Merge tag 'freevxfs-for-4.8' of git://git.infradead.org/users/hch/freevxfs
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * The full GNU General Public License is in this distribution in the file
19 * called COPYING.
20 *
21 * Documentation: ARM DDI 0196G == PL080
22 * Documentation: ARM DDI 0218E == PL081
23 * Documentation: S3C6410 User's Manual == PL080S
24 *
25 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
26 * channel.
27 *
28 * The PL080 has 8 channels available for simultaneous use, and the PL081
29 * has only two channels. So on these DMA controllers the number of channels
30 * and the number of incoming DMA signals are two totally different things.
31 * It is usually not possible to theoretically handle all physical signals,
32 * so a multiplexing scheme with possible denial of use is necessary.
33 *
34 * The PL080 has a dual bus master, PL081 has a single master.
35 *
36 * PL080S is a version modified by Samsung and used in S3C64xx SoCs.
37 * It differs in following aspects:
38 * - CH_CONFIG register at different offset,
39 * - separate CH_CONTROL2 register for transfer size,
40 * - bigger maximum transfer size,
41 * - 8-word aligned LLI, instead of 4-word, due to extra CCTL2 word,
42 * - no support for peripheral flow control.
43 *
44 * Memory to peripheral transfer may be visualized as
45 * Get data from memory to DMAC
46 * Until no data left
47 * On burst request from peripheral
48 * Destination burst from DMAC to peripheral
49 * Clear burst request
50 * Raise terminal count interrupt
51 *
52 * For peripherals with a FIFO:
53 * Source burst size == half the depth of the peripheral FIFO
54 * Destination burst size == the depth of the peripheral FIFO
55 *
56 * (Bursts are irrelevant for mem to mem transfers - there are no burst
57 * signals, the DMA controller will simply facilitate its AHB master.)
58 *
59 * ASSUMES default (little) endianness for DMA transfers
60 *
61 * The PL08x has two flow control settings:
62 * - DMAC flow control: the transfer size defines the number of transfers
63 * which occur for the current LLI entry, and the DMAC raises TC at the
64 * end of every LLI entry. Observed behaviour shows the DMAC listening
65 * to both the BREQ and SREQ signals (contrary to documented),
66 * transferring data if either is active. The LBREQ and LSREQ signals
67 * are ignored.
68 *
69 * - Peripheral flow control: the transfer size is ignored (and should be
70 * zero). The data is transferred from the current LLI entry, until
71 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
72 * will then move to the next LLI entry. Unsupported by PL080S.
73 */
74 #include <linux/amba/bus.h>
75 #include <linux/amba/pl08x.h>
76 #include <linux/debugfs.h>
77 #include <linux/delay.h>
78 #include <linux/device.h>
79 #include <linux/dmaengine.h>
80 #include <linux/dmapool.h>
81 #include <linux/dma-mapping.h>
82 #include <linux/export.h>
83 #include <linux/init.h>
84 #include <linux/interrupt.h>
85 #include <linux/module.h>
86 #include <linux/of.h>
87 #include <linux/of_dma.h>
88 #include <linux/pm_runtime.h>
89 #include <linux/seq_file.h>
90 #include <linux/slab.h>
91 #include <linux/amba/pl080.h>
92
93 #include "dmaengine.h"
94 #include "virt-dma.h"
95
96 #define DRIVER_NAME "pl08xdmac"
97
98 #define PL80X_DMA_BUSWIDTHS \
99 BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \
100 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
101 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
102 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)
103
104 static struct amba_driver pl08x_amba_driver;
105 struct pl08x_driver_data;
106
107 /**
108 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
109 * @channels: the number of channels available in this variant
110 * @signals: the number of request signals available from the hardware
111 * @dualmaster: whether this version supports dual AHB masters or not.
112 * @nomadik: whether the channels have Nomadik security extension bits
113 * that need to be checked for permission before use and some registers are
114 * missing
115 * @pl080s: whether this version is a PL080S, which has separate register and
116 * LLI word for transfer size.
117 * @max_transfer_size: the maximum single element transfer size for this
118 * PL08x variant.
119 */
120 struct vendor_data {
121 u8 config_offset;
122 u8 channels;
123 u8 signals;
124 bool dualmaster;
125 bool nomadik;
126 bool pl080s;
127 u32 max_transfer_size;
128 };
129
130 /**
131 * struct pl08x_bus_data - information of source or destination
132 * busses for a transfer
133 * @addr: current address
134 * @maxwidth: the maximum width of a transfer on this bus
135 * @buswidth: the width of this bus in bytes: 1, 2 or 4
136 */
137 struct pl08x_bus_data {
138 dma_addr_t addr;
139 u8 maxwidth;
140 u8 buswidth;
141 };
142
143 #define IS_BUS_ALIGNED(bus) IS_ALIGNED((bus)->addr, (bus)->buswidth)
144
145 /**
146 * struct pl08x_phy_chan - holder for the physical channels
147 * @id: physical index to this channel
148 * @lock: a lock to use when altering an instance of this struct
149 * @serving: the virtual channel currently being served by this physical
150 * channel
151 * @locked: channel unavailable for the system, e.g. dedicated to secure
152 * world
153 */
154 struct pl08x_phy_chan {
155 unsigned int id;
156 void __iomem *base;
157 void __iomem *reg_config;
158 spinlock_t lock;
159 struct pl08x_dma_chan *serving;
160 bool locked;
161 };
162
163 /**
164 * struct pl08x_sg - structure containing data per sg
165 * @src_addr: src address of sg
166 * @dst_addr: dst address of sg
167 * @len: transfer len in bytes
168 * @node: node for txd's dsg_list
169 */
170 struct pl08x_sg {
171 dma_addr_t src_addr;
172 dma_addr_t dst_addr;
173 size_t len;
174 struct list_head node;
175 };
176
177 /**
178 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
179 * @vd: virtual DMA descriptor
180 * @dsg_list: list of children sg's
181 * @llis_bus: DMA memory address (physical) start for the LLIs
182 * @llis_va: virtual memory address start for the LLIs
183 * @cctl: control reg values for current txd
184 * @ccfg: config reg values for current txd
185 * @done: this marks completed descriptors, which should not have their
186 * mux released.
187 * @cyclic: indicate cyclic transfers
188 */
189 struct pl08x_txd {
190 struct virt_dma_desc vd;
191 struct list_head dsg_list;
192 dma_addr_t llis_bus;
193 u32 *llis_va;
194 /* Default cctl value for LLIs */
195 u32 cctl;
196 /*
197 * Settings to be put into the physical channel when we
198 * trigger this txd. Other registers are in llis_va[0].
199 */
200 u32 ccfg;
201 bool done;
202 bool cyclic;
203 };
204
205 /**
206 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
207 * states
208 * @PL08X_CHAN_IDLE: the channel is idle
209 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
210 * channel and is running a transfer on it
211 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
212 * channel, but the transfer is currently paused
213 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
214 * channel to become available (only pertains to memcpy channels)
215 */
216 enum pl08x_dma_chan_state {
217 PL08X_CHAN_IDLE,
218 PL08X_CHAN_RUNNING,
219 PL08X_CHAN_PAUSED,
220 PL08X_CHAN_WAITING,
221 };
222
223 /**
224 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
225 * @vc: wrappped virtual channel
226 * @phychan: the physical channel utilized by this channel, if there is one
227 * @name: name of channel
228 * @cd: channel platform data
229 * @runtime_addr: address for RX/TX according to the runtime config
230 * @at: active transaction on this channel
231 * @lock: a lock for this channel data
232 * @host: a pointer to the host (internal use)
233 * @state: whether the channel is idle, paused, running etc
234 * @slave: whether this channel is a device (slave) or for memcpy
235 * @signal: the physical DMA request signal which this channel is using
236 * @mux_use: count of descriptors using this DMA request signal setting
237 */
238 struct pl08x_dma_chan {
239 struct virt_dma_chan vc;
240 struct pl08x_phy_chan *phychan;
241 const char *name;
242 struct pl08x_channel_data *cd;
243 struct dma_slave_config cfg;
244 struct pl08x_txd *at;
245 struct pl08x_driver_data *host;
246 enum pl08x_dma_chan_state state;
247 bool slave;
248 int signal;
249 unsigned mux_use;
250 };
251
252 /**
253 * struct pl08x_driver_data - the local state holder for the PL08x
254 * @slave: slave engine for this instance
255 * @memcpy: memcpy engine for this instance
256 * @base: virtual memory base (remapped) for the PL08x
257 * @adev: the corresponding AMBA (PrimeCell) bus entry
258 * @vd: vendor data for this PL08x variant
259 * @pd: platform data passed in from the platform/machine
260 * @phy_chans: array of data for the physical channels
261 * @pool: a pool for the LLI descriptors
262 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
263 * fetches
264 * @mem_buses: set to indicate memory transfers on AHB2.
265 * @lock: a spinlock for this struct
266 */
267 struct pl08x_driver_data {
268 struct dma_device slave;
269 struct dma_device memcpy;
270 void __iomem *base;
271 struct amba_device *adev;
272 const struct vendor_data *vd;
273 struct pl08x_platform_data *pd;
274 struct pl08x_phy_chan *phy_chans;
275 struct dma_pool *pool;
276 u8 lli_buses;
277 u8 mem_buses;
278 u8 lli_words;
279 };
280
281 /*
282 * PL08X specific defines
283 */
284
285 /* The order of words in an LLI. */
286 #define PL080_LLI_SRC 0
287 #define PL080_LLI_DST 1
288 #define PL080_LLI_LLI 2
289 #define PL080_LLI_CCTL 3
290 #define PL080S_LLI_CCTL2 4
291
292 /* Total words in an LLI. */
293 #define PL080_LLI_WORDS 4
294 #define PL080S_LLI_WORDS 8
295
296 /*
297 * Number of LLIs in each LLI buffer allocated for one transfer
298 * (maximum times we call dma_pool_alloc on this pool without freeing)
299 */
300 #define MAX_NUM_TSFR_LLIS 512
301 #define PL08X_ALIGN 8
302
303 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
304 {
305 return container_of(chan, struct pl08x_dma_chan, vc.chan);
306 }
307
308 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
309 {
310 return container_of(tx, struct pl08x_txd, vd.tx);
311 }
312
313 /*
314 * Mux handling.
315 *
316 * This gives us the DMA request input to the PL08x primecell which the
317 * peripheral described by the channel data will be routed to, possibly
318 * via a board/SoC specific external MUX. One important point to note
319 * here is that this does not depend on the physical channel.
320 */
321 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
322 {
323 const struct pl08x_platform_data *pd = plchan->host->pd;
324 int ret;
325
326 if (plchan->mux_use++ == 0 && pd->get_xfer_signal) {
327 ret = pd->get_xfer_signal(plchan->cd);
328 if (ret < 0) {
329 plchan->mux_use = 0;
330 return ret;
331 }
332
333 plchan->signal = ret;
334 }
335 return 0;
336 }
337
338 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
339 {
340 const struct pl08x_platform_data *pd = plchan->host->pd;
341
342 if (plchan->signal >= 0) {
343 WARN_ON(plchan->mux_use == 0);
344
345 if (--plchan->mux_use == 0 && pd->put_xfer_signal) {
346 pd->put_xfer_signal(plchan->cd, plchan->signal);
347 plchan->signal = -1;
348 }
349 }
350 }
351
352 /*
353 * Physical channel handling
354 */
355
356 /* Whether a certain channel is busy or not */
357 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
358 {
359 unsigned int val;
360
361 val = readl(ch->reg_config);
362 return val & PL080_CONFIG_ACTIVE;
363 }
364
365 static void pl08x_write_lli(struct pl08x_driver_data *pl08x,
366 struct pl08x_phy_chan *phychan, const u32 *lli, u32 ccfg)
367 {
368 if (pl08x->vd->pl080s)
369 dev_vdbg(&pl08x->adev->dev,
370 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
371 "clli=0x%08x, cctl=0x%08x, cctl2=0x%08x, ccfg=0x%08x\n",
372 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
373 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL],
374 lli[PL080S_LLI_CCTL2], ccfg);
375 else
376 dev_vdbg(&pl08x->adev->dev,
377 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
378 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
379 phychan->id, lli[PL080_LLI_SRC], lli[PL080_LLI_DST],
380 lli[PL080_LLI_LLI], lli[PL080_LLI_CCTL], ccfg);
381
382 writel_relaxed(lli[PL080_LLI_SRC], phychan->base + PL080_CH_SRC_ADDR);
383 writel_relaxed(lli[PL080_LLI_DST], phychan->base + PL080_CH_DST_ADDR);
384 writel_relaxed(lli[PL080_LLI_LLI], phychan->base + PL080_CH_LLI);
385 writel_relaxed(lli[PL080_LLI_CCTL], phychan->base + PL080_CH_CONTROL);
386
387 if (pl08x->vd->pl080s)
388 writel_relaxed(lli[PL080S_LLI_CCTL2],
389 phychan->base + PL080S_CH_CONTROL2);
390
391 writel(ccfg, phychan->reg_config);
392 }
393
394 /*
395 * Set the initial DMA register values i.e. those for the first LLI
396 * The next LLI pointer and the configuration interrupt bit have
397 * been set when the LLIs were constructed. Poke them into the hardware
398 * and start the transfer.
399 */
400 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
401 {
402 struct pl08x_driver_data *pl08x = plchan->host;
403 struct pl08x_phy_chan *phychan = plchan->phychan;
404 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
405 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
406 u32 val;
407
408 list_del(&txd->vd.node);
409
410 plchan->at = txd;
411
412 /* Wait for channel inactive */
413 while (pl08x_phy_channel_busy(phychan))
414 cpu_relax();
415
416 pl08x_write_lli(pl08x, phychan, &txd->llis_va[0], txd->ccfg);
417
418 /* Enable the DMA channel */
419 /* Do not access config register until channel shows as disabled */
420 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
421 cpu_relax();
422
423 /* Do not access config register until channel shows as inactive */
424 val = readl(phychan->reg_config);
425 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
426 val = readl(phychan->reg_config);
427
428 writel(val | PL080_CONFIG_ENABLE, phychan->reg_config);
429 }
430
431 /*
432 * Pause the channel by setting the HALT bit.
433 *
434 * For M->P transfers, pause the DMAC first and then stop the peripheral -
435 * the FIFO can only drain if the peripheral is still requesting data.
436 * (note: this can still timeout if the DMAC FIFO never drains of data.)
437 *
438 * For P->M transfers, disable the peripheral first to stop it filling
439 * the DMAC FIFO, and then pause the DMAC.
440 */
441 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
442 {
443 u32 val;
444 int timeout;
445
446 /* Set the HALT bit and wait for the FIFO to drain */
447 val = readl(ch->reg_config);
448 val |= PL080_CONFIG_HALT;
449 writel(val, ch->reg_config);
450
451 /* Wait for channel inactive */
452 for (timeout = 1000; timeout; timeout--) {
453 if (!pl08x_phy_channel_busy(ch))
454 break;
455 udelay(1);
456 }
457 if (pl08x_phy_channel_busy(ch))
458 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
459 }
460
461 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
462 {
463 u32 val;
464
465 /* Clear the HALT bit */
466 val = readl(ch->reg_config);
467 val &= ~PL080_CONFIG_HALT;
468 writel(val, ch->reg_config);
469 }
470
471 /*
472 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
473 * clears any pending interrupt status. This should not be used for
474 * an on-going transfer, but as a method of shutting down a channel
475 * (eg, when it's no longer used) or terminating a transfer.
476 */
477 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
478 struct pl08x_phy_chan *ch)
479 {
480 u32 val = readl(ch->reg_config);
481
482 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
483 PL080_CONFIG_TC_IRQ_MASK);
484
485 writel(val, ch->reg_config);
486
487 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
488 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
489 }
490
491 static inline u32 get_bytes_in_cctl(u32 cctl)
492 {
493 /* The source width defines the number of bytes */
494 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
495
496 cctl &= PL080_CONTROL_SWIDTH_MASK;
497
498 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
499 case PL080_WIDTH_8BIT:
500 break;
501 case PL080_WIDTH_16BIT:
502 bytes *= 2;
503 break;
504 case PL080_WIDTH_32BIT:
505 bytes *= 4;
506 break;
507 }
508 return bytes;
509 }
510
511 static inline u32 get_bytes_in_cctl_pl080s(u32 cctl, u32 cctl1)
512 {
513 /* The source width defines the number of bytes */
514 u32 bytes = cctl1 & PL080S_CONTROL_TRANSFER_SIZE_MASK;
515
516 cctl &= PL080_CONTROL_SWIDTH_MASK;
517
518 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
519 case PL080_WIDTH_8BIT:
520 break;
521 case PL080_WIDTH_16BIT:
522 bytes *= 2;
523 break;
524 case PL080_WIDTH_32BIT:
525 bytes *= 4;
526 break;
527 }
528 return bytes;
529 }
530
531 /* The channel should be paused when calling this */
532 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
533 {
534 struct pl08x_driver_data *pl08x = plchan->host;
535 const u32 *llis_va, *llis_va_limit;
536 struct pl08x_phy_chan *ch;
537 dma_addr_t llis_bus;
538 struct pl08x_txd *txd;
539 u32 llis_max_words;
540 size_t bytes;
541 u32 clli;
542
543 ch = plchan->phychan;
544 txd = plchan->at;
545
546 if (!ch || !txd)
547 return 0;
548
549 /*
550 * Follow the LLIs to get the number of remaining
551 * bytes in the currently active transaction.
552 */
553 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
554
555 /* First get the remaining bytes in the active transfer */
556 if (pl08x->vd->pl080s)
557 bytes = get_bytes_in_cctl_pl080s(
558 readl(ch->base + PL080_CH_CONTROL),
559 readl(ch->base + PL080S_CH_CONTROL2));
560 else
561 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
562
563 if (!clli)
564 return bytes;
565
566 llis_va = txd->llis_va;
567 llis_bus = txd->llis_bus;
568
569 llis_max_words = pl08x->lli_words * MAX_NUM_TSFR_LLIS;
570 BUG_ON(clli < llis_bus || clli >= llis_bus +
571 sizeof(u32) * llis_max_words);
572
573 /*
574 * Locate the next LLI - as this is an array,
575 * it's simple maths to find.
576 */
577 llis_va += (clli - llis_bus) / sizeof(u32);
578
579 llis_va_limit = llis_va + llis_max_words;
580
581 for (; llis_va < llis_va_limit; llis_va += pl08x->lli_words) {
582 if (pl08x->vd->pl080s)
583 bytes += get_bytes_in_cctl_pl080s(
584 llis_va[PL080_LLI_CCTL],
585 llis_va[PL080S_LLI_CCTL2]);
586 else
587 bytes += get_bytes_in_cctl(llis_va[PL080_LLI_CCTL]);
588
589 /*
590 * A LLI pointer going backward terminates the LLI list
591 */
592 if (llis_va[PL080_LLI_LLI] <= clli)
593 break;
594 }
595
596 return bytes;
597 }
598
599 /*
600 * Allocate a physical channel for a virtual channel
601 *
602 * Try to locate a physical channel to be used for this transfer. If all
603 * are taken return NULL and the requester will have to cope by using
604 * some fallback PIO mode or retrying later.
605 */
606 static struct pl08x_phy_chan *
607 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
608 struct pl08x_dma_chan *virt_chan)
609 {
610 struct pl08x_phy_chan *ch = NULL;
611 unsigned long flags;
612 int i;
613
614 for (i = 0; i < pl08x->vd->channels; i++) {
615 ch = &pl08x->phy_chans[i];
616
617 spin_lock_irqsave(&ch->lock, flags);
618
619 if (!ch->locked && !ch->serving) {
620 ch->serving = virt_chan;
621 spin_unlock_irqrestore(&ch->lock, flags);
622 break;
623 }
624
625 spin_unlock_irqrestore(&ch->lock, flags);
626 }
627
628 if (i == pl08x->vd->channels) {
629 /* No physical channel available, cope with it */
630 return NULL;
631 }
632
633 return ch;
634 }
635
636 /* Mark the physical channel as free. Note, this write is atomic. */
637 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
638 struct pl08x_phy_chan *ch)
639 {
640 ch->serving = NULL;
641 }
642
643 /*
644 * Try to allocate a physical channel. When successful, assign it to
645 * this virtual channel, and initiate the next descriptor. The
646 * virtual channel lock must be held at this point.
647 */
648 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
649 {
650 struct pl08x_driver_data *pl08x = plchan->host;
651 struct pl08x_phy_chan *ch;
652
653 ch = pl08x_get_phy_channel(pl08x, plchan);
654 if (!ch) {
655 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
656 plchan->state = PL08X_CHAN_WAITING;
657 return;
658 }
659
660 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
661 ch->id, plchan->name);
662
663 plchan->phychan = ch;
664 plchan->state = PL08X_CHAN_RUNNING;
665 pl08x_start_next_txd(plchan);
666 }
667
668 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
669 struct pl08x_dma_chan *plchan)
670 {
671 struct pl08x_driver_data *pl08x = plchan->host;
672
673 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
674 ch->id, plchan->name);
675
676 /*
677 * We do this without taking the lock; we're really only concerned
678 * about whether this pointer is NULL or not, and we're guaranteed
679 * that this will only be called when it _already_ is non-NULL.
680 */
681 ch->serving = plchan;
682 plchan->phychan = ch;
683 plchan->state = PL08X_CHAN_RUNNING;
684 pl08x_start_next_txd(plchan);
685 }
686
687 /*
688 * Free a physical DMA channel, potentially reallocating it to another
689 * virtual channel if we have any pending.
690 */
691 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
692 {
693 struct pl08x_driver_data *pl08x = plchan->host;
694 struct pl08x_dma_chan *p, *next;
695
696 retry:
697 next = NULL;
698
699 /* Find a waiting virtual channel for the next transfer. */
700 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
701 if (p->state == PL08X_CHAN_WAITING) {
702 next = p;
703 break;
704 }
705
706 if (!next) {
707 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
708 if (p->state == PL08X_CHAN_WAITING) {
709 next = p;
710 break;
711 }
712 }
713
714 /* Ensure that the physical channel is stopped */
715 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
716
717 if (next) {
718 bool success;
719
720 /*
721 * Eww. We know this isn't going to deadlock
722 * but lockdep probably doesn't.
723 */
724 spin_lock(&next->vc.lock);
725 /* Re-check the state now that we have the lock */
726 success = next->state == PL08X_CHAN_WAITING;
727 if (success)
728 pl08x_phy_reassign_start(plchan->phychan, next);
729 spin_unlock(&next->vc.lock);
730
731 /* If the state changed, try to find another channel */
732 if (!success)
733 goto retry;
734 } else {
735 /* No more jobs, so free up the physical channel */
736 pl08x_put_phy_channel(pl08x, plchan->phychan);
737 }
738
739 plchan->phychan = NULL;
740 plchan->state = PL08X_CHAN_IDLE;
741 }
742
743 /*
744 * LLI handling
745 */
746
747 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
748 {
749 switch (coded) {
750 case PL080_WIDTH_8BIT:
751 return 1;
752 case PL080_WIDTH_16BIT:
753 return 2;
754 case PL080_WIDTH_32BIT:
755 return 4;
756 default:
757 break;
758 }
759 BUG();
760 return 0;
761 }
762
763 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
764 size_t tsize)
765 {
766 u32 retbits = cctl;
767
768 /* Remove all src, dst and transfer size bits */
769 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
770 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
771 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
772
773 /* Then set the bits according to the parameters */
774 switch (srcwidth) {
775 case 1:
776 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
777 break;
778 case 2:
779 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
780 break;
781 case 4:
782 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
783 break;
784 default:
785 BUG();
786 break;
787 }
788
789 switch (dstwidth) {
790 case 1:
791 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
792 break;
793 case 2:
794 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
795 break;
796 case 4:
797 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
798 break;
799 default:
800 BUG();
801 break;
802 }
803
804 tsize &= PL080_CONTROL_TRANSFER_SIZE_MASK;
805 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
806 return retbits;
807 }
808
809 struct pl08x_lli_build_data {
810 struct pl08x_txd *txd;
811 struct pl08x_bus_data srcbus;
812 struct pl08x_bus_data dstbus;
813 size_t remainder;
814 u32 lli_bus;
815 };
816
817 /*
818 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
819 * victim in case src & dest are not similarly aligned. i.e. If after aligning
820 * masters address with width requirements of transfer (by sending few byte by
821 * byte data), slave is still not aligned, then its width will be reduced to
822 * BYTE.
823 * - prefers the destination bus if both available
824 * - prefers bus with fixed address (i.e. peripheral)
825 */
826 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
827 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
828 {
829 if (!(cctl & PL080_CONTROL_DST_INCR)) {
830 *mbus = &bd->dstbus;
831 *sbus = &bd->srcbus;
832 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
833 *mbus = &bd->srcbus;
834 *sbus = &bd->dstbus;
835 } else {
836 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
837 *mbus = &bd->dstbus;
838 *sbus = &bd->srcbus;
839 } else {
840 *mbus = &bd->srcbus;
841 *sbus = &bd->dstbus;
842 }
843 }
844 }
845
846 /*
847 * Fills in one LLI for a certain transfer descriptor and advance the counter
848 */
849 static void pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
850 struct pl08x_lli_build_data *bd,
851 int num_llis, int len, u32 cctl, u32 cctl2)
852 {
853 u32 offset = num_llis * pl08x->lli_words;
854 u32 *llis_va = bd->txd->llis_va + offset;
855 dma_addr_t llis_bus = bd->txd->llis_bus;
856
857 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
858
859 /* Advance the offset to next LLI. */
860 offset += pl08x->lli_words;
861
862 llis_va[PL080_LLI_SRC] = bd->srcbus.addr;
863 llis_va[PL080_LLI_DST] = bd->dstbus.addr;
864 llis_va[PL080_LLI_LLI] = (llis_bus + sizeof(u32) * offset);
865 llis_va[PL080_LLI_LLI] |= bd->lli_bus;
866 llis_va[PL080_LLI_CCTL] = cctl;
867 if (pl08x->vd->pl080s)
868 llis_va[PL080S_LLI_CCTL2] = cctl2;
869
870 if (cctl & PL080_CONTROL_SRC_INCR)
871 bd->srcbus.addr += len;
872 if (cctl & PL080_CONTROL_DST_INCR)
873 bd->dstbus.addr += len;
874
875 BUG_ON(bd->remainder < len);
876
877 bd->remainder -= len;
878 }
879
880 static inline void prep_byte_width_lli(struct pl08x_driver_data *pl08x,
881 struct pl08x_lli_build_data *bd, u32 *cctl, u32 len,
882 int num_llis, size_t *total_bytes)
883 {
884 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
885 pl08x_fill_lli_for_desc(pl08x, bd, num_llis, len, *cctl, len);
886 (*total_bytes) += len;
887 }
888
889 #ifdef VERBOSE_DEBUG
890 static void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
891 const u32 *llis_va, int num_llis)
892 {
893 int i;
894
895 if (pl08x->vd->pl080s) {
896 dev_vdbg(&pl08x->adev->dev,
897 "%-3s %-9s %-10s %-10s %-10s %-10s %s\n",
898 "lli", "", "csrc", "cdst", "clli", "cctl", "cctl2");
899 for (i = 0; i < num_llis; i++) {
900 dev_vdbg(&pl08x->adev->dev,
901 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x 0x%08x\n",
902 i, llis_va, llis_va[PL080_LLI_SRC],
903 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
904 llis_va[PL080_LLI_CCTL],
905 llis_va[PL080S_LLI_CCTL2]);
906 llis_va += pl08x->lli_words;
907 }
908 } else {
909 dev_vdbg(&pl08x->adev->dev,
910 "%-3s %-9s %-10s %-10s %-10s %s\n",
911 "lli", "", "csrc", "cdst", "clli", "cctl");
912 for (i = 0; i < num_llis; i++) {
913 dev_vdbg(&pl08x->adev->dev,
914 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
915 i, llis_va, llis_va[PL080_LLI_SRC],
916 llis_va[PL080_LLI_DST], llis_va[PL080_LLI_LLI],
917 llis_va[PL080_LLI_CCTL]);
918 llis_va += pl08x->lli_words;
919 }
920 }
921 }
922 #else
923 static inline void pl08x_dump_lli(struct pl08x_driver_data *pl08x,
924 const u32 *llis_va, int num_llis) {}
925 #endif
926
927 /*
928 * This fills in the table of LLIs for the transfer descriptor
929 * Note that we assume we never have to change the burst sizes
930 * Return 0 for error
931 */
932 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
933 struct pl08x_txd *txd)
934 {
935 struct pl08x_bus_data *mbus, *sbus;
936 struct pl08x_lli_build_data bd;
937 int num_llis = 0;
938 u32 cctl, early_bytes = 0;
939 size_t max_bytes_per_lli, total_bytes;
940 u32 *llis_va, *last_lli;
941 struct pl08x_sg *dsg;
942
943 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
944 if (!txd->llis_va) {
945 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
946 return 0;
947 }
948
949 bd.txd = txd;
950 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
951 cctl = txd->cctl;
952
953 /* Find maximum width of the source bus */
954 bd.srcbus.maxwidth =
955 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
956 PL080_CONTROL_SWIDTH_SHIFT);
957
958 /* Find maximum width of the destination bus */
959 bd.dstbus.maxwidth =
960 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
961 PL080_CONTROL_DWIDTH_SHIFT);
962
963 list_for_each_entry(dsg, &txd->dsg_list, node) {
964 total_bytes = 0;
965 cctl = txd->cctl;
966
967 bd.srcbus.addr = dsg->src_addr;
968 bd.dstbus.addr = dsg->dst_addr;
969 bd.remainder = dsg->len;
970 bd.srcbus.buswidth = bd.srcbus.maxwidth;
971 bd.dstbus.buswidth = bd.dstbus.maxwidth;
972
973 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
974
975 dev_vdbg(&pl08x->adev->dev,
976 "src=0x%08llx%s/%u dst=0x%08llx%s/%u len=%zu\n",
977 (u64)bd.srcbus.addr,
978 cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
979 bd.srcbus.buswidth,
980 (u64)bd.dstbus.addr,
981 cctl & PL080_CONTROL_DST_INCR ? "+" : "",
982 bd.dstbus.buswidth,
983 bd.remainder);
984 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
985 mbus == &bd.srcbus ? "src" : "dst",
986 sbus == &bd.srcbus ? "src" : "dst");
987
988 /*
989 * Zero length is only allowed if all these requirements are
990 * met:
991 * - flow controller is peripheral.
992 * - src.addr is aligned to src.width
993 * - dst.addr is aligned to dst.width
994 *
995 * sg_len == 1 should be true, as there can be two cases here:
996 *
997 * - Memory addresses are contiguous and are not scattered.
998 * Here, Only one sg will be passed by user driver, with
999 * memory address and zero length. We pass this to controller
1000 * and after the transfer it will receive the last burst
1001 * request from peripheral and so transfer finishes.
1002 *
1003 * - Memory addresses are scattered and are not contiguous.
1004 * Here, Obviously as DMA controller doesn't know when a lli's
1005 * transfer gets over, it can't load next lli. So in this
1006 * case, there has to be an assumption that only one lli is
1007 * supported. Thus, we can't have scattered addresses.
1008 */
1009 if (!bd.remainder) {
1010 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
1011 PL080_CONFIG_FLOW_CONTROL_SHIFT;
1012 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
1013 (fc <= PL080_FLOW_SRC2DST_SRC))) {
1014 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
1015 __func__);
1016 return 0;
1017 }
1018
1019 if (!IS_BUS_ALIGNED(&bd.srcbus) ||
1020 !IS_BUS_ALIGNED(&bd.dstbus)) {
1021 dev_err(&pl08x->adev->dev,
1022 "%s src & dst address must be aligned to src"
1023 " & dst width if peripheral is flow controller",
1024 __func__);
1025 return 0;
1026 }
1027
1028 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1029 bd.dstbus.buswidth, 0);
1030 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1031 0, cctl, 0);
1032 break;
1033 }
1034
1035 /*
1036 * Send byte by byte for following cases
1037 * - Less than a bus width available
1038 * - until master bus is aligned
1039 */
1040 if (bd.remainder < mbus->buswidth)
1041 early_bytes = bd.remainder;
1042 else if (!IS_BUS_ALIGNED(mbus)) {
1043 early_bytes = mbus->buswidth -
1044 (mbus->addr & (mbus->buswidth - 1));
1045 if ((bd.remainder - early_bytes) < mbus->buswidth)
1046 early_bytes = bd.remainder;
1047 }
1048
1049 if (early_bytes) {
1050 dev_vdbg(&pl08x->adev->dev,
1051 "%s byte width LLIs (remain 0x%08zx)\n",
1052 __func__, bd.remainder);
1053 prep_byte_width_lli(pl08x, &bd, &cctl, early_bytes,
1054 num_llis++, &total_bytes);
1055 }
1056
1057 if (bd.remainder) {
1058 /*
1059 * Master now aligned
1060 * - if slave is not then we must set its width down
1061 */
1062 if (!IS_BUS_ALIGNED(sbus)) {
1063 dev_dbg(&pl08x->adev->dev,
1064 "%s set down bus width to one byte\n",
1065 __func__);
1066
1067 sbus->buswidth = 1;
1068 }
1069
1070 /*
1071 * Bytes transferred = tsize * src width, not
1072 * MIN(buswidths)
1073 */
1074 max_bytes_per_lli = bd.srcbus.buswidth *
1075 pl08x->vd->max_transfer_size;
1076 dev_vdbg(&pl08x->adev->dev,
1077 "%s max bytes per lli = %zu\n",
1078 __func__, max_bytes_per_lli);
1079
1080 /*
1081 * Make largest possible LLIs until less than one bus
1082 * width left
1083 */
1084 while (bd.remainder > (mbus->buswidth - 1)) {
1085 size_t lli_len, tsize, width;
1086
1087 /*
1088 * If enough left try to send max possible,
1089 * otherwise try to send the remainder
1090 */
1091 lli_len = min(bd.remainder, max_bytes_per_lli);
1092
1093 /*
1094 * Check against maximum bus alignment:
1095 * Calculate actual transfer size in relation to
1096 * bus width an get a maximum remainder of the
1097 * highest bus width - 1
1098 */
1099 width = max(mbus->buswidth, sbus->buswidth);
1100 lli_len = (lli_len / width) * width;
1101 tsize = lli_len / bd.srcbus.buswidth;
1102
1103 dev_vdbg(&pl08x->adev->dev,
1104 "%s fill lli with single lli chunk of "
1105 "size 0x%08zx (remainder 0x%08zx)\n",
1106 __func__, lli_len, bd.remainder);
1107
1108 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1109 bd.dstbus.buswidth, tsize);
1110 pl08x_fill_lli_for_desc(pl08x, &bd, num_llis++,
1111 lli_len, cctl, tsize);
1112 total_bytes += lli_len;
1113 }
1114
1115 /*
1116 * Send any odd bytes
1117 */
1118 if (bd.remainder) {
1119 dev_vdbg(&pl08x->adev->dev,
1120 "%s align with boundary, send odd bytes (remain %zu)\n",
1121 __func__, bd.remainder);
1122 prep_byte_width_lli(pl08x, &bd, &cctl,
1123 bd.remainder, num_llis++, &total_bytes);
1124 }
1125 }
1126
1127 if (total_bytes != dsg->len) {
1128 dev_err(&pl08x->adev->dev,
1129 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1130 __func__, total_bytes, dsg->len);
1131 return 0;
1132 }
1133
1134 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1135 dev_err(&pl08x->adev->dev,
1136 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1137 __func__, MAX_NUM_TSFR_LLIS);
1138 return 0;
1139 }
1140 }
1141
1142 llis_va = txd->llis_va;
1143 last_lli = llis_va + (num_llis - 1) * pl08x->lli_words;
1144
1145 if (txd->cyclic) {
1146 /* Link back to the first LLI. */
1147 last_lli[PL080_LLI_LLI] = txd->llis_bus | bd.lli_bus;
1148 } else {
1149 /* The final LLI terminates the LLI. */
1150 last_lli[PL080_LLI_LLI] = 0;
1151 /* The final LLI element shall also fire an interrupt. */
1152 last_lli[PL080_LLI_CCTL] |= PL080_CONTROL_TC_IRQ_EN;
1153 }
1154
1155 pl08x_dump_lli(pl08x, llis_va, num_llis);
1156
1157 return num_llis;
1158 }
1159
1160 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1161 struct pl08x_txd *txd)
1162 {
1163 struct pl08x_sg *dsg, *_dsg;
1164
1165 if (txd->llis_va)
1166 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1167
1168 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1169 list_del(&dsg->node);
1170 kfree(dsg);
1171 }
1172
1173 kfree(txd);
1174 }
1175
1176 static void pl08x_desc_free(struct virt_dma_desc *vd)
1177 {
1178 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1179 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1180
1181 dma_descriptor_unmap(&vd->tx);
1182 if (!txd->done)
1183 pl08x_release_mux(plchan);
1184
1185 pl08x_free_txd(plchan->host, txd);
1186 }
1187
1188 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1189 struct pl08x_dma_chan *plchan)
1190 {
1191 LIST_HEAD(head);
1192
1193 vchan_get_all_descriptors(&plchan->vc, &head);
1194 vchan_dma_desc_free_list(&plchan->vc, &head);
1195 }
1196
1197 /*
1198 * The DMA ENGINE API
1199 */
1200 static void pl08x_free_chan_resources(struct dma_chan *chan)
1201 {
1202 /* Ensure all queued descriptors are freed */
1203 vchan_free_chan_resources(to_virt_chan(chan));
1204 }
1205
1206 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1207 struct dma_chan *chan, unsigned long flags)
1208 {
1209 struct dma_async_tx_descriptor *retval = NULL;
1210
1211 return retval;
1212 }
1213
1214 /*
1215 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1216 * If slaves are relying on interrupts to signal completion this function
1217 * must not be called with interrupts disabled.
1218 */
1219 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1220 dma_cookie_t cookie, struct dma_tx_state *txstate)
1221 {
1222 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1223 struct virt_dma_desc *vd;
1224 unsigned long flags;
1225 enum dma_status ret;
1226 size_t bytes = 0;
1227
1228 ret = dma_cookie_status(chan, cookie, txstate);
1229 if (ret == DMA_COMPLETE)
1230 return ret;
1231
1232 /*
1233 * There's no point calculating the residue if there's
1234 * no txstate to store the value.
1235 */
1236 if (!txstate) {
1237 if (plchan->state == PL08X_CHAN_PAUSED)
1238 ret = DMA_PAUSED;
1239 return ret;
1240 }
1241
1242 spin_lock_irqsave(&plchan->vc.lock, flags);
1243 ret = dma_cookie_status(chan, cookie, txstate);
1244 if (ret != DMA_COMPLETE) {
1245 vd = vchan_find_desc(&plchan->vc, cookie);
1246 if (vd) {
1247 /* On the issued list, so hasn't been processed yet */
1248 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1249 struct pl08x_sg *dsg;
1250
1251 list_for_each_entry(dsg, &txd->dsg_list, node)
1252 bytes += dsg->len;
1253 } else {
1254 bytes = pl08x_getbytes_chan(plchan);
1255 }
1256 }
1257 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1258
1259 /*
1260 * This cookie not complete yet
1261 * Get number of bytes left in the active transactions and queue
1262 */
1263 dma_set_residue(txstate, bytes);
1264
1265 if (plchan->state == PL08X_CHAN_PAUSED && ret == DMA_IN_PROGRESS)
1266 ret = DMA_PAUSED;
1267
1268 /* Whether waiting or running, we're in progress */
1269 return ret;
1270 }
1271
1272 /* PrimeCell DMA extension */
1273 struct burst_table {
1274 u32 burstwords;
1275 u32 reg;
1276 };
1277
1278 static const struct burst_table burst_sizes[] = {
1279 {
1280 .burstwords = 256,
1281 .reg = PL080_BSIZE_256,
1282 },
1283 {
1284 .burstwords = 128,
1285 .reg = PL080_BSIZE_128,
1286 },
1287 {
1288 .burstwords = 64,
1289 .reg = PL080_BSIZE_64,
1290 },
1291 {
1292 .burstwords = 32,
1293 .reg = PL080_BSIZE_32,
1294 },
1295 {
1296 .burstwords = 16,
1297 .reg = PL080_BSIZE_16,
1298 },
1299 {
1300 .burstwords = 8,
1301 .reg = PL080_BSIZE_8,
1302 },
1303 {
1304 .burstwords = 4,
1305 .reg = PL080_BSIZE_4,
1306 },
1307 {
1308 .burstwords = 0,
1309 .reg = PL080_BSIZE_1,
1310 },
1311 };
1312
1313 /*
1314 * Given the source and destination available bus masks, select which
1315 * will be routed to each port. We try to have source and destination
1316 * on separate ports, but always respect the allowable settings.
1317 */
1318 static u32 pl08x_select_bus(u8 src, u8 dst)
1319 {
1320 u32 cctl = 0;
1321
1322 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1323 cctl |= PL080_CONTROL_DST_AHB2;
1324 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1325 cctl |= PL080_CONTROL_SRC_AHB2;
1326
1327 return cctl;
1328 }
1329
1330 static u32 pl08x_cctl(u32 cctl)
1331 {
1332 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1333 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1334 PL080_CONTROL_PROT_MASK);
1335
1336 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1337 return cctl | PL080_CONTROL_PROT_SYS;
1338 }
1339
1340 static u32 pl08x_width(enum dma_slave_buswidth width)
1341 {
1342 switch (width) {
1343 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1344 return PL080_WIDTH_8BIT;
1345 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1346 return PL080_WIDTH_16BIT;
1347 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1348 return PL080_WIDTH_32BIT;
1349 default:
1350 return ~0;
1351 }
1352 }
1353
1354 static u32 pl08x_burst(u32 maxburst)
1355 {
1356 int i;
1357
1358 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1359 if (burst_sizes[i].burstwords <= maxburst)
1360 break;
1361
1362 return burst_sizes[i].reg;
1363 }
1364
1365 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1366 enum dma_slave_buswidth addr_width, u32 maxburst)
1367 {
1368 u32 width, burst, cctl = 0;
1369
1370 width = pl08x_width(addr_width);
1371 if (width == ~0)
1372 return ~0;
1373
1374 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1375 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1376
1377 /*
1378 * If this channel will only request single transfers, set this
1379 * down to ONE element. Also select one element if no maxburst
1380 * is specified.
1381 */
1382 if (plchan->cd->single)
1383 maxburst = 1;
1384
1385 burst = pl08x_burst(maxburst);
1386 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1387 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1388
1389 return pl08x_cctl(cctl);
1390 }
1391
1392 /*
1393 * Slave transactions callback to the slave device to allow
1394 * synchronization of slave DMA signals with the DMAC enable
1395 */
1396 static void pl08x_issue_pending(struct dma_chan *chan)
1397 {
1398 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1399 unsigned long flags;
1400
1401 spin_lock_irqsave(&plchan->vc.lock, flags);
1402 if (vchan_issue_pending(&plchan->vc)) {
1403 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1404 pl08x_phy_alloc_and_start(plchan);
1405 }
1406 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1407 }
1408
1409 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1410 {
1411 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1412
1413 if (txd) {
1414 INIT_LIST_HEAD(&txd->dsg_list);
1415
1416 /* Always enable error and terminal interrupts */
1417 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1418 PL080_CONFIG_TC_IRQ_MASK;
1419 }
1420 return txd;
1421 }
1422
1423 /*
1424 * Initialize a descriptor to be used by memcpy submit
1425 */
1426 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1427 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1428 size_t len, unsigned long flags)
1429 {
1430 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1431 struct pl08x_driver_data *pl08x = plchan->host;
1432 struct pl08x_txd *txd;
1433 struct pl08x_sg *dsg;
1434 int ret;
1435
1436 txd = pl08x_get_txd(plchan);
1437 if (!txd) {
1438 dev_err(&pl08x->adev->dev,
1439 "%s no memory for descriptor\n", __func__);
1440 return NULL;
1441 }
1442
1443 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1444 if (!dsg) {
1445 pl08x_free_txd(pl08x, txd);
1446 return NULL;
1447 }
1448 list_add_tail(&dsg->node, &txd->dsg_list);
1449
1450 dsg->src_addr = src;
1451 dsg->dst_addr = dest;
1452 dsg->len = len;
1453
1454 /* Set platform data for m2m */
1455 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1456 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1457 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1458
1459 /* Both to be incremented or the code will break */
1460 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1461
1462 if (pl08x->vd->dualmaster)
1463 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1464 pl08x->mem_buses);
1465
1466 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1467 if (!ret) {
1468 pl08x_free_txd(pl08x, txd);
1469 return NULL;
1470 }
1471
1472 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1473 }
1474
1475 static struct pl08x_txd *pl08x_init_txd(
1476 struct dma_chan *chan,
1477 enum dma_transfer_direction direction,
1478 dma_addr_t *slave_addr)
1479 {
1480 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1481 struct pl08x_driver_data *pl08x = plchan->host;
1482 struct pl08x_txd *txd;
1483 enum dma_slave_buswidth addr_width;
1484 int ret, tmp;
1485 u8 src_buses, dst_buses;
1486 u32 maxburst, cctl;
1487
1488 txd = pl08x_get_txd(plchan);
1489 if (!txd) {
1490 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1491 return NULL;
1492 }
1493
1494 /*
1495 * Set up addresses, the PrimeCell configured address
1496 * will take precedence since this may configure the
1497 * channel target address dynamically at runtime.
1498 */
1499 if (direction == DMA_MEM_TO_DEV) {
1500 cctl = PL080_CONTROL_SRC_INCR;
1501 *slave_addr = plchan->cfg.dst_addr;
1502 addr_width = plchan->cfg.dst_addr_width;
1503 maxburst = plchan->cfg.dst_maxburst;
1504 src_buses = pl08x->mem_buses;
1505 dst_buses = plchan->cd->periph_buses;
1506 } else if (direction == DMA_DEV_TO_MEM) {
1507 cctl = PL080_CONTROL_DST_INCR;
1508 *slave_addr = plchan->cfg.src_addr;
1509 addr_width = plchan->cfg.src_addr_width;
1510 maxburst = plchan->cfg.src_maxburst;
1511 src_buses = plchan->cd->periph_buses;
1512 dst_buses = pl08x->mem_buses;
1513 } else {
1514 pl08x_free_txd(pl08x, txd);
1515 dev_err(&pl08x->adev->dev,
1516 "%s direction unsupported\n", __func__);
1517 return NULL;
1518 }
1519
1520 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1521 if (cctl == ~0) {
1522 pl08x_free_txd(pl08x, txd);
1523 dev_err(&pl08x->adev->dev,
1524 "DMA slave configuration botched?\n");
1525 return NULL;
1526 }
1527
1528 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1529
1530 if (plchan->cfg.device_fc)
1531 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1532 PL080_FLOW_PER2MEM_PER;
1533 else
1534 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1535 PL080_FLOW_PER2MEM;
1536
1537 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1538
1539 ret = pl08x_request_mux(plchan);
1540 if (ret < 0) {
1541 pl08x_free_txd(pl08x, txd);
1542 dev_dbg(&pl08x->adev->dev,
1543 "unable to mux for transfer on %s due to platform restrictions\n",
1544 plchan->name);
1545 return NULL;
1546 }
1547
1548 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1549 plchan->signal, plchan->name);
1550
1551 /* Assign the flow control signal to this channel */
1552 if (direction == DMA_MEM_TO_DEV)
1553 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1554 else
1555 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1556
1557 return txd;
1558 }
1559
1560 static int pl08x_tx_add_sg(struct pl08x_txd *txd,
1561 enum dma_transfer_direction direction,
1562 dma_addr_t slave_addr,
1563 dma_addr_t buf_addr,
1564 unsigned int len)
1565 {
1566 struct pl08x_sg *dsg;
1567
1568 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1569 if (!dsg)
1570 return -ENOMEM;
1571
1572 list_add_tail(&dsg->node, &txd->dsg_list);
1573
1574 dsg->len = len;
1575 if (direction == DMA_MEM_TO_DEV) {
1576 dsg->src_addr = buf_addr;
1577 dsg->dst_addr = slave_addr;
1578 } else {
1579 dsg->src_addr = slave_addr;
1580 dsg->dst_addr = buf_addr;
1581 }
1582
1583 return 0;
1584 }
1585
1586 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1587 struct dma_chan *chan, struct scatterlist *sgl,
1588 unsigned int sg_len, enum dma_transfer_direction direction,
1589 unsigned long flags, void *context)
1590 {
1591 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1592 struct pl08x_driver_data *pl08x = plchan->host;
1593 struct pl08x_txd *txd;
1594 struct scatterlist *sg;
1595 int ret, tmp;
1596 dma_addr_t slave_addr;
1597
1598 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1599 __func__, sg_dma_len(sgl), plchan->name);
1600
1601 txd = pl08x_init_txd(chan, direction, &slave_addr);
1602 if (!txd)
1603 return NULL;
1604
1605 for_each_sg(sgl, sg, sg_len, tmp) {
1606 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1607 sg_dma_address(sg),
1608 sg_dma_len(sg));
1609 if (ret) {
1610 pl08x_release_mux(plchan);
1611 pl08x_free_txd(pl08x, txd);
1612 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1613 __func__);
1614 return NULL;
1615 }
1616 }
1617
1618 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1619 if (!ret) {
1620 pl08x_release_mux(plchan);
1621 pl08x_free_txd(pl08x, txd);
1622 return NULL;
1623 }
1624
1625 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1626 }
1627
1628 static struct dma_async_tx_descriptor *pl08x_prep_dma_cyclic(
1629 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1630 size_t period_len, enum dma_transfer_direction direction,
1631 unsigned long flags)
1632 {
1633 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1634 struct pl08x_driver_data *pl08x = plchan->host;
1635 struct pl08x_txd *txd;
1636 int ret, tmp;
1637 dma_addr_t slave_addr;
1638
1639 dev_dbg(&pl08x->adev->dev,
1640 "%s prepare cyclic transaction of %zd/%zd bytes %s %s\n",
1641 __func__, period_len, buf_len,
1642 direction == DMA_MEM_TO_DEV ? "to" : "from",
1643 plchan->name);
1644
1645 txd = pl08x_init_txd(chan, direction, &slave_addr);
1646 if (!txd)
1647 return NULL;
1648
1649 txd->cyclic = true;
1650 txd->cctl |= PL080_CONTROL_TC_IRQ_EN;
1651 for (tmp = 0; tmp < buf_len; tmp += period_len) {
1652 ret = pl08x_tx_add_sg(txd, direction, slave_addr,
1653 buf_addr + tmp, period_len);
1654 if (ret) {
1655 pl08x_release_mux(plchan);
1656 pl08x_free_txd(pl08x, txd);
1657 return NULL;
1658 }
1659 }
1660
1661 ret = pl08x_fill_llis_for_desc(plchan->host, txd);
1662 if (!ret) {
1663 pl08x_release_mux(plchan);
1664 pl08x_free_txd(pl08x, txd);
1665 return NULL;
1666 }
1667
1668 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1669 }
1670
1671 static int pl08x_config(struct dma_chan *chan,
1672 struct dma_slave_config *config)
1673 {
1674 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1675 struct pl08x_driver_data *pl08x = plchan->host;
1676
1677 if (!plchan->slave)
1678 return -EINVAL;
1679
1680 /* Reject definitely invalid configurations */
1681 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1682 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1683 return -EINVAL;
1684
1685 if (config->device_fc && pl08x->vd->pl080s) {
1686 dev_err(&pl08x->adev->dev,
1687 "%s: PL080S does not support peripheral flow control\n",
1688 __func__);
1689 return -EINVAL;
1690 }
1691
1692 plchan->cfg = *config;
1693
1694 return 0;
1695 }
1696
1697 static int pl08x_terminate_all(struct dma_chan *chan)
1698 {
1699 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1700 struct pl08x_driver_data *pl08x = plchan->host;
1701 unsigned long flags;
1702
1703 spin_lock_irqsave(&plchan->vc.lock, flags);
1704 if (!plchan->phychan && !plchan->at) {
1705 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1706 return 0;
1707 }
1708
1709 plchan->state = PL08X_CHAN_IDLE;
1710
1711 if (plchan->phychan) {
1712 /*
1713 * Mark physical channel as free and free any slave
1714 * signal
1715 */
1716 pl08x_phy_free(plchan);
1717 }
1718 /* Dequeue jobs and free LLIs */
1719 if (plchan->at) {
1720 pl08x_desc_free(&plchan->at->vd);
1721 plchan->at = NULL;
1722 }
1723 /* Dequeue jobs not yet fired as well */
1724 pl08x_free_txd_list(pl08x, plchan);
1725
1726 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1727
1728 return 0;
1729 }
1730
1731 static int pl08x_pause(struct dma_chan *chan)
1732 {
1733 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1734 unsigned long flags;
1735
1736 /*
1737 * Anything succeeds on channels with no physical allocation and
1738 * no queued transfers.
1739 */
1740 spin_lock_irqsave(&plchan->vc.lock, flags);
1741 if (!plchan->phychan && !plchan->at) {
1742 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1743 return 0;
1744 }
1745
1746 pl08x_pause_phy_chan(plchan->phychan);
1747 plchan->state = PL08X_CHAN_PAUSED;
1748
1749 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1750
1751 return 0;
1752 }
1753
1754 static int pl08x_resume(struct dma_chan *chan)
1755 {
1756 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1757 unsigned long flags;
1758
1759 /*
1760 * Anything succeeds on channels with no physical allocation and
1761 * no queued transfers.
1762 */
1763 spin_lock_irqsave(&plchan->vc.lock, flags);
1764 if (!plchan->phychan && !plchan->at) {
1765 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1766 return 0;
1767 }
1768
1769 pl08x_resume_phy_chan(plchan->phychan);
1770 plchan->state = PL08X_CHAN_RUNNING;
1771
1772 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1773
1774 return 0;
1775 }
1776
1777 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1778 {
1779 struct pl08x_dma_chan *plchan;
1780 char *name = chan_id;
1781
1782 /* Reject channels for devices not bound to this driver */
1783 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1784 return false;
1785
1786 plchan = to_pl08x_chan(chan);
1787
1788 /* Check that the channel is not taken! */
1789 if (!strcmp(plchan->name, name))
1790 return true;
1791
1792 return false;
1793 }
1794 EXPORT_SYMBOL_GPL(pl08x_filter_id);
1795
1796 /*
1797 * Just check that the device is there and active
1798 * TODO: turn this bit on/off depending on the number of physical channels
1799 * actually used, if it is zero... well shut it off. That will save some
1800 * power. Cut the clock at the same time.
1801 */
1802 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1803 {
1804 /* The Nomadik variant does not have the config register */
1805 if (pl08x->vd->nomadik)
1806 return;
1807 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1808 }
1809
1810 static irqreturn_t pl08x_irq(int irq, void *dev)
1811 {
1812 struct pl08x_driver_data *pl08x = dev;
1813 u32 mask = 0, err, tc, i;
1814
1815 /* check & clear - ERR & TC interrupts */
1816 err = readl(pl08x->base + PL080_ERR_STATUS);
1817 if (err) {
1818 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1819 __func__, err);
1820 writel(err, pl08x->base + PL080_ERR_CLEAR);
1821 }
1822 tc = readl(pl08x->base + PL080_TC_STATUS);
1823 if (tc)
1824 writel(tc, pl08x->base + PL080_TC_CLEAR);
1825
1826 if (!err && !tc)
1827 return IRQ_NONE;
1828
1829 for (i = 0; i < pl08x->vd->channels; i++) {
1830 if (((1 << i) & err) || ((1 << i) & tc)) {
1831 /* Locate physical channel */
1832 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1833 struct pl08x_dma_chan *plchan = phychan->serving;
1834 struct pl08x_txd *tx;
1835
1836 if (!plchan) {
1837 dev_err(&pl08x->adev->dev,
1838 "%s Error TC interrupt on unused channel: 0x%08x\n",
1839 __func__, i);
1840 continue;
1841 }
1842
1843 spin_lock(&plchan->vc.lock);
1844 tx = plchan->at;
1845 if (tx && tx->cyclic) {
1846 vchan_cyclic_callback(&tx->vd);
1847 } else if (tx) {
1848 plchan->at = NULL;
1849 /*
1850 * This descriptor is done, release its mux
1851 * reservation.
1852 */
1853 pl08x_release_mux(plchan);
1854 tx->done = true;
1855 vchan_cookie_complete(&tx->vd);
1856
1857 /*
1858 * And start the next descriptor (if any),
1859 * otherwise free this channel.
1860 */
1861 if (vchan_next_desc(&plchan->vc))
1862 pl08x_start_next_txd(plchan);
1863 else
1864 pl08x_phy_free(plchan);
1865 }
1866 spin_unlock(&plchan->vc.lock);
1867
1868 mask |= (1 << i);
1869 }
1870 }
1871
1872 return mask ? IRQ_HANDLED : IRQ_NONE;
1873 }
1874
1875 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1876 {
1877 chan->slave = true;
1878 chan->name = chan->cd->bus_id;
1879 chan->cfg.src_addr = chan->cd->addr;
1880 chan->cfg.dst_addr = chan->cd->addr;
1881 }
1882
1883 /*
1884 * Initialise the DMAC memcpy/slave channels.
1885 * Make a local wrapper to hold required data
1886 */
1887 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1888 struct dma_device *dmadev, unsigned int channels, bool slave)
1889 {
1890 struct pl08x_dma_chan *chan;
1891 int i;
1892
1893 INIT_LIST_HEAD(&dmadev->channels);
1894
1895 /*
1896 * Register as many many memcpy as we have physical channels,
1897 * we won't always be able to use all but the code will have
1898 * to cope with that situation.
1899 */
1900 for (i = 0; i < channels; i++) {
1901 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1902 if (!chan)
1903 return -ENOMEM;
1904
1905 chan->host = pl08x;
1906 chan->state = PL08X_CHAN_IDLE;
1907 chan->signal = -1;
1908
1909 if (slave) {
1910 chan->cd = &pl08x->pd->slave_channels[i];
1911 /*
1912 * Some implementations have muxed signals, whereas some
1913 * use a mux in front of the signals and need dynamic
1914 * assignment of signals.
1915 */
1916 chan->signal = i;
1917 pl08x_dma_slave_init(chan);
1918 } else {
1919 chan->cd = &pl08x->pd->memcpy_channel;
1920 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1921 if (!chan->name) {
1922 kfree(chan);
1923 return -ENOMEM;
1924 }
1925 }
1926 dev_dbg(&pl08x->adev->dev,
1927 "initialize virtual channel \"%s\"\n",
1928 chan->name);
1929
1930 chan->vc.desc_free = pl08x_desc_free;
1931 vchan_init(&chan->vc, dmadev);
1932 }
1933 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1934 i, slave ? "slave" : "memcpy");
1935 return i;
1936 }
1937
1938 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1939 {
1940 struct pl08x_dma_chan *chan = NULL;
1941 struct pl08x_dma_chan *next;
1942
1943 list_for_each_entry_safe(chan,
1944 next, &dmadev->channels, vc.chan.device_node) {
1945 list_del(&chan->vc.chan.device_node);
1946 kfree(chan);
1947 }
1948 }
1949
1950 #ifdef CONFIG_DEBUG_FS
1951 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1952 {
1953 switch (state) {
1954 case PL08X_CHAN_IDLE:
1955 return "idle";
1956 case PL08X_CHAN_RUNNING:
1957 return "running";
1958 case PL08X_CHAN_PAUSED:
1959 return "paused";
1960 case PL08X_CHAN_WAITING:
1961 return "waiting";
1962 default:
1963 break;
1964 }
1965 return "UNKNOWN STATE";
1966 }
1967
1968 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1969 {
1970 struct pl08x_driver_data *pl08x = s->private;
1971 struct pl08x_dma_chan *chan;
1972 struct pl08x_phy_chan *ch;
1973 unsigned long flags;
1974 int i;
1975
1976 seq_printf(s, "PL08x physical channels:\n");
1977 seq_printf(s, "CHANNEL:\tUSER:\n");
1978 seq_printf(s, "--------\t-----\n");
1979 for (i = 0; i < pl08x->vd->channels; i++) {
1980 struct pl08x_dma_chan *virt_chan;
1981
1982 ch = &pl08x->phy_chans[i];
1983
1984 spin_lock_irqsave(&ch->lock, flags);
1985 virt_chan = ch->serving;
1986
1987 seq_printf(s, "%d\t\t%s%s\n",
1988 ch->id,
1989 virt_chan ? virt_chan->name : "(none)",
1990 ch->locked ? " LOCKED" : "");
1991
1992 spin_unlock_irqrestore(&ch->lock, flags);
1993 }
1994
1995 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1996 seq_printf(s, "CHANNEL:\tSTATE:\n");
1997 seq_printf(s, "--------\t------\n");
1998 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1999 seq_printf(s, "%s\t\t%s\n", chan->name,
2000 pl08x_state_str(chan->state));
2001 }
2002
2003 seq_printf(s, "\nPL08x virtual slave channels:\n");
2004 seq_printf(s, "CHANNEL:\tSTATE:\n");
2005 seq_printf(s, "--------\t------\n");
2006 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2007 seq_printf(s, "%s\t\t%s\n", chan->name,
2008 pl08x_state_str(chan->state));
2009 }
2010
2011 return 0;
2012 }
2013
2014 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
2015 {
2016 return single_open(file, pl08x_debugfs_show, inode->i_private);
2017 }
2018
2019 static const struct file_operations pl08x_debugfs_operations = {
2020 .open = pl08x_debugfs_open,
2021 .read = seq_read,
2022 .llseek = seq_lseek,
2023 .release = single_release,
2024 };
2025
2026 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2027 {
2028 /* Expose a simple debugfs interface to view all clocks */
2029 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
2030 S_IFREG | S_IRUGO, NULL, pl08x,
2031 &pl08x_debugfs_operations);
2032 }
2033
2034 #else
2035 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
2036 {
2037 }
2038 #endif
2039
2040 #ifdef CONFIG_OF
2041 static struct dma_chan *pl08x_find_chan_id(struct pl08x_driver_data *pl08x,
2042 u32 id)
2043 {
2044 struct pl08x_dma_chan *chan;
2045
2046 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
2047 if (chan->signal == id)
2048 return &chan->vc.chan;
2049 }
2050
2051 return NULL;
2052 }
2053
2054 static struct dma_chan *pl08x_of_xlate(struct of_phandle_args *dma_spec,
2055 struct of_dma *ofdma)
2056 {
2057 struct pl08x_driver_data *pl08x = ofdma->of_dma_data;
2058 struct dma_chan *dma_chan;
2059 struct pl08x_dma_chan *plchan;
2060
2061 if (!pl08x)
2062 return NULL;
2063
2064 if (dma_spec->args_count != 2) {
2065 dev_err(&pl08x->adev->dev,
2066 "DMA channel translation requires two cells\n");
2067 return NULL;
2068 }
2069
2070 dma_chan = pl08x_find_chan_id(pl08x, dma_spec->args[0]);
2071 if (!dma_chan) {
2072 dev_err(&pl08x->adev->dev,
2073 "DMA slave channel not found\n");
2074 return NULL;
2075 }
2076
2077 plchan = to_pl08x_chan(dma_chan);
2078 dev_dbg(&pl08x->adev->dev,
2079 "translated channel for signal %d\n",
2080 dma_spec->args[0]);
2081
2082 /* Augment channel data for applicable AHB buses */
2083 plchan->cd->periph_buses = dma_spec->args[1];
2084 return dma_get_slave_channel(dma_chan);
2085 }
2086
2087 static int pl08x_of_probe(struct amba_device *adev,
2088 struct pl08x_driver_data *pl08x,
2089 struct device_node *np)
2090 {
2091 struct pl08x_platform_data *pd;
2092 struct pl08x_channel_data *chanp = NULL;
2093 u32 cctl_memcpy = 0;
2094 u32 val;
2095 int ret;
2096 int i;
2097
2098 pd = devm_kzalloc(&adev->dev, sizeof(*pd), GFP_KERNEL);
2099 if (!pd)
2100 return -ENOMEM;
2101
2102 /* Eligible bus masters for fetching LLIs */
2103 if (of_property_read_bool(np, "lli-bus-interface-ahb1"))
2104 pd->lli_buses |= PL08X_AHB1;
2105 if (of_property_read_bool(np, "lli-bus-interface-ahb2"))
2106 pd->lli_buses |= PL08X_AHB2;
2107 if (!pd->lli_buses) {
2108 dev_info(&adev->dev, "no bus masters for LLIs stated, assume all\n");
2109 pd->lli_buses |= PL08X_AHB1 | PL08X_AHB2;
2110 }
2111
2112 /* Eligible bus masters for memory access */
2113 if (of_property_read_bool(np, "mem-bus-interface-ahb1"))
2114 pd->mem_buses |= PL08X_AHB1;
2115 if (of_property_read_bool(np, "mem-bus-interface-ahb2"))
2116 pd->mem_buses |= PL08X_AHB2;
2117 if (!pd->mem_buses) {
2118 dev_info(&adev->dev, "no bus masters for memory stated, assume all\n");
2119 pd->mem_buses |= PL08X_AHB1 | PL08X_AHB2;
2120 }
2121
2122 /* Parse the memcpy channel properties */
2123 ret = of_property_read_u32(np, "memcpy-burst-size", &val);
2124 if (ret) {
2125 dev_info(&adev->dev, "no memcpy burst size specified, using 1 byte\n");
2126 val = 1;
2127 }
2128 switch (val) {
2129 default:
2130 dev_err(&adev->dev, "illegal burst size for memcpy, set to 1\n");
2131 /* Fall through */
2132 case 1:
2133 cctl_memcpy |= PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT |
2134 PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT;
2135 break;
2136 case 4:
2137 cctl_memcpy |= PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT |
2138 PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT;
2139 break;
2140 case 8:
2141 cctl_memcpy |= PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT |
2142 PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT;
2143 break;
2144 case 16:
2145 cctl_memcpy |= PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT |
2146 PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT;
2147 break;
2148 case 32:
2149 cctl_memcpy |= PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT |
2150 PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT;
2151 break;
2152 case 64:
2153 cctl_memcpy |= PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT |
2154 PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT;
2155 break;
2156 case 128:
2157 cctl_memcpy |= PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT |
2158 PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT;
2159 break;
2160 case 256:
2161 cctl_memcpy |= PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT |
2162 PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT;
2163 break;
2164 }
2165
2166 ret = of_property_read_u32(np, "memcpy-bus-width", &val);
2167 if (ret) {
2168 dev_info(&adev->dev, "no memcpy bus width specified, using 8 bits\n");
2169 val = 8;
2170 }
2171 switch (val) {
2172 default:
2173 dev_err(&adev->dev, "illegal bus width for memcpy, set to 8 bits\n");
2174 /* Fall through */
2175 case 8:
2176 cctl_memcpy |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT |
2177 PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
2178 break;
2179 case 16:
2180 cctl_memcpy |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT |
2181 PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
2182 break;
2183 case 32:
2184 cctl_memcpy |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT |
2185 PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
2186 break;
2187 }
2188
2189 /* This is currently the only thing making sense */
2190 cctl_memcpy |= PL080_CONTROL_PROT_SYS;
2191
2192 /* Set up memcpy channel */
2193 pd->memcpy_channel.bus_id = "memcpy";
2194 pd->memcpy_channel.cctl_memcpy = cctl_memcpy;
2195 /* Use the buses that can access memory, obviously */
2196 pd->memcpy_channel.periph_buses = pd->mem_buses;
2197
2198 /*
2199 * Allocate channel data for all possible slave channels (one
2200 * for each possible signal), channels will then be allocated
2201 * for a device and have it's AHB interfaces set up at
2202 * translation time.
2203 */
2204 chanp = devm_kcalloc(&adev->dev,
2205 pl08x->vd->signals,
2206 sizeof(struct pl08x_channel_data),
2207 GFP_KERNEL);
2208 if (!chanp)
2209 return -ENOMEM;
2210
2211 pd->slave_channels = chanp;
2212 for (i = 0; i < pl08x->vd->signals; i++) {
2213 /* chanp->periph_buses will be assigned at translation */
2214 chanp->bus_id = kasprintf(GFP_KERNEL, "slave%d", i);
2215 chanp++;
2216 }
2217 pd->num_slave_channels = pl08x->vd->signals;
2218
2219 pl08x->pd = pd;
2220
2221 return of_dma_controller_register(adev->dev.of_node, pl08x_of_xlate,
2222 pl08x);
2223 }
2224 #else
2225 static inline int pl08x_of_probe(struct amba_device *adev,
2226 struct pl08x_driver_data *pl08x,
2227 struct device_node *np)
2228 {
2229 return -EINVAL;
2230 }
2231 #endif
2232
2233 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
2234 {
2235 struct pl08x_driver_data *pl08x;
2236 const struct vendor_data *vd = id->data;
2237 struct device_node *np = adev->dev.of_node;
2238 u32 tsfr_size;
2239 int ret = 0;
2240 int i;
2241
2242 ret = amba_request_regions(adev, NULL);
2243 if (ret)
2244 return ret;
2245
2246 /* Ensure that we can do DMA */
2247 ret = dma_set_mask_and_coherent(&adev->dev, DMA_BIT_MASK(32));
2248 if (ret)
2249 goto out_no_pl08x;
2250
2251 /* Create the driver state holder */
2252 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
2253 if (!pl08x) {
2254 ret = -ENOMEM;
2255 goto out_no_pl08x;
2256 }
2257
2258 /* Assign useful pointers to the driver state */
2259 pl08x->adev = adev;
2260 pl08x->vd = vd;
2261
2262 /* Initialize memcpy engine */
2263 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
2264 pl08x->memcpy.dev = &adev->dev;
2265 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
2266 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
2267 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2268 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
2269 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
2270 pl08x->memcpy.device_config = pl08x_config;
2271 pl08x->memcpy.device_pause = pl08x_pause;
2272 pl08x->memcpy.device_resume = pl08x_resume;
2273 pl08x->memcpy.device_terminate_all = pl08x_terminate_all;
2274 pl08x->memcpy.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2275 pl08x->memcpy.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2276 pl08x->memcpy.directions = BIT(DMA_MEM_TO_MEM);
2277 pl08x->memcpy.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2278
2279 /* Initialize slave engine */
2280 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
2281 dma_cap_set(DMA_CYCLIC, pl08x->slave.cap_mask);
2282 pl08x->slave.dev = &adev->dev;
2283 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2284 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2285 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2286 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2287 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2288 pl08x->slave.device_prep_dma_cyclic = pl08x_prep_dma_cyclic;
2289 pl08x->slave.device_config = pl08x_config;
2290 pl08x->slave.device_pause = pl08x_pause;
2291 pl08x->slave.device_resume = pl08x_resume;
2292 pl08x->slave.device_terminate_all = pl08x_terminate_all;
2293 pl08x->slave.src_addr_widths = PL80X_DMA_BUSWIDTHS;
2294 pl08x->slave.dst_addr_widths = PL80X_DMA_BUSWIDTHS;
2295 pl08x->slave.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
2296 pl08x->slave.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
2297
2298 /* Get the platform data */
2299 pl08x->pd = dev_get_platdata(&adev->dev);
2300 if (!pl08x->pd) {
2301 if (np) {
2302 ret = pl08x_of_probe(adev, pl08x, np);
2303 if (ret)
2304 goto out_no_platdata;
2305 } else {
2306 dev_err(&adev->dev, "no platform data supplied\n");
2307 ret = -EINVAL;
2308 goto out_no_platdata;
2309 }
2310 }
2311
2312 /* By default, AHB1 only. If dualmaster, from platform */
2313 pl08x->lli_buses = PL08X_AHB1;
2314 pl08x->mem_buses = PL08X_AHB1;
2315 if (pl08x->vd->dualmaster) {
2316 pl08x->lli_buses = pl08x->pd->lli_buses;
2317 pl08x->mem_buses = pl08x->pd->mem_buses;
2318 }
2319
2320 if (vd->pl080s)
2321 pl08x->lli_words = PL080S_LLI_WORDS;
2322 else
2323 pl08x->lli_words = PL080_LLI_WORDS;
2324 tsfr_size = MAX_NUM_TSFR_LLIS * pl08x->lli_words * sizeof(u32);
2325
2326 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2327 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2328 tsfr_size, PL08X_ALIGN, 0);
2329 if (!pl08x->pool) {
2330 ret = -ENOMEM;
2331 goto out_no_lli_pool;
2332 }
2333
2334 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2335 if (!pl08x->base) {
2336 ret = -ENOMEM;
2337 goto out_no_ioremap;
2338 }
2339
2340 /* Turn on the PL08x */
2341 pl08x_ensure_on(pl08x);
2342
2343 /* Attach the interrupt handler */
2344 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2345 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2346
2347 ret = request_irq(adev->irq[0], pl08x_irq, 0, DRIVER_NAME, pl08x);
2348 if (ret) {
2349 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2350 __func__, adev->irq[0]);
2351 goto out_no_irq;
2352 }
2353
2354 /* Initialize physical channels */
2355 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2356 GFP_KERNEL);
2357 if (!pl08x->phy_chans) {
2358 ret = -ENOMEM;
2359 goto out_no_phychans;
2360 }
2361
2362 for (i = 0; i < vd->channels; i++) {
2363 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2364
2365 ch->id = i;
2366 ch->base = pl08x->base + PL080_Cx_BASE(i);
2367 ch->reg_config = ch->base + vd->config_offset;
2368 spin_lock_init(&ch->lock);
2369
2370 /*
2371 * Nomadik variants can have channels that are locked
2372 * down for the secure world only. Lock up these channels
2373 * by perpetually serving a dummy virtual channel.
2374 */
2375 if (vd->nomadik) {
2376 u32 val;
2377
2378 val = readl(ch->reg_config);
2379 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2380 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2381 ch->locked = true;
2382 }
2383 }
2384
2385 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2386 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2387 }
2388
2389 /* Register as many memcpy channels as there are physical channels */
2390 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2391 pl08x->vd->channels, false);
2392 if (ret <= 0) {
2393 dev_warn(&pl08x->adev->dev,
2394 "%s failed to enumerate memcpy channels - %d\n",
2395 __func__, ret);
2396 goto out_no_memcpy;
2397 }
2398
2399 /* Register slave channels */
2400 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2401 pl08x->pd->num_slave_channels, true);
2402 if (ret < 0) {
2403 dev_warn(&pl08x->adev->dev,
2404 "%s failed to enumerate slave channels - %d\n",
2405 __func__, ret);
2406 goto out_no_slave;
2407 }
2408
2409 ret = dma_async_device_register(&pl08x->memcpy);
2410 if (ret) {
2411 dev_warn(&pl08x->adev->dev,
2412 "%s failed to register memcpy as an async device - %d\n",
2413 __func__, ret);
2414 goto out_no_memcpy_reg;
2415 }
2416
2417 ret = dma_async_device_register(&pl08x->slave);
2418 if (ret) {
2419 dev_warn(&pl08x->adev->dev,
2420 "%s failed to register slave as an async device - %d\n",
2421 __func__, ret);
2422 goto out_no_slave_reg;
2423 }
2424
2425 amba_set_drvdata(adev, pl08x);
2426 init_pl08x_debugfs(pl08x);
2427 dev_info(&pl08x->adev->dev, "DMA: PL%03x%s rev%u at 0x%08llx irq %d\n",
2428 amba_part(adev), pl08x->vd->pl080s ? "s" : "", amba_rev(adev),
2429 (unsigned long long)adev->res.start, adev->irq[0]);
2430
2431 return 0;
2432
2433 out_no_slave_reg:
2434 dma_async_device_unregister(&pl08x->memcpy);
2435 out_no_memcpy_reg:
2436 pl08x_free_virtual_channels(&pl08x->slave);
2437 out_no_slave:
2438 pl08x_free_virtual_channels(&pl08x->memcpy);
2439 out_no_memcpy:
2440 kfree(pl08x->phy_chans);
2441 out_no_phychans:
2442 free_irq(adev->irq[0], pl08x);
2443 out_no_irq:
2444 iounmap(pl08x->base);
2445 out_no_ioremap:
2446 dma_pool_destroy(pl08x->pool);
2447 out_no_lli_pool:
2448 out_no_platdata:
2449 kfree(pl08x);
2450 out_no_pl08x:
2451 amba_release_regions(adev);
2452 return ret;
2453 }
2454
2455 /* PL080 has 8 channels and the PL080 have just 2 */
2456 static struct vendor_data vendor_pl080 = {
2457 .config_offset = PL080_CH_CONFIG,
2458 .channels = 8,
2459 .signals = 16,
2460 .dualmaster = true,
2461 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2462 };
2463
2464 static struct vendor_data vendor_nomadik = {
2465 .config_offset = PL080_CH_CONFIG,
2466 .channels = 8,
2467 .signals = 32,
2468 .dualmaster = true,
2469 .nomadik = true,
2470 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2471 };
2472
2473 static struct vendor_data vendor_pl080s = {
2474 .config_offset = PL080S_CH_CONFIG,
2475 .channels = 8,
2476 .signals = 32,
2477 .pl080s = true,
2478 .max_transfer_size = PL080S_CONTROL_TRANSFER_SIZE_MASK,
2479 };
2480
2481 static struct vendor_data vendor_pl081 = {
2482 .config_offset = PL080_CH_CONFIG,
2483 .channels = 2,
2484 .signals = 16,
2485 .dualmaster = false,
2486 .max_transfer_size = PL080_CONTROL_TRANSFER_SIZE_MASK,
2487 };
2488
2489 static struct amba_id pl08x_ids[] = {
2490 /* Samsung PL080S variant */
2491 {
2492 .id = 0x0a141080,
2493 .mask = 0xffffffff,
2494 .data = &vendor_pl080s,
2495 },
2496 /* PL080 */
2497 {
2498 .id = 0x00041080,
2499 .mask = 0x000fffff,
2500 .data = &vendor_pl080,
2501 },
2502 /* PL081 */
2503 {
2504 .id = 0x00041081,
2505 .mask = 0x000fffff,
2506 .data = &vendor_pl081,
2507 },
2508 /* Nomadik 8815 PL080 variant */
2509 {
2510 .id = 0x00280080,
2511 .mask = 0x00ffffff,
2512 .data = &vendor_nomadik,
2513 },
2514 { 0, 0 },
2515 };
2516
2517 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2518
2519 static struct amba_driver pl08x_amba_driver = {
2520 .drv.name = DRIVER_NAME,
2521 .id_table = pl08x_ids,
2522 .probe = pl08x_probe,
2523 };
2524
2525 static int __init pl08x_init(void)
2526 {
2527 int retval;
2528 retval = amba_driver_register(&pl08x_amba_driver);
2529 if (retval)
2530 printk(KERN_WARNING DRIVER_NAME
2531 "failed to register as an AMBA device (%d)\n",
2532 retval);
2533 return retval;
2534 }
2535 subsys_initcall(pl08x_init);
This page took 0.083984 seconds and 5 git commands to generate.