
1508 INIT_LIST_HEAD(&txd->node);
1509
1510 ret = pl08x_prep_channel_resources(plchan, txd);
1511 if (ret)
1512 return NULL;
1513 /*
1514 * NB: the channel lock is held at this point so tx_submit()
1515 * must be called in direct succession.
1516 */
1517
1518 return &txd->tx;
1519 }
1520
1521 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1522 unsigned long arg)
1523 {
1524 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1525 struct pl08x_driver_data *pl08x = plchan->host;
1526 unsigned long flags;
1527 int ret = 0;
1528
1529 /* Controls applicable to inactive channels */
1530 if (cmd == DMA_SLAVE_CONFIG) {
1531 dma_set_runtime_config(chan,
1532 (struct dma_slave_config *)
1533 arg);
1534 return 0;
1535 }
1536
1537 /*
1538 * Anything succeeds on channels with no physical allocation and
1539 * no queued transfers.
1540 */
1541 spin_lock_irqsave(&plchan->lock, flags);
1542 if (!plchan->phychan && !plchan->at) {
1543 spin_unlock_irqrestore(&plchan->lock, flags);
1544 return 0;
1545 }
1546
1547 switch (cmd) {
1548 case DMA_TERMINATE_ALL:
1549 plchan->state = PL08X_CHAN_IDLE;
1550
1551 if (plchan->phychan) {
1552 pl08x_stop_phy_chan(plchan->phychan);
1553
1554 /*
1555 * Mark physical channel as free and free any slave
1556 * signal
1557 */
1558 if ((plchan->phychan->signal >= 0) &&
1559 pl08x->pd->put_signal) {
1560 pl08x->pd->put_signal(plchan);
1561 plchan->phychan->signal = -1;
1562 }
1563 pl08x_put_phy_channel(pl08x, plchan->phychan);
1564 plchan->phychan = NULL;
1565 }
1566 /* Stop any pending tasklet */
1567 tasklet_disable(&plchan->tasklet);
1568 /* Dequeue jobs and free LLIs */
1569 if (plchan->at) {
1570 pl08x_free_txd(pl08x, plchan->at);
1571 plchan->at = NULL;
1572 }
1573 /* Dequeue jobs not yet fired as well */
1574 pl08x_free_txd_list(pl08x, plchan);
1575 break;
1576 case DMA_PAUSE:
1577 pl08x_pause_phy_chan(plchan->phychan);
1578 plchan->state = PL08X_CHAN_PAUSED;
1579 break;
1580 case DMA_RESUME:
1581 pl08x_resume_phy_chan(plchan->phychan);
1582 plchan->state = PL08X_CHAN_RUNNING;
1583 break;
1584 default:
1585 /* Unknown command */
1586 ret = -ENXIO;
1587 break;
1588 }
1589
1590 spin_unlock_irqrestore(&plchan->lock, flags);
1591
1592 return ret;
1593 }
1594
1595 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1596 {
1597 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1598 char *name = chan_id;
1599
1600 /* Check that the channel is not taken! */
1601 if (!strcmp(plchan->name, name))
1602 return true;
1603
1604 return false;
1605 }
1606
1607 /*
1608 * Just check that the device is there and active
1609 * TODO: turn this bit on/off depending on the number of
1610 * physical channels actually used, if it is zero... well
1611 * shut it off. That will save some power. Cut the clock
1612 * at the same time.
1613 */
1614 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1615 {
1616 u32 val;
1617
1618 val = readl(pl08x->base + PL080_CONFIG);
1619 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1620 /* We implicitly clear bit 1 and that means little-endian mode */
1621 val |= PL080_CONFIG_ENABLE;
1622 writel(val, pl08x->base + PL080_CONFIG);
1623 }
1624
1625 static void pl08x_tasklet(unsigned long data)
1626 {
1627 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1628 struct pl08x_phy_chan *phychan = plchan->phychan;
1629 struct pl08x_driver_data *pl08x = plchan->host;
1630
1631 if (!plchan)
1632 BUG();
1633
1634 spin_lock(&plchan->lock);
1635
1636 if (plchan->at) {
1637 dma_async_tx_callback callback =
1638 plchan->at->tx.callback;
1639 void *callback_param =
1640 plchan->at->tx.callback_param;
1641
1642 /*
1643 * Update last completed
1644 */
1645 plchan->lc = plchan->at->tx.cookie;
1646
1647 /*
1648 * Callback to signal completion
1649 */
1650 if (callback)
1651 callback(callback_param);
1652
1653 /*
1654 * Device callbacks should NOT clear
1655 * the current transaction on the channel
1656 * Linus: sometimes they should?
1657 */
1658 if (!plchan->at)
1659 BUG();
1660
1661 /*
1662 * Free the descriptor if it's not for a device
1663 * using a circular buffer
1664 */
1665 if (!plchan->at->cd->circular_buffer) {
1666 pl08x_free_txd(pl08x, plchan->at);
1667 plchan->at = NULL;
1668 }
1669 /*
1670 * else descriptor for circular
1671 * buffers only freed when
1672 * client has disabled dma
1673 */
1674 }
1675 /*
1676 * If a new descriptor is queued, set it up
1677 * plchan->at is NULL here
1678 */
1679 if (!list_empty(&plchan->desc_list)) {
1680 struct pl08x_txd *next;
1681
1682 next = list_first_entry(&plchan->desc_list,
1683 struct pl08x_txd,
1684 node);
1685 list_del(&next->node);
1686 plchan->at = next;
1687 /* Configure the physical channel for the next txd */
1688 pl08x_config_phychan_for_txd(plchan);
1689 pl08x_set_cregs(pl08x, plchan->phychan);
1690 pl08x_enable_phy_chan(pl08x, plchan->phychan);
1691 } else {
1692 struct pl08x_dma_chan *waiting = NULL;
1693
1694 /*
1695 * No more jobs, so free up the physical channel
1696 * Free any allocated signal on slave transfers too
1697 */
1698 if ((phychan->signal >= 0) && pl08x->pd->put_signal) {
1699 pl08x->pd->put_signal(plchan);
1700 phychan->signal = -1;
1701 }
1702 pl08x_put_phy_channel(pl08x, phychan);
1703 plchan->phychan = NULL;
1704 plchan->state = PL08X_CHAN_IDLE;
1705
1706 /*
1707 * And NOW before anyone else can grab that free:d
1708 * up physical channel, see if there is some memcpy
1709 * pending that seriously needs to start because of
1710 * being stacked up while we were choking the
1711 * physical channels with data.
1712 */
1713 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1714 chan.device_node) {
1715 if (waiting->state == PL08X_CHAN_WAITING &&
1716 waiting->waiting != NULL) {
1717 int ret;
1718
1719 /* This should REALLY not fail now */
1720 ret = prep_phy_channel(waiting,
1721 waiting->waiting);
1722 BUG_ON(ret);
1723 waiting->state = PL08X_CHAN_RUNNING;
1724 waiting->waiting = NULL;
1725 pl08x_issue_pending(&waiting->chan);
1726 break;
1727 }
1728 }
1729 }
1730
1731 spin_unlock(&plchan->lock);
1732 }
1733
1734 static irqreturn_t pl08x_irq(int irq, void *dev)
1735 {
1736 struct pl08x_driver_data *pl08x = dev;
1737 u32 mask = 0;
1738 u32 val;
1739 int i;
1740
1741 val = readl(pl08x->base + PL080_ERR_STATUS);
1742 if (val) {
1743 /*
1744 * An error interrupt (on one or more channels)
1745 */
1746 dev_err(&pl08x->adev->dev,
1747 "%s error interrupt, register value 0x%08x\n",
1748 __func__, val);
1749 /*
1750 * Simply clear ALL PL08X error interrupts,
1751 * regardless of channel and cause
1752 * FIXME: should be 0x00000003 on PL081 really.
1753 */
1754 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1755 }
1756 val = readl(pl08x->base + PL080_INT_STATUS);
1757 for (i = 0; i < pl08x->vd->channels; i++) {
1758 if ((1 << i) & val) {
1759 /* Locate physical channel */
1760 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1761 struct pl08x_dma_chan *plchan = phychan->serving;
1762
1763 /* Schedule tasklet on this channel */
1764 tasklet_schedule(&plchan->tasklet);
1765
1766 mask |= (1 << i);
1767 }
1768 }
1769 /*
1770 * Clear only the terminal interrupts on channels we processed
1771 */
1772 writel(mask, pl08x->base + PL080_TC_CLEAR);
1773
1774 return mask ? IRQ_HANDLED : IRQ_NONE;
1775 }
1776
1777 /*
1778 * Initialise the DMAC memcpy/slave channels.
1779 * Make a local wrapper to hold required data
1780 */
1781 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1782 struct dma_device *dmadev,
1783 unsigned int channels,
1784 bool slave)
1785 {
1786 struct pl08x_dma_chan *chan;
1787 int i;
1788
1789 INIT_LIST_HEAD(&dmadev->channels);
1790 /*
1791 * Register as many many memcpy as we have physical channels,
1792 * we won't always be able to use all but the code will have
1793 * to cope with that situation.
1794 */
1795 for (i = 0; i < channels; i++) {
1796 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1797 if (!chan) {
1798 dev_err(&pl08x->adev->dev,
1799 "%s no memory for channel\n", __func__);
1800 return -ENOMEM;
1801 }
1802
1803 chan->host = pl08x;
1804 chan->state = PL08X_CHAN_IDLE;
1805
1806 if (slave) {
1807 chan->slave = true;
1808 chan->name = pl08x->pd->slave_channels[i].bus_id;
1809 chan->cd = &pl08x->pd->slave_channels[i];
1810 } else {
1811 chan->cd = &pl08x->pd->memcpy_channel;
1812 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1813 if (!chan->name) {
1814 kfree(chan);
1815 return -ENOMEM;
1816 }
1817 }
1818 dev_info(&pl08x->adev->dev,
1819 "initialize virtual channel \"%s\"\n",
1820 chan->name);
1821
1822 chan->chan.device = dmadev;
1823 chan->chan.cookie = 0;
1824 chan->lc = 0;
1825
1826 spin_lock_init(&chan->lock);
1827 INIT_LIST_HEAD(&chan->desc_list);
1828 tasklet_init(&chan->tasklet, pl08x_tasklet,
1829 (unsigned long) chan);
1830
1831 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1832 }
1833 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1834 i, slave ? "slave" : "memcpy");
1835 return i;
1836 }
1837
1838 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1839 {
1840 struct pl08x_dma_chan *chan = NULL;
1841 struct pl08x_dma_chan *next;
1842
1843 list_for_each_entry_safe(chan,
1844 next, &dmadev->channels, chan.device_node) {
1845 list_del(&chan->chan.device_node);
1846 kfree(chan);
1847 }
1848 }
1849
1850 #ifdef CONFIG_DEBUG_FS
1851 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1852 {
1853 switch (state) {
1854 case PL08X_CHAN_IDLE:
1855 return "idle";
1856 case PL08X_CHAN_RUNNING:
1857 return "running";
1858 case PL08X_CHAN_PAUSED:
1859 return "paused";
1860 case PL08X_CHAN_WAITING:
1861 return "waiting";
1862 default:
1863 break;
1864 }
1865 return "UNKNOWN STATE";
1866 }
1867
1868 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1869 {
1870 struct pl08x_driver_data *pl08x = s->private;
1871 struct pl08x_dma_chan *chan;
1872 struct pl08x_phy_chan *ch;
1873 unsigned long flags;
1874 int i;
1875
1876 seq_printf(s, "PL08x physical channels:\n");
1877 seq_printf(s, "CHANNEL:\tUSER:\n");
1878 seq_printf(s, "--------\t-----\n");
1879 for (i = 0; i < pl08x->vd->channels; i++) {
1880 struct pl08x_dma_chan *virt_chan;
1881
1882 ch = &pl08x->phy_chans[i];
1883
1884 spin_lock_irqsave(&ch->lock, flags);
1885 virt_chan = ch->serving;
1886
1887 seq_printf(s, "%d\t\t%s\n",
1888 ch->id, virt_chan ? virt_chan->name : "(none)");
1889
1890 spin_unlock_irqrestore(&ch->lock, flags);
1891 }
1892
1893 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1894 seq_printf(s, "CHANNEL:\tSTATE:\n");
1895 seq_printf(s, "--------\t------\n");
1896 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1897 seq_printf(s, "%s\t\t\%s\n", chan->name,
1898 pl08x_state_str(chan->state));
1899 }
1900
1901 seq_printf(s, "\nPL08x virtual slave channels:\n");
1902 seq_printf(s, "CHANNEL:\tSTATE:\n");
1903 seq_printf(s, "--------\t------\n");
1904 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1905 seq_printf(s, "%s\t\t\%s\n", chan->name,
1906 pl08x_state_str(chan->state));
1907 }
1908
1909 return 0;
1910 }
1911
1912 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1913 {
1914 return single_open(file, pl08x_debugfs_show, inode->i_private);
1915 }
1916
1917 static const struct file_operations pl08x_debugfs_operations = {
1918 .open = pl08x_debugfs_open,
1919 .read = seq_read,
1920 .llseek = seq_lseek,
1921 .release = single_release,
1922 };
1923
1924 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1925 {
1926 /* Expose a simple debugfs interface to view all clocks */
1927 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1928 NULL, pl08x,
1929 &pl08x_debugfs_operations);
1930 }
1931
1932 #else
1933 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1934 {
1935 }
1936 #endif
1937
1938 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1939 {
1940 struct pl08x_driver_data *pl08x;
1941 struct vendor_data *vd = id->data;
1942 int ret = 0;
1943 int i;
1944
1945 ret = amba_request_regions(adev, NULL);
1946 if (ret)
1947 return ret;
1948
1949 /* Create the driver state holder */
1950 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1951 if (!pl08x) {
1952 ret = -ENOMEM;
1953 goto out_no_pl08x;
1954 }
1955
1956 /* Initialize memcpy engine */
1957 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1958 pl08x->memcpy.dev = &adev->dev;
1959 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1960 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1961 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1962 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1963 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1964 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1965 pl08x->memcpy.device_control = pl08x_control;
1966
1967 /* Initialize slave engine */
1968 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1969 pl08x->slave.dev = &adev->dev;
1970 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1971 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1972 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1973 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1974 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1975 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1976 pl08x->slave.device_control = pl08x_control;
1977
1978 /* Get the platform data */
1979 pl08x->pd = dev_get_platdata(&adev->dev);
1980 if (!pl08x->pd) {
1981 dev_err(&adev->dev, "no platform data supplied\n");
1982 goto out_no_platdata;
1983 }
1984
1985 /* Assign useful pointers to the driver state */
1986 pl08x->adev = adev;
1987 pl08x->vd = vd;
1988
1989 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1990 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1991 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1992 if (!pl08x->pool) {
1993 ret = -ENOMEM;
1994 goto out_no_lli_pool;
1995 }
1996
1997 spin_lock_init(&pl08x->lock);
1998
1999 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2000 if (!pl08x->base) {
2001 ret = -ENOMEM;
2002 goto out_no_ioremap;
2003 }
2004
2005 /* Turn on the PL08x */
2006 pl08x_ensure_on(pl08x);
2007
2008 /*
2009 * Attach the interrupt handler
2010 */
2011 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2012 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2013
2014 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2015 vd->name, pl08x);
2016 if (ret) {
2017 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2018 __func__, adev->irq[0]);
2019 goto out_no_irq;
2020 }
2021
2022 /* Initialize physical channels */
2023 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
2024 GFP_KERNEL);
2025 if (!pl08x->phy_chans) {
2026 dev_err(&adev->dev, "%s failed to allocate "
2027 "physical channel holders\n",
2028 __func__);
2029 goto out_no_phychans;
2030 }
2031
2032 for (i = 0; i < vd->channels; i++) {
2033 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2034
2035 ch->id = i;
2036 ch->base = pl08x->base + PL080_Cx_BASE(i);
2037 spin_lock_init(&ch->lock);
2038 ch->serving = NULL;
2039 ch->signal = -1;
2040 dev_info(&adev->dev,
2041 "physical channel %d is %s\n", i,
2042 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2043 }
2044
2045 /* Register as many memcpy channels as there are physical channels */
2046 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2047 pl08x->vd->channels, false);
2048 if (ret <= 0) {
2049 dev_warn(&pl08x->adev->dev,
2050 "%s failed to enumerate memcpy channels - %d\n",
2051 __func__, ret);
2052 goto out_no_memcpy;
2053 }
2054 pl08x->memcpy.chancnt = ret;
2055
2056 /* Register slave channels */
2057 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2058 pl08x->pd->num_slave_channels,
2059 true);
2060 if (ret <= 0) {
2061 dev_warn(&pl08x->adev->dev,
2062 "%s failed to enumerate slave channels - %d\n",
2063 __func__, ret);
2064 goto out_no_slave;
2065 }
2066 pl08x->slave.chancnt = ret;
2067
2068 ret = dma_async_device_register(&pl08x->memcpy);
2069 if (ret) {
2070 dev_warn(&pl08x->adev->dev,
2071 "%s failed to register memcpy as an async device - %d\n",
2072 __func__, ret);
2073 goto out_no_memcpy_reg;
2074 }
2075
2076 ret = dma_async_device_register(&pl08x->slave);
2077 if (ret) {
2078 dev_warn(&pl08x->adev->dev,
2079 "%s failed to register slave as an async device - %d\n",
2080 __func__, ret);
2081 goto out_no_slave_reg;
2082 }
2083
2084 amba_set_drvdata(adev, pl08x);
2085 init_pl08x_debugfs(pl08x);
2086 dev_info(&pl08x->adev->dev, "ARM(R) %s DMA block initialized @%08x\n",
2087 vd->name, adev->res.start);
2088 return 0;
2089
2090 out_no_slave_reg:
2091 dma_async_device_unregister(&pl08x->memcpy);
2092 out_no_memcpy_reg:
2093 pl08x_free_virtual_channels(&pl08x->slave);
2094 out_no_slave:
2095 pl08x_free_virtual_channels(&pl08x->memcpy);
2096 out_no_memcpy:
2097 kfree(pl08x->phy_chans);
2098 out_no_phychans:
2099 free_irq(adev->irq[0], pl08x);
2100 out_no_irq:
2101 iounmap(pl08x->base);
2102 out_no_ioremap:
2103 dma_pool_destroy(pl08x->pool);
2104 out_no_lli_pool:
2105 out_no_platdata:
2106 kfree(pl08x);
2107 out_no_pl08x:
2108 amba_release_regions(adev);
2109 return ret;
2110 }
2111
2112 /* PL080 has 8 channels and the PL080 have just 2 */
2113 static struct vendor_data vendor_pl080 = {
2114 .name = "PL080",
2115 .channels = 8,
2116 .dualmaster = true,
2117 };
2118
2119 static struct vendor_data vendor_pl081 = {
2120 .name = "PL081",
2121 .channels = 2,
2122 .dualmaster = false,
2123 };
2124
2125 static struct amba_id pl08x_ids[] = {
2126 /* PL080 */
2127 {
2128 .id = 0x00041080,
2129 .mask = 0x000fffff,
2130 .data = &vendor_pl080,
2131 },
2132 /* PL081 */
2133 {
2134 .id = 0x00041081,
2135 .mask = 0x000fffff,
2136 .data = &vendor_pl081,
2137 },
2138 /* Nomadik 8815 PL080 variant */
2139 {
2140 .id = 0x00280880,
2141 .mask = 0x00ffffff,
2142 .data = &vendor_pl080,
2143 },
2144 { 0, 0 },
2145 };
2146
2147 static struct amba_driver pl08x_amba_driver = {
2148 .drv.name = DRIVER_NAME,
2149 .id_table = pl08x_ids,
2150 .probe = pl08x_probe,
2151 };
2152
2153 static int __init pl08x_init(void)
2154 {
2155 int retval;
2156 retval = amba_driver_register(&pl08x_amba_driver);
2157 if (retval)
2158 printk(KERN_WARNING DRIVER_NAME
2159 "failed to register as an AMBA device (%d)\n",
2160 retval);
2161 return retval;
2162 }
2163 subsys_initcall(pl08x_init);
This page took 0.088768 seconds and 4 git commands to generate.