ARM: PL08x: avoid duplicating registers in txd and phychan structures
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/dmapool.h>
83 #include <linux/dmaengine.h>
84 #include <linux/amba/bus.h>
85 #include <linux/amba/pl08x.h>
86 #include <linux/debugfs.h>
87 #include <linux/seq_file.h>
88
89 #include <asm/hardware/pl080.h>
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 /**
94 * struct vendor_data - vendor-specific config parameters
95 * for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
99 */
100 struct vendor_data {
101 u8 channels;
102 bool dualmaster;
103 };
104
105 /*
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
110 */
111 struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
116 };
117
118 /**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lock: a spinlock for this struct
130 */
131 struct pl08x_driver_data {
132 struct dma_device slave;
133 struct dma_device memcpy;
134 void __iomem *base;
135 struct amba_device *adev;
136 const struct vendor_data *vd;
137 struct pl08x_platform_data *pd;
138 struct pl08x_phy_chan *phy_chans;
139 struct dma_pool *pool;
140 int pool_ctr;
141 spinlock_t lock;
142 };
143
144 /*
145 * PL08X specific defines
146 */
147
148 /*
149 * Memory boundaries: the manual for PL08x says that the controller
150 * cannot read past a 1KiB boundary, so these defines are used to
151 * create transfer LLIs that do not cross such boundaries.
152 */
153 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
154 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
155
156 /* Minimum period between work queue runs */
157 #define PL08X_WQ_PERIODMIN 20
158
159 /* Size (bytes) of each LLI buffer allocated for one transfer */
160 # define PL08X_LLI_TSFR_SIZE 0x2000
161
162 /* Maximum times we call dma_pool_alloc on this pool without freeing */
163 #define PL08X_MAX_ALLOCS 0x40
164 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
165 #define PL08X_ALIGN 8
166
167 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
168 {
169 return container_of(chan, struct pl08x_dma_chan, chan);
170 }
171
172 /*
173 * Physical channel handling
174 */
175
176 /* Whether a certain channel is busy or not */
177 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
178 {
179 unsigned int val;
180
181 val = readl(ch->base + PL080_CH_CONFIG);
182 return val & PL080_CONFIG_ACTIVE;
183 }
184
185 /*
186 * Set the initial DMA register values i.e. those for the first LLI
187 * The next LLI pointer and the configuration interrupt bit have
188 * been set when the LLIs were constructed. Poke them into the hardware
189 * and start the transfer.
190 */
191 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
192 struct pl08x_txd *txd)
193 {
194 struct pl08x_driver_data *pl08x = plchan->host;
195 struct pl08x_phy_chan *phychan = plchan->phychan;
196 struct pl08x_lli *lli = &txd->llis_va[0];
197 u32 val, ccfg;
198
199 plchan->at = txd;
200
201 /* Assign the signal to the proper control registers */
202 ccfg = plchan->cd->ccfg;
203 ccfg &= ~(PL080_CONFIG_SRC_SEL_MASK | PL080_CONFIG_DST_SEL_MASK);
204
205 /* If it wasn't set from AMBA, ignore it */
206 if (txd->direction == DMA_TO_DEVICE)
207 /* Select signal as destination */
208 ccfg |= phychan->signal << PL080_CONFIG_DST_SEL_SHIFT;
209 else if (txd->direction == DMA_FROM_DEVICE)
210 /* Select signal as source */
211 ccfg |= phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
212
213 /* Always enable error and terminal interrupts */
214 ccfg |= PL080_CONFIG_ERR_IRQ_MASK | PL080_CONFIG_TC_IRQ_MASK;
215
216 /* Wait for channel inactive */
217 while (pl08x_phy_channel_busy(phychan))
218 cpu_relax();
219
220 dev_vdbg(&pl08x->adev->dev,
221 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
222 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
223 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
224 ccfg);
225
226 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
227 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
228 writel(lli->lli, phychan->base + PL080_CH_LLI);
229 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
230 writel(ccfg, phychan->base + PL080_CH_CONFIG);
231
232 /* Enable the DMA channel */
233 /* Do not access config register until channel shows as disabled */
234 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
235 cpu_relax();
236
237 /* Do not access config register until channel shows as inactive */
238 val = readl(phychan->base + PL080_CH_CONFIG);
239 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
240 val = readl(phychan->base + PL080_CH_CONFIG);
241
242 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
243 }
244
245 /*
246 * Overall DMAC remains enabled always.
247 *
248 * Disabling individual channels could lose data.
249 *
250 * Disable the peripheral DMA after disabling the DMAC
251 * in order to allow the DMAC FIFO to drain, and
252 * hence allow the channel to show inactive
253 *
254 */
255 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
256 {
257 u32 val;
258
259 /* Set the HALT bit and wait for the FIFO to drain */
260 val = readl(ch->base + PL080_CH_CONFIG);
261 val |= PL080_CONFIG_HALT;
262 writel(val, ch->base + PL080_CH_CONFIG);
263
264 /* Wait for channel inactive */
265 while (pl08x_phy_channel_busy(ch))
266 cpu_relax();
267 }
268
269 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
270 {
271 u32 val;
272
273 /* Clear the HALT bit */
274 val = readl(ch->base + PL080_CH_CONFIG);
275 val &= ~PL080_CONFIG_HALT;
276 writel(val, ch->base + PL080_CH_CONFIG);
277 }
278
279
280 /* Stops the channel */
281 static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
282 {
283 u32 val;
284
285 pl08x_pause_phy_chan(ch);
286
287 /* Disable channel */
288 val = readl(ch->base + PL080_CH_CONFIG);
289 val &= ~PL080_CONFIG_ENABLE;
290 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
291 val &= ~PL080_CONFIG_TC_IRQ_MASK;
292 writel(val, ch->base + PL080_CH_CONFIG);
293 }
294
295 static inline u32 get_bytes_in_cctl(u32 cctl)
296 {
297 /* The source width defines the number of bytes */
298 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
299
300 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
301 case PL080_WIDTH_8BIT:
302 break;
303 case PL080_WIDTH_16BIT:
304 bytes *= 2;
305 break;
306 case PL080_WIDTH_32BIT:
307 bytes *= 4;
308 break;
309 }
310 return bytes;
311 }
312
313 /* The channel should be paused when calling this */
314 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
315 {
316 struct pl08x_phy_chan *ch;
317 struct pl08x_txd *txd;
318 unsigned long flags;
319 size_t bytes = 0;
320
321 spin_lock_irqsave(&plchan->lock, flags);
322 ch = plchan->phychan;
323 txd = plchan->at;
324
325 /*
326 * Follow the LLIs to get the number of remaining
327 * bytes in the currently active transaction.
328 */
329 if (ch && txd) {
330 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
331
332 /* First get the remaining bytes in the active transfer */
333 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
334
335 if (clli) {
336 struct pl08x_lli *llis_va = txd->llis_va;
337 dma_addr_t llis_bus = txd->llis_bus;
338 int index;
339
340 BUG_ON(clli < llis_bus || clli >= llis_bus +
341 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
342
343 /*
344 * Locate the next LLI - as this is an array,
345 * it's simple maths to find.
346 */
347 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
348
349 for (; index < MAX_NUM_TSFR_LLIS; index++) {
350 bytes += get_bytes_in_cctl(llis_va[index].cctl);
351
352 /*
353 * A LLI pointer of 0 terminates the LLI list
354 */
355 if (!llis_va[index].lli)
356 break;
357 }
358 }
359 }
360
361 /* Sum up all queued transactions */
362 if (!list_empty(&plchan->desc_list)) {
363 struct pl08x_txd *txdi;
364 list_for_each_entry(txdi, &plchan->desc_list, node) {
365 bytes += txdi->len;
366 }
367 }
368
369 spin_unlock_irqrestore(&plchan->lock, flags);
370
371 return bytes;
372 }
373
374 /*
375 * Allocate a physical channel for a virtual channel
376 */
377 static struct pl08x_phy_chan *
378 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
379 struct pl08x_dma_chan *virt_chan)
380 {
381 struct pl08x_phy_chan *ch = NULL;
382 unsigned long flags;
383 int i;
384
385 /*
386 * Try to locate a physical channel to be used for
387 * this transfer. If all are taken return NULL and
388 * the requester will have to cope by using some fallback
389 * PIO mode or retrying later.
390 */
391 for (i = 0; i < pl08x->vd->channels; i++) {
392 ch = &pl08x->phy_chans[i];
393
394 spin_lock_irqsave(&ch->lock, flags);
395
396 if (!ch->serving) {
397 ch->serving = virt_chan;
398 ch->signal = -1;
399 spin_unlock_irqrestore(&ch->lock, flags);
400 break;
401 }
402
403 spin_unlock_irqrestore(&ch->lock, flags);
404 }
405
406 if (i == pl08x->vd->channels) {
407 /* No physical channel available, cope with it */
408 return NULL;
409 }
410
411 return ch;
412 }
413
414 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
415 struct pl08x_phy_chan *ch)
416 {
417 unsigned long flags;
418
419 /* Stop the channel and clear its interrupts */
420 pl08x_stop_phy_chan(ch);
421 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
422 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
423
424 /* Mark it as free */
425 spin_lock_irqsave(&ch->lock, flags);
426 ch->serving = NULL;
427 spin_unlock_irqrestore(&ch->lock, flags);
428 }
429
430 /*
431 * LLI handling
432 */
433
434 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
435 {
436 switch (coded) {
437 case PL080_WIDTH_8BIT:
438 return 1;
439 case PL080_WIDTH_16BIT:
440 return 2;
441 case PL080_WIDTH_32BIT:
442 return 4;
443 default:
444 break;
445 }
446 BUG();
447 return 0;
448 }
449
450 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
451 size_t tsize)
452 {
453 u32 retbits = cctl;
454
455 /* Remove all src, dst and transfer size bits */
456 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
457 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
458 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
459
460 /* Then set the bits according to the parameters */
461 switch (srcwidth) {
462 case 1:
463 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
464 break;
465 case 2:
466 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
467 break;
468 case 4:
469 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
470 break;
471 default:
472 BUG();
473 break;
474 }
475
476 switch (dstwidth) {
477 case 1:
478 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
479 break;
480 case 2:
481 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
482 break;
483 case 4:
484 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
485 break;
486 default:
487 BUG();
488 break;
489 }
490
491 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
492 return retbits;
493 }
494
495 /*
496 * Autoselect a master bus to use for the transfer
497 * this prefers the destination bus if both available
498 * if fixed address on one bus the other will be chosen
499 */
500 static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
501 struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
502 struct pl08x_bus_data **sbus, u32 cctl)
503 {
504 if (!(cctl & PL080_CONTROL_DST_INCR)) {
505 *mbus = src_bus;
506 *sbus = dst_bus;
507 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
508 *mbus = dst_bus;
509 *sbus = src_bus;
510 } else {
511 if (dst_bus->buswidth == 4) {
512 *mbus = dst_bus;
513 *sbus = src_bus;
514 } else if (src_bus->buswidth == 4) {
515 *mbus = src_bus;
516 *sbus = dst_bus;
517 } else if (dst_bus->buswidth == 2) {
518 *mbus = dst_bus;
519 *sbus = src_bus;
520 } else if (src_bus->buswidth == 2) {
521 *mbus = src_bus;
522 *sbus = dst_bus;
523 } else {
524 /* src_bus->buswidth == 1 */
525 *mbus = dst_bus;
526 *sbus = src_bus;
527 }
528 }
529 }
530
531 /*
532 * Fills in one LLI for a certain transfer descriptor
533 * and advance the counter
534 */
535 static int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
536 struct pl08x_txd *txd, int num_llis, int len,
537 u32 cctl, u32 *remainder)
538 {
539 struct pl08x_lli *llis_va = txd->llis_va;
540 dma_addr_t llis_bus = txd->llis_bus;
541
542 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
543
544 llis_va[num_llis].cctl = cctl;
545 llis_va[num_llis].src = txd->srcbus.addr;
546 llis_va[num_llis].dst = txd->dstbus.addr;
547
548 /*
549 * On versions with dual masters, you can optionally AND on
550 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
551 * in new LLIs with that controller, but we always try to
552 * choose AHB1 to point into memory. The idea is to have AHB2
553 * fixed on the peripheral and AHB1 messing around in the
554 * memory. So we don't manipulate this bit currently.
555 */
556
557 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
558
559 if (cctl & PL080_CONTROL_SRC_INCR)
560 txd->srcbus.addr += len;
561 if (cctl & PL080_CONTROL_DST_INCR)
562 txd->dstbus.addr += len;
563
564 BUG_ON(*remainder < len);
565
566 *remainder -= len;
567
568 return num_llis + 1;
569 }
570
571 /*
572 * Return number of bytes to fill to boundary, or len
573 */
574 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
575 {
576 u32 boundary;
577
578 boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
579 << PL08X_BOUNDARY_SHIFT;
580
581 if (boundary < addr + len)
582 return boundary - addr;
583 else
584 return len;
585 }
586
587 /*
588 * This fills in the table of LLIs for the transfer descriptor
589 * Note that we assume we never have to change the burst sizes
590 * Return 0 for error
591 */
592 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
593 struct pl08x_txd *txd)
594 {
595 struct pl08x_channel_data *cd = txd->cd;
596 struct pl08x_bus_data *mbus, *sbus;
597 size_t remainder;
598 int num_llis = 0;
599 u32 cctl;
600 size_t max_bytes_per_lli;
601 size_t total_bytes = 0;
602 struct pl08x_lli *llis_va;
603
604 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
605 &txd->llis_bus);
606 if (!txd->llis_va) {
607 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
608 return 0;
609 }
610
611 pl08x->pool_ctr++;
612
613 /*
614 * Initialize bus values for this transfer
615 * from the passed optimal values
616 */
617 if (!cd) {
618 dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__);
619 return 0;
620 }
621
622 /* Get the default CCTL from the platform data */
623 cctl = cd->cctl;
624
625 /*
626 * On the PL080 we have two bus masters and we
627 * should select one for source and one for
628 * destination. We try to use AHB2 for the
629 * bus which does not increment (typically the
630 * peripheral) else we just choose something.
631 */
632 cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
633 if (pl08x->vd->dualmaster) {
634 if (cctl & PL080_CONTROL_SRC_INCR)
635 /* Source increments, use AHB2 for destination */
636 cctl |= PL080_CONTROL_DST_AHB2;
637 else if (cctl & PL080_CONTROL_DST_INCR)
638 /* Destination increments, use AHB2 for source */
639 cctl |= PL080_CONTROL_SRC_AHB2;
640 else
641 /* Just pick something, source AHB1 dest AHB2 */
642 cctl |= PL080_CONTROL_DST_AHB2;
643 }
644
645 /* Find maximum width of the source bus */
646 txd->srcbus.maxwidth =
647 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
648 PL080_CONTROL_SWIDTH_SHIFT);
649
650 /* Find maximum width of the destination bus */
651 txd->dstbus.maxwidth =
652 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
653 PL080_CONTROL_DWIDTH_SHIFT);
654
655 /* Set up the bus widths to the maximum */
656 txd->srcbus.buswidth = txd->srcbus.maxwidth;
657 txd->dstbus.buswidth = txd->dstbus.maxwidth;
658 dev_vdbg(&pl08x->adev->dev,
659 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
660 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
661
662
663 /*
664 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
665 */
666 max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
667 PL080_CONTROL_TRANSFER_SIZE_MASK;
668 dev_vdbg(&pl08x->adev->dev,
669 "%s max bytes per lli = %zu\n",
670 __func__, max_bytes_per_lli);
671
672 /* We need to count this down to zero */
673 remainder = txd->len;
674 dev_vdbg(&pl08x->adev->dev,
675 "%s remainder = %zu\n",
676 __func__, remainder);
677
678 /*
679 * Choose bus to align to
680 * - prefers destination bus if both available
681 * - if fixed address on one bus chooses other
682 * - modifies cctl to choose an appropriate master
683 */
684 pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
685 &mbus, &sbus, cctl);
686
687
688 /*
689 * The lowest bit of the LLI register
690 * is also used to indicate which master to
691 * use for reading the LLIs.
692 */
693
694 if (txd->len < mbus->buswidth) {
695 /*
696 * Less than a bus width available
697 * - send as single bytes
698 */
699 while (remainder) {
700 dev_vdbg(&pl08x->adev->dev,
701 "%s single byte LLIs for a transfer of "
702 "less than a bus width (remain 0x%08x)\n",
703 __func__, remainder);
704 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
705 num_llis =
706 pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
707 cctl, &remainder);
708 total_bytes++;
709 }
710 } else {
711 /*
712 * Make one byte LLIs until master bus is aligned
713 * - slave will then be aligned also
714 */
715 while ((mbus->addr) % (mbus->buswidth)) {
716 dev_vdbg(&pl08x->adev->dev,
717 "%s adjustment lli for less than bus width "
718 "(remain 0x%08x)\n",
719 __func__, remainder);
720 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
721 num_llis = pl08x_fill_lli_for_desc
722 (pl08x, txd, num_llis, 1, cctl, &remainder);
723 total_bytes++;
724 }
725
726 /*
727 * Master now aligned
728 * - if slave is not then we must set its width down
729 */
730 if (sbus->addr % sbus->buswidth) {
731 dev_dbg(&pl08x->adev->dev,
732 "%s set down bus width to one byte\n",
733 __func__);
734
735 sbus->buswidth = 1;
736 }
737
738 /*
739 * Make largest possible LLIs until less than one bus
740 * width left
741 */
742 while (remainder > (mbus->buswidth - 1)) {
743 size_t lli_len, target_len, tsize, odd_bytes;
744
745 /*
746 * If enough left try to send max possible,
747 * otherwise try to send the remainder
748 */
749 target_len = remainder;
750 if (remainder > max_bytes_per_lli)
751 target_len = max_bytes_per_lli;
752
753 /*
754 * Set bus lengths for incrementing buses
755 * to number of bytes which fill to next memory
756 * boundary
757 */
758 if (cctl & PL080_CONTROL_SRC_INCR)
759 txd->srcbus.fill_bytes =
760 pl08x_pre_boundary(
761 txd->srcbus.addr,
762 remainder);
763 else
764 txd->srcbus.fill_bytes =
765 max_bytes_per_lli;
766
767 if (cctl & PL080_CONTROL_DST_INCR)
768 txd->dstbus.fill_bytes =
769 pl08x_pre_boundary(
770 txd->dstbus.addr,
771 remainder);
772 else
773 txd->dstbus.fill_bytes =
774 max_bytes_per_lli;
775
776 /*
777 * Find the nearest
778 */
779 lli_len = min(txd->srcbus.fill_bytes,
780 txd->dstbus.fill_bytes);
781
782 BUG_ON(lli_len > remainder);
783
784 if (lli_len <= 0) {
785 dev_err(&pl08x->adev->dev,
786 "%s lli_len is %zu, <= 0\n",
787 __func__, lli_len);
788 return 0;
789 }
790
791 if (lli_len == target_len) {
792 /*
793 * Can send what we wanted
794 */
795 /*
796 * Maintain alignment
797 */
798 lli_len = (lli_len/mbus->buswidth) *
799 mbus->buswidth;
800 odd_bytes = 0;
801 } else {
802 /*
803 * So now we know how many bytes to transfer
804 * to get to the nearest boundary
805 * The next LLI will past the boundary
806 * - however we may be working to a boundary
807 * on the slave bus
808 * We need to ensure the master stays aligned
809 */
810 odd_bytes = lli_len % mbus->buswidth;
811 /*
812 * - and that we are working in multiples
813 * of the bus widths
814 */
815 lli_len -= odd_bytes;
816
817 }
818
819 if (lli_len) {
820 /*
821 * Check against minimum bus alignment:
822 * Calculate actual transfer size in relation
823 * to bus width an get a maximum remainder of
824 * the smallest bus width - 1
825 */
826 /* FIXME: use round_down()? */
827 tsize = lli_len / min(mbus->buswidth,
828 sbus->buswidth);
829 lli_len = tsize * min(mbus->buswidth,
830 sbus->buswidth);
831
832 if (target_len != lli_len) {
833 dev_vdbg(&pl08x->adev->dev,
834 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
835 __func__, target_len, lli_len, txd->len);
836 }
837
838 cctl = pl08x_cctl_bits(cctl,
839 txd->srcbus.buswidth,
840 txd->dstbus.buswidth,
841 tsize);
842
843 dev_vdbg(&pl08x->adev->dev,
844 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
845 __func__, lli_len, remainder);
846 num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
847 num_llis, lli_len, cctl,
848 &remainder);
849 total_bytes += lli_len;
850 }
851
852
853 if (odd_bytes) {
854 /*
855 * Creep past the boundary,
856 * maintaining master alignment
857 */
858 int j;
859 for (j = 0; (j < mbus->buswidth)
860 && (remainder); j++) {
861 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
862 dev_vdbg(&pl08x->adev->dev,
863 "%s align with boundary, single byte (remain 0x%08zx)\n",
864 __func__, remainder);
865 num_llis =
866 pl08x_fill_lli_for_desc(pl08x,
867 txd, num_llis, 1,
868 cctl, &remainder);
869 total_bytes++;
870 }
871 }
872 }
873
874 /*
875 * Send any odd bytes
876 */
877 while (remainder) {
878 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
879 dev_vdbg(&pl08x->adev->dev,
880 "%s align with boundary, single odd byte (remain %zu)\n",
881 __func__, remainder);
882 num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
883 1, cctl, &remainder);
884 total_bytes++;
885 }
886 }
887 if (total_bytes != txd->len) {
888 dev_err(&pl08x->adev->dev,
889 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
890 __func__, total_bytes, txd->len);
891 return 0;
892 }
893
894 if (num_llis >= MAX_NUM_TSFR_LLIS) {
895 dev_err(&pl08x->adev->dev,
896 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
897 __func__, (u32) MAX_NUM_TSFR_LLIS);
898 return 0;
899 }
900
901 llis_va = txd->llis_va;
902 /*
903 * The final LLI terminates the LLI.
904 */
905 llis_va[num_llis - 1].lli = 0;
906 /*
907 * The final LLI element shall also fire an interrupt
908 */
909 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
910
911 #ifdef VERBOSE_DEBUG
912 {
913 int i;
914
915 for (i = 0; i < num_llis; i++) {
916 dev_vdbg(&pl08x->adev->dev,
917 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
918 i,
919 &llis_va[i],
920 llis_va[i].src,
921 llis_va[i].dst,
922 llis_va[i].cctl,
923 llis_va[i].lli
924 );
925 }
926 }
927 #endif
928
929 return num_llis;
930 }
931
932 /* You should call this with the struct pl08x lock held */
933 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
934 struct pl08x_txd *txd)
935 {
936 /* Free the LLI */
937 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
938
939 pl08x->pool_ctr--;
940
941 kfree(txd);
942 }
943
944 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
945 struct pl08x_dma_chan *plchan)
946 {
947 struct pl08x_txd *txdi = NULL;
948 struct pl08x_txd *next;
949
950 if (!list_empty(&plchan->desc_list)) {
951 list_for_each_entry_safe(txdi,
952 next, &plchan->desc_list, node) {
953 list_del(&txdi->node);
954 pl08x_free_txd(pl08x, txdi);
955 }
956
957 }
958 }
959
960 /*
961 * The DMA ENGINE API
962 */
963 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
964 {
965 return 0;
966 }
967
968 static void pl08x_free_chan_resources(struct dma_chan *chan)
969 {
970 }
971
972 /*
973 * This should be called with the channel plchan->lock held
974 */
975 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
976 struct pl08x_txd *txd)
977 {
978 struct pl08x_driver_data *pl08x = plchan->host;
979 struct pl08x_phy_chan *ch;
980 int ret;
981
982 /* Check if we already have a channel */
983 if (plchan->phychan)
984 return 0;
985
986 ch = pl08x_get_phy_channel(pl08x, plchan);
987 if (!ch) {
988 /* No physical channel available, cope with it */
989 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
990 return -EBUSY;
991 }
992
993 /*
994 * OK we have a physical channel: for memcpy() this is all we
995 * need, but for slaves the physical signals may be muxed!
996 * Can the platform allow us to use this channel?
997 */
998 if (plchan->slave &&
999 ch->signal < 0 &&
1000 pl08x->pd->get_signal) {
1001 ret = pl08x->pd->get_signal(plchan);
1002 if (ret < 0) {
1003 dev_dbg(&pl08x->adev->dev,
1004 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
1005 ch->id, plchan->name);
1006 /* Release physical channel & return */
1007 pl08x_put_phy_channel(pl08x, ch);
1008 return -EBUSY;
1009 }
1010 ch->signal = ret;
1011 }
1012
1013 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
1014 ch->id,
1015 ch->signal,
1016 plchan->name);
1017
1018 plchan->phychan = ch;
1019
1020 return 0;
1021 }
1022
1023 static void release_phy_channel(struct pl08x_dma_chan *plchan)
1024 {
1025 struct pl08x_driver_data *pl08x = plchan->host;
1026
1027 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
1028 pl08x->pd->put_signal(plchan);
1029 plchan->phychan->signal = -1;
1030 }
1031 pl08x_put_phy_channel(pl08x, plchan->phychan);
1032 plchan->phychan = NULL;
1033 }
1034
1035 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1036 {
1037 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1038
1039 plchan->chan.cookie += 1;
1040 if (plchan->chan.cookie < 0)
1041 plchan->chan.cookie = 1;
1042 tx->cookie = plchan->chan.cookie;
1043 /* This unlock follows the lock in the prep() function */
1044 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1045
1046 return tx->cookie;
1047 }
1048
1049 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1050 struct dma_chan *chan, unsigned long flags)
1051 {
1052 struct dma_async_tx_descriptor *retval = NULL;
1053
1054 return retval;
1055 }
1056
1057 /*
1058 * Code accessing dma_async_is_complete() in a tight loop
1059 * may give problems - could schedule where indicated.
1060 * If slaves are relying on interrupts to signal completion this
1061 * function must not be called with interrupts disabled
1062 */
1063 static enum dma_status
1064 pl08x_dma_tx_status(struct dma_chan *chan,
1065 dma_cookie_t cookie,
1066 struct dma_tx_state *txstate)
1067 {
1068 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1069 dma_cookie_t last_used;
1070 dma_cookie_t last_complete;
1071 enum dma_status ret;
1072 u32 bytesleft = 0;
1073
1074 last_used = plchan->chan.cookie;
1075 last_complete = plchan->lc;
1076
1077 ret = dma_async_is_complete(cookie, last_complete, last_used);
1078 if (ret == DMA_SUCCESS) {
1079 dma_set_tx_state(txstate, last_complete, last_used, 0);
1080 return ret;
1081 }
1082
1083 /*
1084 * schedule(); could be inserted here
1085 */
1086
1087 /*
1088 * This cookie not complete yet
1089 */
1090 last_used = plchan->chan.cookie;
1091 last_complete = plchan->lc;
1092
1093 /* Get number of bytes left in the active transactions and queue */
1094 bytesleft = pl08x_getbytes_chan(plchan);
1095
1096 dma_set_tx_state(txstate, last_complete, last_used,
1097 bytesleft);
1098
1099 if (plchan->state == PL08X_CHAN_PAUSED)
1100 return DMA_PAUSED;
1101
1102 /* Whether waiting or running, we're in progress */
1103 return DMA_IN_PROGRESS;
1104 }
1105
1106 /* PrimeCell DMA extension */
1107 struct burst_table {
1108 int burstwords;
1109 u32 reg;
1110 };
1111
1112 static const struct burst_table burst_sizes[] = {
1113 {
1114 .burstwords = 256,
1115 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1116 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1117 },
1118 {
1119 .burstwords = 128,
1120 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1121 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1122 },
1123 {
1124 .burstwords = 64,
1125 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1126 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1127 },
1128 {
1129 .burstwords = 32,
1130 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1131 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1132 },
1133 {
1134 .burstwords = 16,
1135 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1136 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1137 },
1138 {
1139 .burstwords = 8,
1140 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1141 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1142 },
1143 {
1144 .burstwords = 4,
1145 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1146 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1147 },
1148 {
1149 .burstwords = 1,
1150 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1151 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1152 },
1153 };
1154
1155 static void dma_set_runtime_config(struct dma_chan *chan,
1156 struct dma_slave_config *config)
1157 {
1158 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1159 struct pl08x_driver_data *pl08x = plchan->host;
1160 struct pl08x_channel_data *cd = plchan->cd;
1161 enum dma_slave_buswidth addr_width;
1162 u32 maxburst;
1163 u32 cctl = 0;
1164 /* Mask out all except src and dst channel */
1165 u32 ccfg = cd->ccfg & 0x000003DEU;
1166 int i;
1167
1168 /* Transfer direction */
1169 plchan->runtime_direction = config->direction;
1170 if (config->direction == DMA_TO_DEVICE) {
1171 plchan->runtime_addr = config->dst_addr;
1172 cctl |= PL080_CONTROL_SRC_INCR;
1173 ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1174 addr_width = config->dst_addr_width;
1175 maxburst = config->dst_maxburst;
1176 } else if (config->direction == DMA_FROM_DEVICE) {
1177 plchan->runtime_addr = config->src_addr;
1178 cctl |= PL080_CONTROL_DST_INCR;
1179 ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1180 addr_width = config->src_addr_width;
1181 maxburst = config->src_maxburst;
1182 } else {
1183 dev_err(&pl08x->adev->dev,
1184 "bad runtime_config: alien transfer direction\n");
1185 return;
1186 }
1187
1188 switch (addr_width) {
1189 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1190 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1191 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1192 break;
1193 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1194 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1195 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1196 break;
1197 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1198 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1199 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1200 break;
1201 default:
1202 dev_err(&pl08x->adev->dev,
1203 "bad runtime_config: alien address width\n");
1204 return;
1205 }
1206
1207 /*
1208 * Now decide on a maxburst:
1209 * If this channel will only request single transfers, set this
1210 * down to ONE element. Also select one element if no maxburst
1211 * is specified.
1212 */
1213 if (plchan->cd->single || maxburst == 0) {
1214 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1215 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1216 } else {
1217 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1218 if (burst_sizes[i].burstwords <= maxburst)
1219 break;
1220 cctl |= burst_sizes[i].reg;
1221 }
1222
1223 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1224 cctl &= ~PL080_CONTROL_PROT_MASK;
1225 cctl |= PL080_CONTROL_PROT_SYS;
1226
1227 /* Modify the default channel data to fit PrimeCell request */
1228 cd->cctl = cctl;
1229 cd->ccfg = ccfg;
1230
1231 dev_dbg(&pl08x->adev->dev,
1232 "configured channel %s (%s) for %s, data width %d, "
1233 "maxburst %d words, LE, CCTL=0x%08x, CCFG=0x%08x\n",
1234 dma_chan_name(chan), plchan->name,
1235 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1236 addr_width,
1237 maxburst,
1238 cctl, ccfg);
1239 }
1240
1241 /*
1242 * Slave transactions callback to the slave device to allow
1243 * synchronization of slave DMA signals with the DMAC enable
1244 */
1245 static void pl08x_issue_pending(struct dma_chan *chan)
1246 {
1247 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1248 unsigned long flags;
1249
1250 spin_lock_irqsave(&plchan->lock, flags);
1251 /* Something is already active, or we're waiting for a channel... */
1252 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1253 spin_unlock_irqrestore(&plchan->lock, flags);
1254 return;
1255 }
1256
1257 /* Take the first element in the queue and execute it */
1258 if (!list_empty(&plchan->desc_list)) {
1259 struct pl08x_txd *next;
1260
1261 next = list_first_entry(&plchan->desc_list,
1262 struct pl08x_txd,
1263 node);
1264 list_del(&next->node);
1265 plchan->state = PL08X_CHAN_RUNNING;
1266
1267 pl08x_start_txd(plchan, next);
1268 }
1269
1270 spin_unlock_irqrestore(&plchan->lock, flags);
1271 }
1272
1273 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1274 struct pl08x_txd *txd)
1275 {
1276 int num_llis;
1277 struct pl08x_driver_data *pl08x = plchan->host;
1278 int ret;
1279
1280 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1281 if (!num_llis) {
1282 kfree(txd);
1283 return -EINVAL;
1284 }
1285
1286 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1287
1288 list_add_tail(&txd->node, &plchan->desc_list);
1289
1290 /*
1291 * See if we already have a physical channel allocated,
1292 * else this is the time to try to get one.
1293 */
1294 ret = prep_phy_channel(plchan, txd);
1295 if (ret) {
1296 /*
1297 * No physical channel available, we will
1298 * stack up the memcpy channels until there is a channel
1299 * available to handle it whereas slave transfers may
1300 * have been denied due to platform channel muxing restrictions
1301 * and since there is no guarantee that this will ever be
1302 * resolved, and since the signal must be acquired AFTER
1303 * acquiring the physical channel, we will let them be NACK:ed
1304 * with -EBUSY here. The drivers can alway retry the prep()
1305 * call if they are eager on doing this using DMA.
1306 */
1307 if (plchan->slave) {
1308 pl08x_free_txd_list(pl08x, plchan);
1309 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1310 return -EBUSY;
1311 }
1312 /* Do this memcpy whenever there is a channel ready */
1313 plchan->state = PL08X_CHAN_WAITING;
1314 plchan->waiting = txd;
1315 } else
1316 /*
1317 * Else we're all set, paused and ready to roll,
1318 * status will switch to PL08X_CHAN_RUNNING when
1319 * we call issue_pending(). If there is something
1320 * running on the channel already we don't change
1321 * its state.
1322 */
1323 if (plchan->state == PL08X_CHAN_IDLE)
1324 plchan->state = PL08X_CHAN_PAUSED;
1325
1326 /*
1327 * Notice that we leave plchan->lock locked on purpose:
1328 * it will be unlocked in the subsequent tx_submit()
1329 * call. This is a consequence of the current API.
1330 */
1331
1332 return 0;
1333 }
1334
1335 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1336 {
1337 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1338
1339 if (txd) {
1340 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1341 txd->tx.tx_submit = pl08x_tx_submit;
1342 INIT_LIST_HEAD(&txd->node);
1343 }
1344 return txd;
1345 }
1346
1347 /*
1348 * Initialize a descriptor to be used by memcpy submit
1349 */
1350 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1351 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1352 size_t len, unsigned long flags)
1353 {
1354 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1355 struct pl08x_driver_data *pl08x = plchan->host;
1356 struct pl08x_txd *txd;
1357 int ret;
1358
1359 txd = pl08x_get_txd(plchan);
1360 if (!txd) {
1361 dev_err(&pl08x->adev->dev,
1362 "%s no memory for descriptor\n", __func__);
1363 return NULL;
1364 }
1365
1366 txd->direction = DMA_NONE;
1367 txd->srcbus.addr = src;
1368 txd->dstbus.addr = dest;
1369
1370 /* Set platform data for m2m */
1371 txd->cd = &pl08x->pd->memcpy_channel;
1372 /* Both to be incremented or the code will break */
1373 txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1374 txd->len = len;
1375
1376 ret = pl08x_prep_channel_resources(plchan, txd);
1377 if (ret)
1378 return NULL;
1379 /*
1380 * NB: the channel lock is held at this point so tx_submit()
1381 * must be called in direct succession.
1382 */
1383
1384 return &txd->tx;
1385 }
1386
1387 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1388 struct dma_chan *chan, struct scatterlist *sgl,
1389 unsigned int sg_len, enum dma_data_direction direction,
1390 unsigned long flags)
1391 {
1392 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1393 struct pl08x_driver_data *pl08x = plchan->host;
1394 struct pl08x_txd *txd;
1395 int ret;
1396
1397 /*
1398 * Current implementation ASSUMES only one sg
1399 */
1400 if (sg_len != 1) {
1401 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1402 __func__);
1403 BUG();
1404 }
1405
1406 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1407 __func__, sgl->length, plchan->name);
1408
1409 txd = pl08x_get_txd(plchan);
1410 if (!txd) {
1411 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1412 return NULL;
1413 }
1414
1415 if (direction != plchan->runtime_direction)
1416 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1417 "the direction configured for the PrimeCell\n",
1418 __func__);
1419
1420 /*
1421 * Set up addresses, the PrimeCell configured address
1422 * will take precedence since this may configure the
1423 * channel target address dynamically at runtime.
1424 */
1425 txd->direction = direction;
1426 if (direction == DMA_TO_DEVICE) {
1427 txd->srcbus.addr = sgl->dma_address;
1428 if (plchan->runtime_addr)
1429 txd->dstbus.addr = plchan->runtime_addr;
1430 else
1431 txd->dstbus.addr = plchan->cd->addr;
1432 } else if (direction == DMA_FROM_DEVICE) {
1433 if (plchan->runtime_addr)
1434 txd->srcbus.addr = plchan->runtime_addr;
1435 else
1436 txd->srcbus.addr = plchan->cd->addr;
1437 txd->dstbus.addr = sgl->dma_address;
1438 } else {
1439 dev_err(&pl08x->adev->dev,
1440 "%s direction unsupported\n", __func__);
1441 return NULL;
1442 }
1443 txd->cd = plchan->cd;
1444 txd->len = sgl->length;
1445
1446 ret = pl08x_prep_channel_resources(plchan, txd);
1447 if (ret)
1448 return NULL;
1449 /*
1450 * NB: the channel lock is held at this point so tx_submit()
1451 * must be called in direct succession.
1452 */
1453
1454 return &txd->tx;
1455 }
1456
1457 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1458 unsigned long arg)
1459 {
1460 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1461 struct pl08x_driver_data *pl08x = plchan->host;
1462 unsigned long flags;
1463 int ret = 0;
1464
1465 /* Controls applicable to inactive channels */
1466 if (cmd == DMA_SLAVE_CONFIG) {
1467 dma_set_runtime_config(chan,
1468 (struct dma_slave_config *)
1469 arg);
1470 return 0;
1471 }
1472
1473 /*
1474 * Anything succeeds on channels with no physical allocation and
1475 * no queued transfers.
1476 */
1477 spin_lock_irqsave(&plchan->lock, flags);
1478 if (!plchan->phychan && !plchan->at) {
1479 spin_unlock_irqrestore(&plchan->lock, flags);
1480 return 0;
1481 }
1482
1483 switch (cmd) {
1484 case DMA_TERMINATE_ALL:
1485 plchan->state = PL08X_CHAN_IDLE;
1486
1487 if (plchan->phychan) {
1488 pl08x_stop_phy_chan(plchan->phychan);
1489
1490 /*
1491 * Mark physical channel as free and free any slave
1492 * signal
1493 */
1494 release_phy_channel(plchan);
1495 }
1496 /* Dequeue jobs and free LLIs */
1497 if (plchan->at) {
1498 pl08x_free_txd(pl08x, plchan->at);
1499 plchan->at = NULL;
1500 }
1501 /* Dequeue jobs not yet fired as well */
1502 pl08x_free_txd_list(pl08x, plchan);
1503 break;
1504 case DMA_PAUSE:
1505 pl08x_pause_phy_chan(plchan->phychan);
1506 plchan->state = PL08X_CHAN_PAUSED;
1507 break;
1508 case DMA_RESUME:
1509 pl08x_resume_phy_chan(plchan->phychan);
1510 plchan->state = PL08X_CHAN_RUNNING;
1511 break;
1512 default:
1513 /* Unknown command */
1514 ret = -ENXIO;
1515 break;
1516 }
1517
1518 spin_unlock_irqrestore(&plchan->lock, flags);
1519
1520 return ret;
1521 }
1522
1523 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1524 {
1525 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1526 char *name = chan_id;
1527
1528 /* Check that the channel is not taken! */
1529 if (!strcmp(plchan->name, name))
1530 return true;
1531
1532 return false;
1533 }
1534
1535 /*
1536 * Just check that the device is there and active
1537 * TODO: turn this bit on/off depending on the number of
1538 * physical channels actually used, if it is zero... well
1539 * shut it off. That will save some power. Cut the clock
1540 * at the same time.
1541 */
1542 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1543 {
1544 u32 val;
1545
1546 val = readl(pl08x->base + PL080_CONFIG);
1547 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1548 /* We implicitly clear bit 1 and that means little-endian mode */
1549 val |= PL080_CONFIG_ENABLE;
1550 writel(val, pl08x->base + PL080_CONFIG);
1551 }
1552
1553 static void pl08x_tasklet(unsigned long data)
1554 {
1555 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1556 struct pl08x_driver_data *pl08x = plchan->host;
1557 unsigned long flags;
1558
1559 spin_lock_irqsave(&plchan->lock, flags);
1560
1561 if (plchan->at) {
1562 dma_async_tx_callback callback =
1563 plchan->at->tx.callback;
1564 void *callback_param =
1565 plchan->at->tx.callback_param;
1566
1567 /*
1568 * Update last completed
1569 */
1570 plchan->lc = plchan->at->tx.cookie;
1571
1572 /*
1573 * Callback to signal completion
1574 */
1575 if (callback)
1576 callback(callback_param);
1577
1578 /*
1579 * Free the descriptor
1580 */
1581 pl08x_free_txd(pl08x, plchan->at);
1582 plchan->at = NULL;
1583 }
1584 /*
1585 * If a new descriptor is queued, set it up
1586 * plchan->at is NULL here
1587 */
1588 if (!list_empty(&plchan->desc_list)) {
1589 struct pl08x_txd *next;
1590
1591 next = list_first_entry(&plchan->desc_list,
1592 struct pl08x_txd,
1593 node);
1594 list_del(&next->node);
1595
1596 pl08x_start_txd(plchan, next);
1597 } else {
1598 struct pl08x_dma_chan *waiting = NULL;
1599
1600 /*
1601 * No more jobs, so free up the physical channel
1602 * Free any allocated signal on slave transfers too
1603 */
1604 release_phy_channel(plchan);
1605 plchan->state = PL08X_CHAN_IDLE;
1606
1607 /*
1608 * And NOW before anyone else can grab that free:d
1609 * up physical channel, see if there is some memcpy
1610 * pending that seriously needs to start because of
1611 * being stacked up while we were choking the
1612 * physical channels with data.
1613 */
1614 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1615 chan.device_node) {
1616 if (waiting->state == PL08X_CHAN_WAITING &&
1617 waiting->waiting != NULL) {
1618 int ret;
1619
1620 /* This should REALLY not fail now */
1621 ret = prep_phy_channel(waiting,
1622 waiting->waiting);
1623 BUG_ON(ret);
1624 waiting->state = PL08X_CHAN_RUNNING;
1625 waiting->waiting = NULL;
1626 pl08x_issue_pending(&waiting->chan);
1627 break;
1628 }
1629 }
1630 }
1631
1632 spin_unlock_irqrestore(&plchan->lock, flags);
1633 }
1634
1635 static irqreturn_t pl08x_irq(int irq, void *dev)
1636 {
1637 struct pl08x_driver_data *pl08x = dev;
1638 u32 mask = 0;
1639 u32 val;
1640 int i;
1641
1642 val = readl(pl08x->base + PL080_ERR_STATUS);
1643 if (val) {
1644 /*
1645 * An error interrupt (on one or more channels)
1646 */
1647 dev_err(&pl08x->adev->dev,
1648 "%s error interrupt, register value 0x%08x\n",
1649 __func__, val);
1650 /*
1651 * Simply clear ALL PL08X error interrupts,
1652 * regardless of channel and cause
1653 * FIXME: should be 0x00000003 on PL081 really.
1654 */
1655 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1656 }
1657 val = readl(pl08x->base + PL080_INT_STATUS);
1658 for (i = 0; i < pl08x->vd->channels; i++) {
1659 if ((1 << i) & val) {
1660 /* Locate physical channel */
1661 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1662 struct pl08x_dma_chan *plchan = phychan->serving;
1663
1664 /* Schedule tasklet on this channel */
1665 tasklet_schedule(&plchan->tasklet);
1666
1667 mask |= (1 << i);
1668 }
1669 }
1670 /*
1671 * Clear only the terminal interrupts on channels we processed
1672 */
1673 writel(mask, pl08x->base + PL080_TC_CLEAR);
1674
1675 return mask ? IRQ_HANDLED : IRQ_NONE;
1676 }
1677
1678 /*
1679 * Initialise the DMAC memcpy/slave channels.
1680 * Make a local wrapper to hold required data
1681 */
1682 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1683 struct dma_device *dmadev,
1684 unsigned int channels,
1685 bool slave)
1686 {
1687 struct pl08x_dma_chan *chan;
1688 int i;
1689
1690 INIT_LIST_HEAD(&dmadev->channels);
1691 /*
1692 * Register as many many memcpy as we have physical channels,
1693 * we won't always be able to use all but the code will have
1694 * to cope with that situation.
1695 */
1696 for (i = 0; i < channels; i++) {
1697 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1698 if (!chan) {
1699 dev_err(&pl08x->adev->dev,
1700 "%s no memory for channel\n", __func__);
1701 return -ENOMEM;
1702 }
1703
1704 chan->host = pl08x;
1705 chan->state = PL08X_CHAN_IDLE;
1706
1707 if (slave) {
1708 chan->slave = true;
1709 chan->name = pl08x->pd->slave_channels[i].bus_id;
1710 chan->cd = &pl08x->pd->slave_channels[i];
1711 } else {
1712 chan->cd = &pl08x->pd->memcpy_channel;
1713 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1714 if (!chan->name) {
1715 kfree(chan);
1716 return -ENOMEM;
1717 }
1718 }
1719 if (chan->cd->circular_buffer) {
1720 dev_err(&pl08x->adev->dev,
1721 "channel %s: circular buffers not supported\n",
1722 chan->name);
1723 kfree(chan);
1724 continue;
1725 }
1726 dev_info(&pl08x->adev->dev,
1727 "initialize virtual channel \"%s\"\n",
1728 chan->name);
1729
1730 chan->chan.device = dmadev;
1731 chan->chan.cookie = 0;
1732 chan->lc = 0;
1733
1734 spin_lock_init(&chan->lock);
1735 INIT_LIST_HEAD(&chan->desc_list);
1736 tasklet_init(&chan->tasklet, pl08x_tasklet,
1737 (unsigned long) chan);
1738
1739 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1740 }
1741 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1742 i, slave ? "slave" : "memcpy");
1743 return i;
1744 }
1745
1746 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1747 {
1748 struct pl08x_dma_chan *chan = NULL;
1749 struct pl08x_dma_chan *next;
1750
1751 list_for_each_entry_safe(chan,
1752 next, &dmadev->channels, chan.device_node) {
1753 list_del(&chan->chan.device_node);
1754 kfree(chan);
1755 }
1756 }
1757
1758 #ifdef CONFIG_DEBUG_FS
1759 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1760 {
1761 switch (state) {
1762 case PL08X_CHAN_IDLE:
1763 return "idle";
1764 case PL08X_CHAN_RUNNING:
1765 return "running";
1766 case PL08X_CHAN_PAUSED:
1767 return "paused";
1768 case PL08X_CHAN_WAITING:
1769 return "waiting";
1770 default:
1771 break;
1772 }
1773 return "UNKNOWN STATE";
1774 }
1775
1776 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1777 {
1778 struct pl08x_driver_data *pl08x = s->private;
1779 struct pl08x_dma_chan *chan;
1780 struct pl08x_phy_chan *ch;
1781 unsigned long flags;
1782 int i;
1783
1784 seq_printf(s, "PL08x physical channels:\n");
1785 seq_printf(s, "CHANNEL:\tUSER:\n");
1786 seq_printf(s, "--------\t-----\n");
1787 for (i = 0; i < pl08x->vd->channels; i++) {
1788 struct pl08x_dma_chan *virt_chan;
1789
1790 ch = &pl08x->phy_chans[i];
1791
1792 spin_lock_irqsave(&ch->lock, flags);
1793 virt_chan = ch->serving;
1794
1795 seq_printf(s, "%d\t\t%s\n",
1796 ch->id, virt_chan ? virt_chan->name : "(none)");
1797
1798 spin_unlock_irqrestore(&ch->lock, flags);
1799 }
1800
1801 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1802 seq_printf(s, "CHANNEL:\tSTATE:\n");
1803 seq_printf(s, "--------\t------\n");
1804 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1805 seq_printf(s, "%s\t\t%s\n", chan->name,
1806 pl08x_state_str(chan->state));
1807 }
1808
1809 seq_printf(s, "\nPL08x virtual slave channels:\n");
1810 seq_printf(s, "CHANNEL:\tSTATE:\n");
1811 seq_printf(s, "--------\t------\n");
1812 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1813 seq_printf(s, "%s\t\t%s\n", chan->name,
1814 pl08x_state_str(chan->state));
1815 }
1816
1817 return 0;
1818 }
1819
1820 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1821 {
1822 return single_open(file, pl08x_debugfs_show, inode->i_private);
1823 }
1824
1825 static const struct file_operations pl08x_debugfs_operations = {
1826 .open = pl08x_debugfs_open,
1827 .read = seq_read,
1828 .llseek = seq_lseek,
1829 .release = single_release,
1830 };
1831
1832 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1833 {
1834 /* Expose a simple debugfs interface to view all clocks */
1835 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1836 NULL, pl08x,
1837 &pl08x_debugfs_operations);
1838 }
1839
1840 #else
1841 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1842 {
1843 }
1844 #endif
1845
1846 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1847 {
1848 struct pl08x_driver_data *pl08x;
1849 const struct vendor_data *vd = id->data;
1850 int ret = 0;
1851 int i;
1852
1853 ret = amba_request_regions(adev, NULL);
1854 if (ret)
1855 return ret;
1856
1857 /* Create the driver state holder */
1858 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1859 if (!pl08x) {
1860 ret = -ENOMEM;
1861 goto out_no_pl08x;
1862 }
1863
1864 /* Initialize memcpy engine */
1865 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1866 pl08x->memcpy.dev = &adev->dev;
1867 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1868 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1869 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1870 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1871 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1872 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1873 pl08x->memcpy.device_control = pl08x_control;
1874
1875 /* Initialize slave engine */
1876 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1877 pl08x->slave.dev = &adev->dev;
1878 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1879 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1880 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1881 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1882 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1883 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1884 pl08x->slave.device_control = pl08x_control;
1885
1886 /* Get the platform data */
1887 pl08x->pd = dev_get_platdata(&adev->dev);
1888 if (!pl08x->pd) {
1889 dev_err(&adev->dev, "no platform data supplied\n");
1890 goto out_no_platdata;
1891 }
1892
1893 /* Assign useful pointers to the driver state */
1894 pl08x->adev = adev;
1895 pl08x->vd = vd;
1896
1897 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1898 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1899 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1900 if (!pl08x->pool) {
1901 ret = -ENOMEM;
1902 goto out_no_lli_pool;
1903 }
1904
1905 spin_lock_init(&pl08x->lock);
1906
1907 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1908 if (!pl08x->base) {
1909 ret = -ENOMEM;
1910 goto out_no_ioremap;
1911 }
1912
1913 /* Turn on the PL08x */
1914 pl08x_ensure_on(pl08x);
1915
1916 /*
1917 * Attach the interrupt handler
1918 */
1919 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1920 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1921
1922 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1923 DRIVER_NAME, pl08x);
1924 if (ret) {
1925 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1926 __func__, adev->irq[0]);
1927 goto out_no_irq;
1928 }
1929
1930 /* Initialize physical channels */
1931 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1932 GFP_KERNEL);
1933 if (!pl08x->phy_chans) {
1934 dev_err(&adev->dev, "%s failed to allocate "
1935 "physical channel holders\n",
1936 __func__);
1937 goto out_no_phychans;
1938 }
1939
1940 for (i = 0; i < vd->channels; i++) {
1941 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1942
1943 ch->id = i;
1944 ch->base = pl08x->base + PL080_Cx_BASE(i);
1945 spin_lock_init(&ch->lock);
1946 ch->serving = NULL;
1947 ch->signal = -1;
1948 dev_info(&adev->dev,
1949 "physical channel %d is %s\n", i,
1950 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1951 }
1952
1953 /* Register as many memcpy channels as there are physical channels */
1954 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1955 pl08x->vd->channels, false);
1956 if (ret <= 0) {
1957 dev_warn(&pl08x->adev->dev,
1958 "%s failed to enumerate memcpy channels - %d\n",
1959 __func__, ret);
1960 goto out_no_memcpy;
1961 }
1962 pl08x->memcpy.chancnt = ret;
1963
1964 /* Register slave channels */
1965 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1966 pl08x->pd->num_slave_channels,
1967 true);
1968 if (ret <= 0) {
1969 dev_warn(&pl08x->adev->dev,
1970 "%s failed to enumerate slave channels - %d\n",
1971 __func__, ret);
1972 goto out_no_slave;
1973 }
1974 pl08x->slave.chancnt = ret;
1975
1976 ret = dma_async_device_register(&pl08x->memcpy);
1977 if (ret) {
1978 dev_warn(&pl08x->adev->dev,
1979 "%s failed to register memcpy as an async device - %d\n",
1980 __func__, ret);
1981 goto out_no_memcpy_reg;
1982 }
1983
1984 ret = dma_async_device_register(&pl08x->slave);
1985 if (ret) {
1986 dev_warn(&pl08x->adev->dev,
1987 "%s failed to register slave as an async device - %d\n",
1988 __func__, ret);
1989 goto out_no_slave_reg;
1990 }
1991
1992 amba_set_drvdata(adev, pl08x);
1993 init_pl08x_debugfs(pl08x);
1994 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1995 amba_part(adev), amba_rev(adev),
1996 (unsigned long long)adev->res.start, adev->irq[0]);
1997 return 0;
1998
1999 out_no_slave_reg:
2000 dma_async_device_unregister(&pl08x->memcpy);
2001 out_no_memcpy_reg:
2002 pl08x_free_virtual_channels(&pl08x->slave);
2003 out_no_slave:
2004 pl08x_free_virtual_channels(&pl08x->memcpy);
2005 out_no_memcpy:
2006 kfree(pl08x->phy_chans);
2007 out_no_phychans:
2008 free_irq(adev->irq[0], pl08x);
2009 out_no_irq:
2010 iounmap(pl08x->base);
2011 out_no_ioremap:
2012 dma_pool_destroy(pl08x->pool);
2013 out_no_lli_pool:
2014 out_no_platdata:
2015 kfree(pl08x);
2016 out_no_pl08x:
2017 amba_release_regions(adev);
2018 return ret;
2019 }
2020
2021 /* PL080 has 8 channels and the PL080 have just 2 */
2022 static struct vendor_data vendor_pl080 = {
2023 .channels = 8,
2024 .dualmaster = true,
2025 };
2026
2027 static struct vendor_data vendor_pl081 = {
2028 .channels = 2,
2029 .dualmaster = false,
2030 };
2031
2032 static struct amba_id pl08x_ids[] = {
2033 /* PL080 */
2034 {
2035 .id = 0x00041080,
2036 .mask = 0x000fffff,
2037 .data = &vendor_pl080,
2038 },
2039 /* PL081 */
2040 {
2041 .id = 0x00041081,
2042 .mask = 0x000fffff,
2043 .data = &vendor_pl081,
2044 },
2045 /* Nomadik 8815 PL080 variant */
2046 {
2047 .id = 0x00280880,
2048 .mask = 0x00ffffff,
2049 .data = &vendor_pl080,
2050 },
2051 { 0, 0 },
2052 };
2053
2054 static struct amba_driver pl08x_amba_driver = {
2055 .drv.name = DRIVER_NAME,
2056 .id_table = pl08x_ids,
2057 .probe = pl08x_probe,
2058 };
2059
2060 static int __init pl08x_init(void)
2061 {
2062 int retval;
2063 retval = amba_driver_register(&pl08x_amba_driver);
2064 if (retval)
2065 printk(KERN_WARNING DRIVER_NAME
2066 "failed to register as an AMBA device (%d)\n",
2067 retval);
2068 return retval;
2069 }
2070 subsys_initcall(pl08x_init);
This page took 0.088825 seconds and 5 git commands to generate.