75f9e2d4b0322a3cf458ef1e0a75991e2394c549
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/dmapool.h>
83 #include <linux/dmaengine.h>
84 #include <linux/amba/bus.h>
85 #include <linux/amba/pl08x.h>
86 #include <linux/debugfs.h>
87 #include <linux/seq_file.h>
88
89 #include <asm/hardware/pl080.h>
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 /**
94 * struct vendor_data - vendor-specific config parameters
95 * for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
99 */
100 struct vendor_data {
101 u8 channels;
102 bool dualmaster;
103 };
104
105 /*
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
110 */
111 struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
116 };
117
118 /**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lock: a spinlock for this struct
130 */
131 struct pl08x_driver_data {
132 struct dma_device slave;
133 struct dma_device memcpy;
134 void __iomem *base;
135 struct amba_device *adev;
136 const struct vendor_data *vd;
137 struct pl08x_platform_data *pd;
138 struct pl08x_phy_chan *phy_chans;
139 struct dma_pool *pool;
140 int pool_ctr;
141 spinlock_t lock;
142 };
143
144 /*
145 * PL08X specific defines
146 */
147
148 /*
149 * Memory boundaries: the manual for PL08x says that the controller
150 * cannot read past a 1KiB boundary, so these defines are used to
151 * create transfer LLIs that do not cross such boundaries.
152 */
153 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
154 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
155
156 /* Minimum period between work queue runs */
157 #define PL08X_WQ_PERIODMIN 20
158
159 /* Size (bytes) of each LLI buffer allocated for one transfer */
160 # define PL08X_LLI_TSFR_SIZE 0x2000
161
162 /* Maximum times we call dma_pool_alloc on this pool without freeing */
163 #define PL08X_MAX_ALLOCS 0x40
164 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
165 #define PL08X_ALIGN 8
166
167 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
168 {
169 return container_of(chan, struct pl08x_dma_chan, chan);
170 }
171
172 /*
173 * Physical channel handling
174 */
175
176 /* Whether a certain channel is busy or not */
177 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
178 {
179 unsigned int val;
180
181 val = readl(ch->base + PL080_CH_CONFIG);
182 return val & PL080_CONFIG_ACTIVE;
183 }
184
185 /*
186 * Set the initial DMA register values i.e. those for the first LLI
187 * The next LLI pointer and the configuration interrupt bit have
188 * been set when the LLIs were constructed. Poke them into the hardware
189 * and start the transfer.
190 */
191 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
192 struct pl08x_txd *txd)
193 {
194 struct pl08x_driver_data *pl08x = plchan->host;
195 struct pl08x_phy_chan *phychan = plchan->phychan;
196 struct pl08x_lli *lli = &txd->llis_va[0];
197 u32 val, ccfg = txd->ccfg;
198
199 plchan->at = txd;
200
201 /* Assign the flow control signal to this channel */
202 if (txd->direction == DMA_TO_DEVICE)
203 /* Select signal as destination */
204 ccfg |= phychan->signal << PL080_CONFIG_DST_SEL_SHIFT;
205 else if (txd->direction == DMA_FROM_DEVICE)
206 /* Select signal as source */
207 ccfg |= phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
208
209 /* Wait for channel inactive */
210 while (pl08x_phy_channel_busy(phychan))
211 cpu_relax();
212
213 dev_vdbg(&pl08x->adev->dev,
214 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
215 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
216 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
217 ccfg);
218
219 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
220 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
221 writel(lli->lli, phychan->base + PL080_CH_LLI);
222 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
223 writel(ccfg, phychan->base + PL080_CH_CONFIG);
224
225 /* Enable the DMA channel */
226 /* Do not access config register until channel shows as disabled */
227 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
228 cpu_relax();
229
230 /* Do not access config register until channel shows as inactive */
231 val = readl(phychan->base + PL080_CH_CONFIG);
232 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
233 val = readl(phychan->base + PL080_CH_CONFIG);
234
235 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
236 }
237
238 /*
239 * Overall DMAC remains enabled always.
240 *
241 * Disabling individual channels could lose data.
242 *
243 * Disable the peripheral DMA after disabling the DMAC
244 * in order to allow the DMAC FIFO to drain, and
245 * hence allow the channel to show inactive
246 *
247 */
248 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
249 {
250 u32 val;
251
252 /* Set the HALT bit and wait for the FIFO to drain */
253 val = readl(ch->base + PL080_CH_CONFIG);
254 val |= PL080_CONFIG_HALT;
255 writel(val, ch->base + PL080_CH_CONFIG);
256
257 /* Wait for channel inactive */
258 while (pl08x_phy_channel_busy(ch))
259 cpu_relax();
260 }
261
262 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
263 {
264 u32 val;
265
266 /* Clear the HALT bit */
267 val = readl(ch->base + PL080_CH_CONFIG);
268 val &= ~PL080_CONFIG_HALT;
269 writel(val, ch->base + PL080_CH_CONFIG);
270 }
271
272
273 /* Stops the channel */
274 static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
275 {
276 u32 val;
277
278 pl08x_pause_phy_chan(ch);
279
280 /* Disable channel */
281 val = readl(ch->base + PL080_CH_CONFIG);
282 val &= ~PL080_CONFIG_ENABLE;
283 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
284 val &= ~PL080_CONFIG_TC_IRQ_MASK;
285 writel(val, ch->base + PL080_CH_CONFIG);
286 }
287
288 static inline u32 get_bytes_in_cctl(u32 cctl)
289 {
290 /* The source width defines the number of bytes */
291 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
292
293 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
294 case PL080_WIDTH_8BIT:
295 break;
296 case PL080_WIDTH_16BIT:
297 bytes *= 2;
298 break;
299 case PL080_WIDTH_32BIT:
300 bytes *= 4;
301 break;
302 }
303 return bytes;
304 }
305
306 /* The channel should be paused when calling this */
307 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
308 {
309 struct pl08x_phy_chan *ch;
310 struct pl08x_txd *txd;
311 unsigned long flags;
312 size_t bytes = 0;
313
314 spin_lock_irqsave(&plchan->lock, flags);
315 ch = plchan->phychan;
316 txd = plchan->at;
317
318 /*
319 * Follow the LLIs to get the number of remaining
320 * bytes in the currently active transaction.
321 */
322 if (ch && txd) {
323 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
324
325 /* First get the remaining bytes in the active transfer */
326 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
327
328 if (clli) {
329 struct pl08x_lli *llis_va = txd->llis_va;
330 dma_addr_t llis_bus = txd->llis_bus;
331 int index;
332
333 BUG_ON(clli < llis_bus || clli >= llis_bus +
334 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
335
336 /*
337 * Locate the next LLI - as this is an array,
338 * it's simple maths to find.
339 */
340 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
341
342 for (; index < MAX_NUM_TSFR_LLIS; index++) {
343 bytes += get_bytes_in_cctl(llis_va[index].cctl);
344
345 /*
346 * A LLI pointer of 0 terminates the LLI list
347 */
348 if (!llis_va[index].lli)
349 break;
350 }
351 }
352 }
353
354 /* Sum up all queued transactions */
355 if (!list_empty(&plchan->desc_list)) {
356 struct pl08x_txd *txdi;
357 list_for_each_entry(txdi, &plchan->desc_list, node) {
358 bytes += txdi->len;
359 }
360 }
361
362 spin_unlock_irqrestore(&plchan->lock, flags);
363
364 return bytes;
365 }
366
367 /*
368 * Allocate a physical channel for a virtual channel
369 */
370 static struct pl08x_phy_chan *
371 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
372 struct pl08x_dma_chan *virt_chan)
373 {
374 struct pl08x_phy_chan *ch = NULL;
375 unsigned long flags;
376 int i;
377
378 /*
379 * Try to locate a physical channel to be used for
380 * this transfer. If all are taken return NULL and
381 * the requester will have to cope by using some fallback
382 * PIO mode or retrying later.
383 */
384 for (i = 0; i < pl08x->vd->channels; i++) {
385 ch = &pl08x->phy_chans[i];
386
387 spin_lock_irqsave(&ch->lock, flags);
388
389 if (!ch->serving) {
390 ch->serving = virt_chan;
391 ch->signal = -1;
392 spin_unlock_irqrestore(&ch->lock, flags);
393 break;
394 }
395
396 spin_unlock_irqrestore(&ch->lock, flags);
397 }
398
399 if (i == pl08x->vd->channels) {
400 /* No physical channel available, cope with it */
401 return NULL;
402 }
403
404 return ch;
405 }
406
407 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
408 struct pl08x_phy_chan *ch)
409 {
410 unsigned long flags;
411
412 /* Stop the channel and clear its interrupts */
413 pl08x_stop_phy_chan(ch);
414 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
415 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
416
417 /* Mark it as free */
418 spin_lock_irqsave(&ch->lock, flags);
419 ch->serving = NULL;
420 spin_unlock_irqrestore(&ch->lock, flags);
421 }
422
423 /*
424 * LLI handling
425 */
426
427 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
428 {
429 switch (coded) {
430 case PL080_WIDTH_8BIT:
431 return 1;
432 case PL080_WIDTH_16BIT:
433 return 2;
434 case PL080_WIDTH_32BIT:
435 return 4;
436 default:
437 break;
438 }
439 BUG();
440 return 0;
441 }
442
443 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
444 size_t tsize)
445 {
446 u32 retbits = cctl;
447
448 /* Remove all src, dst and transfer size bits */
449 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
450 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
451 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
452
453 /* Then set the bits according to the parameters */
454 switch (srcwidth) {
455 case 1:
456 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
457 break;
458 case 2:
459 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
460 break;
461 case 4:
462 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
463 break;
464 default:
465 BUG();
466 break;
467 }
468
469 switch (dstwidth) {
470 case 1:
471 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
472 break;
473 case 2:
474 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
475 break;
476 case 4:
477 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
478 break;
479 default:
480 BUG();
481 break;
482 }
483
484 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
485 return retbits;
486 }
487
488 /*
489 * Autoselect a master bus to use for the transfer
490 * this prefers the destination bus if both available
491 * if fixed address on one bus the other will be chosen
492 */
493 static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
494 struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
495 struct pl08x_bus_data **sbus, u32 cctl)
496 {
497 if (!(cctl & PL080_CONTROL_DST_INCR)) {
498 *mbus = src_bus;
499 *sbus = dst_bus;
500 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
501 *mbus = dst_bus;
502 *sbus = src_bus;
503 } else {
504 if (dst_bus->buswidth == 4) {
505 *mbus = dst_bus;
506 *sbus = src_bus;
507 } else if (src_bus->buswidth == 4) {
508 *mbus = src_bus;
509 *sbus = dst_bus;
510 } else if (dst_bus->buswidth == 2) {
511 *mbus = dst_bus;
512 *sbus = src_bus;
513 } else if (src_bus->buswidth == 2) {
514 *mbus = src_bus;
515 *sbus = dst_bus;
516 } else {
517 /* src_bus->buswidth == 1 */
518 *mbus = dst_bus;
519 *sbus = src_bus;
520 }
521 }
522 }
523
524 /*
525 * Fills in one LLI for a certain transfer descriptor
526 * and advance the counter
527 */
528 static int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
529 struct pl08x_txd *txd, int num_llis, int len,
530 u32 cctl, u32 *remainder)
531 {
532 struct pl08x_lli *llis_va = txd->llis_va;
533 dma_addr_t llis_bus = txd->llis_bus;
534
535 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
536
537 llis_va[num_llis].cctl = cctl;
538 llis_va[num_llis].src = txd->srcbus.addr;
539 llis_va[num_llis].dst = txd->dstbus.addr;
540
541 /*
542 * On versions with dual masters, you can optionally AND on
543 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
544 * in new LLIs with that controller, but we always try to
545 * choose AHB1 to point into memory. The idea is to have AHB2
546 * fixed on the peripheral and AHB1 messing around in the
547 * memory. So we don't manipulate this bit currently.
548 */
549
550 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
551
552 if (cctl & PL080_CONTROL_SRC_INCR)
553 txd->srcbus.addr += len;
554 if (cctl & PL080_CONTROL_DST_INCR)
555 txd->dstbus.addr += len;
556
557 BUG_ON(*remainder < len);
558
559 *remainder -= len;
560
561 return num_llis + 1;
562 }
563
564 /*
565 * Return number of bytes to fill to boundary, or len
566 */
567 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
568 {
569 u32 boundary;
570
571 boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
572 << PL08X_BOUNDARY_SHIFT;
573
574 if (boundary < addr + len)
575 return boundary - addr;
576 else
577 return len;
578 }
579
580 /*
581 * This fills in the table of LLIs for the transfer descriptor
582 * Note that we assume we never have to change the burst sizes
583 * Return 0 for error
584 */
585 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
586 struct pl08x_txd *txd)
587 {
588 struct pl08x_channel_data *cd = txd->cd;
589 struct pl08x_bus_data *mbus, *sbus;
590 size_t remainder;
591 int num_llis = 0;
592 u32 cctl;
593 size_t max_bytes_per_lli;
594 size_t total_bytes = 0;
595 struct pl08x_lli *llis_va;
596
597 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
598 &txd->llis_bus);
599 if (!txd->llis_va) {
600 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
601 return 0;
602 }
603
604 pl08x->pool_ctr++;
605
606 /*
607 * Initialize bus values for this transfer
608 * from the passed optimal values
609 */
610 if (!cd) {
611 dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__);
612 return 0;
613 }
614
615 /* Get the default CCTL from the platform data */
616 cctl = cd->cctl;
617
618 /*
619 * On the PL080 we have two bus masters and we
620 * should select one for source and one for
621 * destination. We try to use AHB2 for the
622 * bus which does not increment (typically the
623 * peripheral) else we just choose something.
624 */
625 cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
626 if (pl08x->vd->dualmaster) {
627 if (cctl & PL080_CONTROL_SRC_INCR)
628 /* Source increments, use AHB2 for destination */
629 cctl |= PL080_CONTROL_DST_AHB2;
630 else if (cctl & PL080_CONTROL_DST_INCR)
631 /* Destination increments, use AHB2 for source */
632 cctl |= PL080_CONTROL_SRC_AHB2;
633 else
634 /* Just pick something, source AHB1 dest AHB2 */
635 cctl |= PL080_CONTROL_DST_AHB2;
636 }
637
638 /* Find maximum width of the source bus */
639 txd->srcbus.maxwidth =
640 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
641 PL080_CONTROL_SWIDTH_SHIFT);
642
643 /* Find maximum width of the destination bus */
644 txd->dstbus.maxwidth =
645 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
646 PL080_CONTROL_DWIDTH_SHIFT);
647
648 /* Set up the bus widths to the maximum */
649 txd->srcbus.buswidth = txd->srcbus.maxwidth;
650 txd->dstbus.buswidth = txd->dstbus.maxwidth;
651 dev_vdbg(&pl08x->adev->dev,
652 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
653 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
654
655
656 /*
657 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
658 */
659 max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
660 PL080_CONTROL_TRANSFER_SIZE_MASK;
661 dev_vdbg(&pl08x->adev->dev,
662 "%s max bytes per lli = %zu\n",
663 __func__, max_bytes_per_lli);
664
665 /* We need to count this down to zero */
666 remainder = txd->len;
667 dev_vdbg(&pl08x->adev->dev,
668 "%s remainder = %zu\n",
669 __func__, remainder);
670
671 /*
672 * Choose bus to align to
673 * - prefers destination bus if both available
674 * - if fixed address on one bus chooses other
675 * - modifies cctl to choose an appropriate master
676 */
677 pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
678 &mbus, &sbus, cctl);
679
680
681 /*
682 * The lowest bit of the LLI register
683 * is also used to indicate which master to
684 * use for reading the LLIs.
685 */
686
687 if (txd->len < mbus->buswidth) {
688 /*
689 * Less than a bus width available
690 * - send as single bytes
691 */
692 while (remainder) {
693 dev_vdbg(&pl08x->adev->dev,
694 "%s single byte LLIs for a transfer of "
695 "less than a bus width (remain 0x%08x)\n",
696 __func__, remainder);
697 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
698 num_llis =
699 pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
700 cctl, &remainder);
701 total_bytes++;
702 }
703 } else {
704 /*
705 * Make one byte LLIs until master bus is aligned
706 * - slave will then be aligned also
707 */
708 while ((mbus->addr) % (mbus->buswidth)) {
709 dev_vdbg(&pl08x->adev->dev,
710 "%s adjustment lli for less than bus width "
711 "(remain 0x%08x)\n",
712 __func__, remainder);
713 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
714 num_llis = pl08x_fill_lli_for_desc
715 (pl08x, txd, num_llis, 1, cctl, &remainder);
716 total_bytes++;
717 }
718
719 /*
720 * Master now aligned
721 * - if slave is not then we must set its width down
722 */
723 if (sbus->addr % sbus->buswidth) {
724 dev_dbg(&pl08x->adev->dev,
725 "%s set down bus width to one byte\n",
726 __func__);
727
728 sbus->buswidth = 1;
729 }
730
731 /*
732 * Make largest possible LLIs until less than one bus
733 * width left
734 */
735 while (remainder > (mbus->buswidth - 1)) {
736 size_t lli_len, target_len, tsize, odd_bytes;
737
738 /*
739 * If enough left try to send max possible,
740 * otherwise try to send the remainder
741 */
742 target_len = remainder;
743 if (remainder > max_bytes_per_lli)
744 target_len = max_bytes_per_lli;
745
746 /*
747 * Set bus lengths for incrementing buses
748 * to number of bytes which fill to next memory
749 * boundary
750 */
751 if (cctl & PL080_CONTROL_SRC_INCR)
752 txd->srcbus.fill_bytes =
753 pl08x_pre_boundary(
754 txd->srcbus.addr,
755 remainder);
756 else
757 txd->srcbus.fill_bytes =
758 max_bytes_per_lli;
759
760 if (cctl & PL080_CONTROL_DST_INCR)
761 txd->dstbus.fill_bytes =
762 pl08x_pre_boundary(
763 txd->dstbus.addr,
764 remainder);
765 else
766 txd->dstbus.fill_bytes =
767 max_bytes_per_lli;
768
769 /*
770 * Find the nearest
771 */
772 lli_len = min(txd->srcbus.fill_bytes,
773 txd->dstbus.fill_bytes);
774
775 BUG_ON(lli_len > remainder);
776
777 if (lli_len <= 0) {
778 dev_err(&pl08x->adev->dev,
779 "%s lli_len is %zu, <= 0\n",
780 __func__, lli_len);
781 return 0;
782 }
783
784 if (lli_len == target_len) {
785 /*
786 * Can send what we wanted
787 */
788 /*
789 * Maintain alignment
790 */
791 lli_len = (lli_len/mbus->buswidth) *
792 mbus->buswidth;
793 odd_bytes = 0;
794 } else {
795 /*
796 * So now we know how many bytes to transfer
797 * to get to the nearest boundary
798 * The next LLI will past the boundary
799 * - however we may be working to a boundary
800 * on the slave bus
801 * We need to ensure the master stays aligned
802 */
803 odd_bytes = lli_len % mbus->buswidth;
804 /*
805 * - and that we are working in multiples
806 * of the bus widths
807 */
808 lli_len -= odd_bytes;
809
810 }
811
812 if (lli_len) {
813 /*
814 * Check against minimum bus alignment:
815 * Calculate actual transfer size in relation
816 * to bus width an get a maximum remainder of
817 * the smallest bus width - 1
818 */
819 /* FIXME: use round_down()? */
820 tsize = lli_len / min(mbus->buswidth,
821 sbus->buswidth);
822 lli_len = tsize * min(mbus->buswidth,
823 sbus->buswidth);
824
825 if (target_len != lli_len) {
826 dev_vdbg(&pl08x->adev->dev,
827 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
828 __func__, target_len, lli_len, txd->len);
829 }
830
831 cctl = pl08x_cctl_bits(cctl,
832 txd->srcbus.buswidth,
833 txd->dstbus.buswidth,
834 tsize);
835
836 dev_vdbg(&pl08x->adev->dev,
837 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
838 __func__, lli_len, remainder);
839 num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
840 num_llis, lli_len, cctl,
841 &remainder);
842 total_bytes += lli_len;
843 }
844
845
846 if (odd_bytes) {
847 /*
848 * Creep past the boundary,
849 * maintaining master alignment
850 */
851 int j;
852 for (j = 0; (j < mbus->buswidth)
853 && (remainder); j++) {
854 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
855 dev_vdbg(&pl08x->adev->dev,
856 "%s align with boundary, single byte (remain 0x%08zx)\n",
857 __func__, remainder);
858 num_llis =
859 pl08x_fill_lli_for_desc(pl08x,
860 txd, num_llis, 1,
861 cctl, &remainder);
862 total_bytes++;
863 }
864 }
865 }
866
867 /*
868 * Send any odd bytes
869 */
870 while (remainder) {
871 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
872 dev_vdbg(&pl08x->adev->dev,
873 "%s align with boundary, single odd byte (remain %zu)\n",
874 __func__, remainder);
875 num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
876 1, cctl, &remainder);
877 total_bytes++;
878 }
879 }
880 if (total_bytes != txd->len) {
881 dev_err(&pl08x->adev->dev,
882 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
883 __func__, total_bytes, txd->len);
884 return 0;
885 }
886
887 if (num_llis >= MAX_NUM_TSFR_LLIS) {
888 dev_err(&pl08x->adev->dev,
889 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
890 __func__, (u32) MAX_NUM_TSFR_LLIS);
891 return 0;
892 }
893
894 llis_va = txd->llis_va;
895 /*
896 * The final LLI terminates the LLI.
897 */
898 llis_va[num_llis - 1].lli = 0;
899 /*
900 * The final LLI element shall also fire an interrupt
901 */
902 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
903
904 #ifdef VERBOSE_DEBUG
905 {
906 int i;
907
908 for (i = 0; i < num_llis; i++) {
909 dev_vdbg(&pl08x->adev->dev,
910 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
911 i,
912 &llis_va[i],
913 llis_va[i].src,
914 llis_va[i].dst,
915 llis_va[i].cctl,
916 llis_va[i].lli
917 );
918 }
919 }
920 #endif
921
922 return num_llis;
923 }
924
925 /* You should call this with the struct pl08x lock held */
926 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
927 struct pl08x_txd *txd)
928 {
929 /* Free the LLI */
930 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
931
932 pl08x->pool_ctr--;
933
934 kfree(txd);
935 }
936
937 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
938 struct pl08x_dma_chan *plchan)
939 {
940 struct pl08x_txd *txdi = NULL;
941 struct pl08x_txd *next;
942
943 if (!list_empty(&plchan->desc_list)) {
944 list_for_each_entry_safe(txdi,
945 next, &plchan->desc_list, node) {
946 list_del(&txdi->node);
947 pl08x_free_txd(pl08x, txdi);
948 }
949
950 }
951 }
952
953 /*
954 * The DMA ENGINE API
955 */
956 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
957 {
958 return 0;
959 }
960
961 static void pl08x_free_chan_resources(struct dma_chan *chan)
962 {
963 }
964
965 /*
966 * This should be called with the channel plchan->lock held
967 */
968 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
969 struct pl08x_txd *txd)
970 {
971 struct pl08x_driver_data *pl08x = plchan->host;
972 struct pl08x_phy_chan *ch;
973 int ret;
974
975 /* Check if we already have a channel */
976 if (plchan->phychan)
977 return 0;
978
979 ch = pl08x_get_phy_channel(pl08x, plchan);
980 if (!ch) {
981 /* No physical channel available, cope with it */
982 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
983 return -EBUSY;
984 }
985
986 /*
987 * OK we have a physical channel: for memcpy() this is all we
988 * need, but for slaves the physical signals may be muxed!
989 * Can the platform allow us to use this channel?
990 */
991 if (plchan->slave &&
992 ch->signal < 0 &&
993 pl08x->pd->get_signal) {
994 ret = pl08x->pd->get_signal(plchan);
995 if (ret < 0) {
996 dev_dbg(&pl08x->adev->dev,
997 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
998 ch->id, plchan->name);
999 /* Release physical channel & return */
1000 pl08x_put_phy_channel(pl08x, ch);
1001 return -EBUSY;
1002 }
1003 ch->signal = ret;
1004 }
1005
1006 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
1007 ch->id,
1008 ch->signal,
1009 plchan->name);
1010
1011 plchan->phychan = ch;
1012
1013 return 0;
1014 }
1015
1016 static void release_phy_channel(struct pl08x_dma_chan *plchan)
1017 {
1018 struct pl08x_driver_data *pl08x = plchan->host;
1019
1020 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
1021 pl08x->pd->put_signal(plchan);
1022 plchan->phychan->signal = -1;
1023 }
1024 pl08x_put_phy_channel(pl08x, plchan->phychan);
1025 plchan->phychan = NULL;
1026 }
1027
1028 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1029 {
1030 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1031
1032 plchan->chan.cookie += 1;
1033 if (plchan->chan.cookie < 0)
1034 plchan->chan.cookie = 1;
1035 tx->cookie = plchan->chan.cookie;
1036 /* This unlock follows the lock in the prep() function */
1037 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1038
1039 return tx->cookie;
1040 }
1041
1042 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1043 struct dma_chan *chan, unsigned long flags)
1044 {
1045 struct dma_async_tx_descriptor *retval = NULL;
1046
1047 return retval;
1048 }
1049
1050 /*
1051 * Code accessing dma_async_is_complete() in a tight loop
1052 * may give problems - could schedule where indicated.
1053 * If slaves are relying on interrupts to signal completion this
1054 * function must not be called with interrupts disabled
1055 */
1056 static enum dma_status
1057 pl08x_dma_tx_status(struct dma_chan *chan,
1058 dma_cookie_t cookie,
1059 struct dma_tx_state *txstate)
1060 {
1061 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1062 dma_cookie_t last_used;
1063 dma_cookie_t last_complete;
1064 enum dma_status ret;
1065 u32 bytesleft = 0;
1066
1067 last_used = plchan->chan.cookie;
1068 last_complete = plchan->lc;
1069
1070 ret = dma_async_is_complete(cookie, last_complete, last_used);
1071 if (ret == DMA_SUCCESS) {
1072 dma_set_tx_state(txstate, last_complete, last_used, 0);
1073 return ret;
1074 }
1075
1076 /*
1077 * schedule(); could be inserted here
1078 */
1079
1080 /*
1081 * This cookie not complete yet
1082 */
1083 last_used = plchan->chan.cookie;
1084 last_complete = plchan->lc;
1085
1086 /* Get number of bytes left in the active transactions and queue */
1087 bytesleft = pl08x_getbytes_chan(plchan);
1088
1089 dma_set_tx_state(txstate, last_complete, last_used,
1090 bytesleft);
1091
1092 if (plchan->state == PL08X_CHAN_PAUSED)
1093 return DMA_PAUSED;
1094
1095 /* Whether waiting or running, we're in progress */
1096 return DMA_IN_PROGRESS;
1097 }
1098
1099 /* PrimeCell DMA extension */
1100 struct burst_table {
1101 int burstwords;
1102 u32 reg;
1103 };
1104
1105 static const struct burst_table burst_sizes[] = {
1106 {
1107 .burstwords = 256,
1108 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1109 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1110 },
1111 {
1112 .burstwords = 128,
1113 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1114 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1115 },
1116 {
1117 .burstwords = 64,
1118 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1119 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1120 },
1121 {
1122 .burstwords = 32,
1123 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1124 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1125 },
1126 {
1127 .burstwords = 16,
1128 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1129 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1130 },
1131 {
1132 .burstwords = 8,
1133 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1134 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1135 },
1136 {
1137 .burstwords = 4,
1138 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1139 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1140 },
1141 {
1142 .burstwords = 1,
1143 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1144 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1145 },
1146 };
1147
1148 static void dma_set_runtime_config(struct dma_chan *chan,
1149 struct dma_slave_config *config)
1150 {
1151 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1152 struct pl08x_driver_data *pl08x = plchan->host;
1153 struct pl08x_channel_data *cd = plchan->cd;
1154 enum dma_slave_buswidth addr_width;
1155 u32 maxburst;
1156 u32 cctl = 0;
1157 int i;
1158
1159 /* Transfer direction */
1160 plchan->runtime_direction = config->direction;
1161 if (config->direction == DMA_TO_DEVICE) {
1162 plchan->runtime_addr = config->dst_addr;
1163 cctl |= PL080_CONTROL_SRC_INCR;
1164 addr_width = config->dst_addr_width;
1165 maxburst = config->dst_maxburst;
1166 } else if (config->direction == DMA_FROM_DEVICE) {
1167 plchan->runtime_addr = config->src_addr;
1168 cctl |= PL080_CONTROL_DST_INCR;
1169 addr_width = config->src_addr_width;
1170 maxburst = config->src_maxburst;
1171 } else {
1172 dev_err(&pl08x->adev->dev,
1173 "bad runtime_config: alien transfer direction\n");
1174 return;
1175 }
1176
1177 switch (addr_width) {
1178 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1179 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1180 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1181 break;
1182 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1183 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1184 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1185 break;
1186 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1187 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1188 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1189 break;
1190 default:
1191 dev_err(&pl08x->adev->dev,
1192 "bad runtime_config: alien address width\n");
1193 return;
1194 }
1195
1196 /*
1197 * Now decide on a maxburst:
1198 * If this channel will only request single transfers, set this
1199 * down to ONE element. Also select one element if no maxburst
1200 * is specified.
1201 */
1202 if (plchan->cd->single || maxburst == 0) {
1203 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1204 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1205 } else {
1206 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1207 if (burst_sizes[i].burstwords <= maxburst)
1208 break;
1209 cctl |= burst_sizes[i].reg;
1210 }
1211
1212 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1213 cctl &= ~PL080_CONTROL_PROT_MASK;
1214 cctl |= PL080_CONTROL_PROT_SYS;
1215
1216 /* Modify the default channel data to fit PrimeCell request */
1217 cd->cctl = cctl;
1218
1219 dev_dbg(&pl08x->adev->dev,
1220 "configured channel %s (%s) for %s, data width %d, "
1221 "maxburst %d words, LE, CCTL=0x%08x\n",
1222 dma_chan_name(chan), plchan->name,
1223 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1224 addr_width,
1225 maxburst,
1226 cctl);
1227 }
1228
1229 /*
1230 * Slave transactions callback to the slave device to allow
1231 * synchronization of slave DMA signals with the DMAC enable
1232 */
1233 static void pl08x_issue_pending(struct dma_chan *chan)
1234 {
1235 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&plchan->lock, flags);
1239 /* Something is already active, or we're waiting for a channel... */
1240 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1241 spin_unlock_irqrestore(&plchan->lock, flags);
1242 return;
1243 }
1244
1245 /* Take the first element in the queue and execute it */
1246 if (!list_empty(&plchan->desc_list)) {
1247 struct pl08x_txd *next;
1248
1249 next = list_first_entry(&plchan->desc_list,
1250 struct pl08x_txd,
1251 node);
1252 list_del(&next->node);
1253 plchan->state = PL08X_CHAN_RUNNING;
1254
1255 pl08x_start_txd(plchan, next);
1256 }
1257
1258 spin_unlock_irqrestore(&plchan->lock, flags);
1259 }
1260
1261 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1262 struct pl08x_txd *txd)
1263 {
1264 int num_llis;
1265 struct pl08x_driver_data *pl08x = plchan->host;
1266 int ret;
1267
1268 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1269 if (!num_llis) {
1270 kfree(txd);
1271 return -EINVAL;
1272 }
1273
1274 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1275
1276 list_add_tail(&txd->node, &plchan->desc_list);
1277
1278 /*
1279 * See if we already have a physical channel allocated,
1280 * else this is the time to try to get one.
1281 */
1282 ret = prep_phy_channel(plchan, txd);
1283 if (ret) {
1284 /*
1285 * No physical channel available, we will
1286 * stack up the memcpy channels until there is a channel
1287 * available to handle it whereas slave transfers may
1288 * have been denied due to platform channel muxing restrictions
1289 * and since there is no guarantee that this will ever be
1290 * resolved, and since the signal must be acquired AFTER
1291 * acquiring the physical channel, we will let them be NACK:ed
1292 * with -EBUSY here. The drivers can alway retry the prep()
1293 * call if they are eager on doing this using DMA.
1294 */
1295 if (plchan->slave) {
1296 pl08x_free_txd_list(pl08x, plchan);
1297 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1298 return -EBUSY;
1299 }
1300 /* Do this memcpy whenever there is a channel ready */
1301 plchan->state = PL08X_CHAN_WAITING;
1302 plchan->waiting = txd;
1303 } else
1304 /*
1305 * Else we're all set, paused and ready to roll,
1306 * status will switch to PL08X_CHAN_RUNNING when
1307 * we call issue_pending(). If there is something
1308 * running on the channel already we don't change
1309 * its state.
1310 */
1311 if (plchan->state == PL08X_CHAN_IDLE)
1312 plchan->state = PL08X_CHAN_PAUSED;
1313
1314 /*
1315 * Notice that we leave plchan->lock locked on purpose:
1316 * it will be unlocked in the subsequent tx_submit()
1317 * call. This is a consequence of the current API.
1318 */
1319
1320 return 0;
1321 }
1322
1323 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1324 {
1325 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1326
1327 if (txd) {
1328 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1329 txd->tx.tx_submit = pl08x_tx_submit;
1330 INIT_LIST_HEAD(&txd->node);
1331
1332 /* Always enable error and terminal interrupts */
1333 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1334 PL080_CONFIG_TC_IRQ_MASK;
1335 }
1336 return txd;
1337 }
1338
1339 /*
1340 * Initialize a descriptor to be used by memcpy submit
1341 */
1342 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1343 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1344 size_t len, unsigned long flags)
1345 {
1346 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1347 struct pl08x_driver_data *pl08x = plchan->host;
1348 struct pl08x_txd *txd;
1349 int ret;
1350
1351 txd = pl08x_get_txd(plchan);
1352 if (!txd) {
1353 dev_err(&pl08x->adev->dev,
1354 "%s no memory for descriptor\n", __func__);
1355 return NULL;
1356 }
1357
1358 txd->direction = DMA_NONE;
1359 txd->srcbus.addr = src;
1360 txd->dstbus.addr = dest;
1361
1362 /* Set platform data for m2m */
1363 txd->cd = &pl08x->pd->memcpy_channel;
1364 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1365
1366 /* Both to be incremented or the code will break */
1367 txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1368 txd->len = len;
1369
1370 ret = pl08x_prep_channel_resources(plchan, txd);
1371 if (ret)
1372 return NULL;
1373 /*
1374 * NB: the channel lock is held at this point so tx_submit()
1375 * must be called in direct succession.
1376 */
1377
1378 return &txd->tx;
1379 }
1380
1381 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1382 struct dma_chan *chan, struct scatterlist *sgl,
1383 unsigned int sg_len, enum dma_data_direction direction,
1384 unsigned long flags)
1385 {
1386 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1387 struct pl08x_driver_data *pl08x = plchan->host;
1388 struct pl08x_txd *txd;
1389 int ret;
1390
1391 /*
1392 * Current implementation ASSUMES only one sg
1393 */
1394 if (sg_len != 1) {
1395 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1396 __func__);
1397 BUG();
1398 }
1399
1400 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1401 __func__, sgl->length, plchan->name);
1402
1403 txd = pl08x_get_txd(plchan);
1404 if (!txd) {
1405 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1406 return NULL;
1407 }
1408
1409 if (direction != plchan->runtime_direction)
1410 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1411 "the direction configured for the PrimeCell\n",
1412 __func__);
1413
1414 /*
1415 * Set up addresses, the PrimeCell configured address
1416 * will take precedence since this may configure the
1417 * channel target address dynamically at runtime.
1418 */
1419 txd->direction = direction;
1420 if (direction == DMA_TO_DEVICE) {
1421 txd->ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1422 txd->srcbus.addr = sgl->dma_address;
1423 if (plchan->runtime_addr)
1424 txd->dstbus.addr = plchan->runtime_addr;
1425 else
1426 txd->dstbus.addr = plchan->cd->addr;
1427 } else if (direction == DMA_FROM_DEVICE) {
1428 txd->ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1429 if (plchan->runtime_addr)
1430 txd->srcbus.addr = plchan->runtime_addr;
1431 else
1432 txd->srcbus.addr = plchan->cd->addr;
1433 txd->dstbus.addr = sgl->dma_address;
1434 } else {
1435 dev_err(&pl08x->adev->dev,
1436 "%s direction unsupported\n", __func__);
1437 return NULL;
1438 }
1439 txd->cd = plchan->cd;
1440 txd->len = sgl->length;
1441
1442 ret = pl08x_prep_channel_resources(plchan, txd);
1443 if (ret)
1444 return NULL;
1445 /*
1446 * NB: the channel lock is held at this point so tx_submit()
1447 * must be called in direct succession.
1448 */
1449
1450 return &txd->tx;
1451 }
1452
1453 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1454 unsigned long arg)
1455 {
1456 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1457 struct pl08x_driver_data *pl08x = plchan->host;
1458 unsigned long flags;
1459 int ret = 0;
1460
1461 /* Controls applicable to inactive channels */
1462 if (cmd == DMA_SLAVE_CONFIG) {
1463 dma_set_runtime_config(chan,
1464 (struct dma_slave_config *)
1465 arg);
1466 return 0;
1467 }
1468
1469 /*
1470 * Anything succeeds on channels with no physical allocation and
1471 * no queued transfers.
1472 */
1473 spin_lock_irqsave(&plchan->lock, flags);
1474 if (!plchan->phychan && !plchan->at) {
1475 spin_unlock_irqrestore(&plchan->lock, flags);
1476 return 0;
1477 }
1478
1479 switch (cmd) {
1480 case DMA_TERMINATE_ALL:
1481 plchan->state = PL08X_CHAN_IDLE;
1482
1483 if (plchan->phychan) {
1484 pl08x_stop_phy_chan(plchan->phychan);
1485
1486 /*
1487 * Mark physical channel as free and free any slave
1488 * signal
1489 */
1490 release_phy_channel(plchan);
1491 }
1492 /* Dequeue jobs and free LLIs */
1493 if (plchan->at) {
1494 pl08x_free_txd(pl08x, plchan->at);
1495 plchan->at = NULL;
1496 }
1497 /* Dequeue jobs not yet fired as well */
1498 pl08x_free_txd_list(pl08x, plchan);
1499 break;
1500 case DMA_PAUSE:
1501 pl08x_pause_phy_chan(plchan->phychan);
1502 plchan->state = PL08X_CHAN_PAUSED;
1503 break;
1504 case DMA_RESUME:
1505 pl08x_resume_phy_chan(plchan->phychan);
1506 plchan->state = PL08X_CHAN_RUNNING;
1507 break;
1508 default:
1509 /* Unknown command */
1510 ret = -ENXIO;
1511 break;
1512 }
1513
1514 spin_unlock_irqrestore(&plchan->lock, flags);
1515
1516 return ret;
1517 }
1518
1519 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1520 {
1521 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1522 char *name = chan_id;
1523
1524 /* Check that the channel is not taken! */
1525 if (!strcmp(plchan->name, name))
1526 return true;
1527
1528 return false;
1529 }
1530
1531 /*
1532 * Just check that the device is there and active
1533 * TODO: turn this bit on/off depending on the number of
1534 * physical channels actually used, if it is zero... well
1535 * shut it off. That will save some power. Cut the clock
1536 * at the same time.
1537 */
1538 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1539 {
1540 u32 val;
1541
1542 val = readl(pl08x->base + PL080_CONFIG);
1543 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1544 /* We implicitly clear bit 1 and that means little-endian mode */
1545 val |= PL080_CONFIG_ENABLE;
1546 writel(val, pl08x->base + PL080_CONFIG);
1547 }
1548
1549 static void pl08x_tasklet(unsigned long data)
1550 {
1551 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1552 struct pl08x_driver_data *pl08x = plchan->host;
1553 unsigned long flags;
1554
1555 spin_lock_irqsave(&plchan->lock, flags);
1556
1557 if (plchan->at) {
1558 dma_async_tx_callback callback =
1559 plchan->at->tx.callback;
1560 void *callback_param =
1561 plchan->at->tx.callback_param;
1562
1563 /*
1564 * Update last completed
1565 */
1566 plchan->lc = plchan->at->tx.cookie;
1567
1568 /*
1569 * Callback to signal completion
1570 */
1571 if (callback)
1572 callback(callback_param);
1573
1574 /*
1575 * Free the descriptor
1576 */
1577 pl08x_free_txd(pl08x, plchan->at);
1578 plchan->at = NULL;
1579 }
1580 /*
1581 * If a new descriptor is queued, set it up
1582 * plchan->at is NULL here
1583 */
1584 if (!list_empty(&plchan->desc_list)) {
1585 struct pl08x_txd *next;
1586
1587 next = list_first_entry(&plchan->desc_list,
1588 struct pl08x_txd,
1589 node);
1590 list_del(&next->node);
1591
1592 pl08x_start_txd(plchan, next);
1593 } else {
1594 struct pl08x_dma_chan *waiting = NULL;
1595
1596 /*
1597 * No more jobs, so free up the physical channel
1598 * Free any allocated signal on slave transfers too
1599 */
1600 release_phy_channel(plchan);
1601 plchan->state = PL08X_CHAN_IDLE;
1602
1603 /*
1604 * And NOW before anyone else can grab that free:d
1605 * up physical channel, see if there is some memcpy
1606 * pending that seriously needs to start because of
1607 * being stacked up while we were choking the
1608 * physical channels with data.
1609 */
1610 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1611 chan.device_node) {
1612 if (waiting->state == PL08X_CHAN_WAITING &&
1613 waiting->waiting != NULL) {
1614 int ret;
1615
1616 /* This should REALLY not fail now */
1617 ret = prep_phy_channel(waiting,
1618 waiting->waiting);
1619 BUG_ON(ret);
1620 waiting->state = PL08X_CHAN_RUNNING;
1621 waiting->waiting = NULL;
1622 pl08x_issue_pending(&waiting->chan);
1623 break;
1624 }
1625 }
1626 }
1627
1628 spin_unlock_irqrestore(&plchan->lock, flags);
1629 }
1630
1631 static irqreturn_t pl08x_irq(int irq, void *dev)
1632 {
1633 struct pl08x_driver_data *pl08x = dev;
1634 u32 mask = 0;
1635 u32 val;
1636 int i;
1637
1638 val = readl(pl08x->base + PL080_ERR_STATUS);
1639 if (val) {
1640 /*
1641 * An error interrupt (on one or more channels)
1642 */
1643 dev_err(&pl08x->adev->dev,
1644 "%s error interrupt, register value 0x%08x\n",
1645 __func__, val);
1646 /*
1647 * Simply clear ALL PL08X error interrupts,
1648 * regardless of channel and cause
1649 * FIXME: should be 0x00000003 on PL081 really.
1650 */
1651 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1652 }
1653 val = readl(pl08x->base + PL080_INT_STATUS);
1654 for (i = 0; i < pl08x->vd->channels; i++) {
1655 if ((1 << i) & val) {
1656 /* Locate physical channel */
1657 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1658 struct pl08x_dma_chan *plchan = phychan->serving;
1659
1660 /* Schedule tasklet on this channel */
1661 tasklet_schedule(&plchan->tasklet);
1662
1663 mask |= (1 << i);
1664 }
1665 }
1666 /*
1667 * Clear only the terminal interrupts on channels we processed
1668 */
1669 writel(mask, pl08x->base + PL080_TC_CLEAR);
1670
1671 return mask ? IRQ_HANDLED : IRQ_NONE;
1672 }
1673
1674 /*
1675 * Initialise the DMAC memcpy/slave channels.
1676 * Make a local wrapper to hold required data
1677 */
1678 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1679 struct dma_device *dmadev,
1680 unsigned int channels,
1681 bool slave)
1682 {
1683 struct pl08x_dma_chan *chan;
1684 int i;
1685
1686 INIT_LIST_HEAD(&dmadev->channels);
1687 /*
1688 * Register as many many memcpy as we have physical channels,
1689 * we won't always be able to use all but the code will have
1690 * to cope with that situation.
1691 */
1692 for (i = 0; i < channels; i++) {
1693 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1694 if (!chan) {
1695 dev_err(&pl08x->adev->dev,
1696 "%s no memory for channel\n", __func__);
1697 return -ENOMEM;
1698 }
1699
1700 chan->host = pl08x;
1701 chan->state = PL08X_CHAN_IDLE;
1702
1703 if (slave) {
1704 chan->slave = true;
1705 chan->name = pl08x->pd->slave_channels[i].bus_id;
1706 chan->cd = &pl08x->pd->slave_channels[i];
1707 } else {
1708 chan->cd = &pl08x->pd->memcpy_channel;
1709 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1710 if (!chan->name) {
1711 kfree(chan);
1712 return -ENOMEM;
1713 }
1714 }
1715 if (chan->cd->circular_buffer) {
1716 dev_err(&pl08x->adev->dev,
1717 "channel %s: circular buffers not supported\n",
1718 chan->name);
1719 kfree(chan);
1720 continue;
1721 }
1722 dev_info(&pl08x->adev->dev,
1723 "initialize virtual channel \"%s\"\n",
1724 chan->name);
1725
1726 chan->chan.device = dmadev;
1727 chan->chan.cookie = 0;
1728 chan->lc = 0;
1729
1730 spin_lock_init(&chan->lock);
1731 INIT_LIST_HEAD(&chan->desc_list);
1732 tasklet_init(&chan->tasklet, pl08x_tasklet,
1733 (unsigned long) chan);
1734
1735 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1736 }
1737 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1738 i, slave ? "slave" : "memcpy");
1739 return i;
1740 }
1741
1742 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1743 {
1744 struct pl08x_dma_chan *chan = NULL;
1745 struct pl08x_dma_chan *next;
1746
1747 list_for_each_entry_safe(chan,
1748 next, &dmadev->channels, chan.device_node) {
1749 list_del(&chan->chan.device_node);
1750 kfree(chan);
1751 }
1752 }
1753
1754 #ifdef CONFIG_DEBUG_FS
1755 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1756 {
1757 switch (state) {
1758 case PL08X_CHAN_IDLE:
1759 return "idle";
1760 case PL08X_CHAN_RUNNING:
1761 return "running";
1762 case PL08X_CHAN_PAUSED:
1763 return "paused";
1764 case PL08X_CHAN_WAITING:
1765 return "waiting";
1766 default:
1767 break;
1768 }
1769 return "UNKNOWN STATE";
1770 }
1771
1772 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1773 {
1774 struct pl08x_driver_data *pl08x = s->private;
1775 struct pl08x_dma_chan *chan;
1776 struct pl08x_phy_chan *ch;
1777 unsigned long flags;
1778 int i;
1779
1780 seq_printf(s, "PL08x physical channels:\n");
1781 seq_printf(s, "CHANNEL:\tUSER:\n");
1782 seq_printf(s, "--------\t-----\n");
1783 for (i = 0; i < pl08x->vd->channels; i++) {
1784 struct pl08x_dma_chan *virt_chan;
1785
1786 ch = &pl08x->phy_chans[i];
1787
1788 spin_lock_irqsave(&ch->lock, flags);
1789 virt_chan = ch->serving;
1790
1791 seq_printf(s, "%d\t\t%s\n",
1792 ch->id, virt_chan ? virt_chan->name : "(none)");
1793
1794 spin_unlock_irqrestore(&ch->lock, flags);
1795 }
1796
1797 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1798 seq_printf(s, "CHANNEL:\tSTATE:\n");
1799 seq_printf(s, "--------\t------\n");
1800 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1801 seq_printf(s, "%s\t\t%s\n", chan->name,
1802 pl08x_state_str(chan->state));
1803 }
1804
1805 seq_printf(s, "\nPL08x virtual slave channels:\n");
1806 seq_printf(s, "CHANNEL:\tSTATE:\n");
1807 seq_printf(s, "--------\t------\n");
1808 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1809 seq_printf(s, "%s\t\t%s\n", chan->name,
1810 pl08x_state_str(chan->state));
1811 }
1812
1813 return 0;
1814 }
1815
1816 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1817 {
1818 return single_open(file, pl08x_debugfs_show, inode->i_private);
1819 }
1820
1821 static const struct file_operations pl08x_debugfs_operations = {
1822 .open = pl08x_debugfs_open,
1823 .read = seq_read,
1824 .llseek = seq_lseek,
1825 .release = single_release,
1826 };
1827
1828 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1829 {
1830 /* Expose a simple debugfs interface to view all clocks */
1831 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1832 NULL, pl08x,
1833 &pl08x_debugfs_operations);
1834 }
1835
1836 #else
1837 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1838 {
1839 }
1840 #endif
1841
1842 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1843 {
1844 struct pl08x_driver_data *pl08x;
1845 const struct vendor_data *vd = id->data;
1846 int ret = 0;
1847 int i;
1848
1849 ret = amba_request_regions(adev, NULL);
1850 if (ret)
1851 return ret;
1852
1853 /* Create the driver state holder */
1854 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1855 if (!pl08x) {
1856 ret = -ENOMEM;
1857 goto out_no_pl08x;
1858 }
1859
1860 /* Initialize memcpy engine */
1861 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1862 pl08x->memcpy.dev = &adev->dev;
1863 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1864 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1865 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1866 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1867 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1868 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1869 pl08x->memcpy.device_control = pl08x_control;
1870
1871 /* Initialize slave engine */
1872 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1873 pl08x->slave.dev = &adev->dev;
1874 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1875 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1876 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1877 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1878 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1879 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1880 pl08x->slave.device_control = pl08x_control;
1881
1882 /* Get the platform data */
1883 pl08x->pd = dev_get_platdata(&adev->dev);
1884 if (!pl08x->pd) {
1885 dev_err(&adev->dev, "no platform data supplied\n");
1886 goto out_no_platdata;
1887 }
1888
1889 /* Assign useful pointers to the driver state */
1890 pl08x->adev = adev;
1891 pl08x->vd = vd;
1892
1893 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1894 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1895 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1896 if (!pl08x->pool) {
1897 ret = -ENOMEM;
1898 goto out_no_lli_pool;
1899 }
1900
1901 spin_lock_init(&pl08x->lock);
1902
1903 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1904 if (!pl08x->base) {
1905 ret = -ENOMEM;
1906 goto out_no_ioremap;
1907 }
1908
1909 /* Turn on the PL08x */
1910 pl08x_ensure_on(pl08x);
1911
1912 /*
1913 * Attach the interrupt handler
1914 */
1915 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1916 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1917
1918 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1919 DRIVER_NAME, pl08x);
1920 if (ret) {
1921 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1922 __func__, adev->irq[0]);
1923 goto out_no_irq;
1924 }
1925
1926 /* Initialize physical channels */
1927 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1928 GFP_KERNEL);
1929 if (!pl08x->phy_chans) {
1930 dev_err(&adev->dev, "%s failed to allocate "
1931 "physical channel holders\n",
1932 __func__);
1933 goto out_no_phychans;
1934 }
1935
1936 for (i = 0; i < vd->channels; i++) {
1937 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1938
1939 ch->id = i;
1940 ch->base = pl08x->base + PL080_Cx_BASE(i);
1941 spin_lock_init(&ch->lock);
1942 ch->serving = NULL;
1943 ch->signal = -1;
1944 dev_info(&adev->dev,
1945 "physical channel %d is %s\n", i,
1946 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1947 }
1948
1949 /* Register as many memcpy channels as there are physical channels */
1950 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1951 pl08x->vd->channels, false);
1952 if (ret <= 0) {
1953 dev_warn(&pl08x->adev->dev,
1954 "%s failed to enumerate memcpy channels - %d\n",
1955 __func__, ret);
1956 goto out_no_memcpy;
1957 }
1958 pl08x->memcpy.chancnt = ret;
1959
1960 /* Register slave channels */
1961 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1962 pl08x->pd->num_slave_channels,
1963 true);
1964 if (ret <= 0) {
1965 dev_warn(&pl08x->adev->dev,
1966 "%s failed to enumerate slave channels - %d\n",
1967 __func__, ret);
1968 goto out_no_slave;
1969 }
1970 pl08x->slave.chancnt = ret;
1971
1972 ret = dma_async_device_register(&pl08x->memcpy);
1973 if (ret) {
1974 dev_warn(&pl08x->adev->dev,
1975 "%s failed to register memcpy as an async device - %d\n",
1976 __func__, ret);
1977 goto out_no_memcpy_reg;
1978 }
1979
1980 ret = dma_async_device_register(&pl08x->slave);
1981 if (ret) {
1982 dev_warn(&pl08x->adev->dev,
1983 "%s failed to register slave as an async device - %d\n",
1984 __func__, ret);
1985 goto out_no_slave_reg;
1986 }
1987
1988 amba_set_drvdata(adev, pl08x);
1989 init_pl08x_debugfs(pl08x);
1990 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1991 amba_part(adev), amba_rev(adev),
1992 (unsigned long long)adev->res.start, adev->irq[0]);
1993 return 0;
1994
1995 out_no_slave_reg:
1996 dma_async_device_unregister(&pl08x->memcpy);
1997 out_no_memcpy_reg:
1998 pl08x_free_virtual_channels(&pl08x->slave);
1999 out_no_slave:
2000 pl08x_free_virtual_channels(&pl08x->memcpy);
2001 out_no_memcpy:
2002 kfree(pl08x->phy_chans);
2003 out_no_phychans:
2004 free_irq(adev->irq[0], pl08x);
2005 out_no_irq:
2006 iounmap(pl08x->base);
2007 out_no_ioremap:
2008 dma_pool_destroy(pl08x->pool);
2009 out_no_lli_pool:
2010 out_no_platdata:
2011 kfree(pl08x);
2012 out_no_pl08x:
2013 amba_release_regions(adev);
2014 return ret;
2015 }
2016
2017 /* PL080 has 8 channels and the PL080 have just 2 */
2018 static struct vendor_data vendor_pl080 = {
2019 .channels = 8,
2020 .dualmaster = true,
2021 };
2022
2023 static struct vendor_data vendor_pl081 = {
2024 .channels = 2,
2025 .dualmaster = false,
2026 };
2027
2028 static struct amba_id pl08x_ids[] = {
2029 /* PL080 */
2030 {
2031 .id = 0x00041080,
2032 .mask = 0x000fffff,
2033 .data = &vendor_pl080,
2034 },
2035 /* PL081 */
2036 {
2037 .id = 0x00041081,
2038 .mask = 0x000fffff,
2039 .data = &vendor_pl081,
2040 },
2041 /* Nomadik 8815 PL080 variant */
2042 {
2043 .id = 0x00280880,
2044 .mask = 0x00ffffff,
2045 .data = &vendor_pl080,
2046 },
2047 { 0, 0 },
2048 };
2049
2050 static struct amba_driver pl08x_amba_driver = {
2051 .drv.name = DRIVER_NAME,
2052 .id_table = pl08x_ids,
2053 .probe = pl08x_probe,
2054 };
2055
2056 static int __init pl08x_init(void)
2057 {
2058 int retval;
2059 retval = amba_driver_register(&pl08x_amba_driver);
2060 if (retval)
2061 printk(KERN_WARNING DRIVER_NAME
2062 "failed to register as an AMBA device (%d)\n",
2063 retval);
2064 return retval;
2065 }
2066 subsys_initcall(pl08x_init);
This page took 0.070343 seconds and 4 git commands to generate.