ARM: PL08x: combine functions to start DMA into one function
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the
23 * file called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to
29 * any channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Only the former works sanely with scatter lists, so we only implement
70 * the DMAC flow control method. However, peripherals which use the LBREQ
71 * and LSREQ signals (eg, MMCI) are unable to use this mode, which through
72 * these hardware restrictions prevents them from using scatter DMA.
73 *
74 * Global TODO:
75 * - Break out common code from arch/arm/mach-s3c64xx and share
76 */
77 #include <linux/device.h>
78 #include <linux/init.h>
79 #include <linux/module.h>
80 #include <linux/interrupt.h>
81 #include <linux/slab.h>
82 #include <linux/dmapool.h>
83 #include <linux/dmaengine.h>
84 #include <linux/amba/bus.h>
85 #include <linux/amba/pl08x.h>
86 #include <linux/debugfs.h>
87 #include <linux/seq_file.h>
88
89 #include <asm/hardware/pl080.h>
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 /**
94 * struct vendor_data - vendor-specific config parameters
95 * for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters
98 * or not.
99 */
100 struct vendor_data {
101 u8 channels;
102 bool dualmaster;
103 };
104
105 /*
106 * PL08X private data structures
107 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
108 * start & end do not - their bus bit info is in cctl. Also note that these
109 * are fixed 32-bit quantities.
110 */
111 struct pl08x_lli {
112 u32 src;
113 u32 dst;
114 u32 lli;
115 u32 cctl;
116 };
117
118 /**
119 * struct pl08x_driver_data - the local state holder for the PL08x
120 * @slave: slave engine for this instance
121 * @memcpy: memcpy engine for this instance
122 * @base: virtual memory base (remapped) for the PL08x
123 * @adev: the corresponding AMBA (PrimeCell) bus entry
124 * @vd: vendor data for this PL08x variant
125 * @pd: platform data passed in from the platform/machine
126 * @phy_chans: array of data for the physical channels
127 * @pool: a pool for the LLI descriptors
128 * @pool_ctr: counter of LLIs in the pool
129 * @lock: a spinlock for this struct
130 */
131 struct pl08x_driver_data {
132 struct dma_device slave;
133 struct dma_device memcpy;
134 void __iomem *base;
135 struct amba_device *adev;
136 const struct vendor_data *vd;
137 struct pl08x_platform_data *pd;
138 struct pl08x_phy_chan *phy_chans;
139 struct dma_pool *pool;
140 int pool_ctr;
141 spinlock_t lock;
142 };
143
144 /*
145 * PL08X specific defines
146 */
147
148 /*
149 * Memory boundaries: the manual for PL08x says that the controller
150 * cannot read past a 1KiB boundary, so these defines are used to
151 * create transfer LLIs that do not cross such boundaries.
152 */
153 #define PL08X_BOUNDARY_SHIFT (10) /* 1KB 0x400 */
154 #define PL08X_BOUNDARY_SIZE (1 << PL08X_BOUNDARY_SHIFT)
155
156 /* Minimum period between work queue runs */
157 #define PL08X_WQ_PERIODMIN 20
158
159 /* Size (bytes) of each LLI buffer allocated for one transfer */
160 # define PL08X_LLI_TSFR_SIZE 0x2000
161
162 /* Maximum times we call dma_pool_alloc on this pool without freeing */
163 #define PL08X_MAX_ALLOCS 0x40
164 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
165 #define PL08X_ALIGN 8
166
167 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
168 {
169 return container_of(chan, struct pl08x_dma_chan, chan);
170 }
171
172 /*
173 * Physical channel handling
174 */
175
176 /* Whether a certain channel is busy or not */
177 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
178 {
179 unsigned int val;
180
181 val = readl(ch->base + PL080_CH_CONFIG);
182 return val & PL080_CONFIG_ACTIVE;
183 }
184
185 /*
186 * Set the initial DMA register values i.e. those for the first LLI
187 * The next LLI pointer and the configuration interrupt bit have
188 * been set when the LLIs were constructed. Poke them into the hardware
189 * and start the transfer.
190 */
191 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
192 struct pl08x_txd *txd)
193 {
194 struct pl08x_driver_data *pl08x = plchan->host;
195 struct pl08x_phy_chan *phychan = plchan->phychan;
196 u32 val;
197
198 plchan->at = txd;
199
200 /* Copy the basic control register calculated at transfer config */
201 phychan->csrc = txd->csrc;
202 phychan->cdst = txd->cdst;
203 phychan->clli = txd->clli;
204 phychan->cctl = txd->cctl;
205
206 /* Assign the signal to the proper control registers */
207 phychan->ccfg = plchan->cd->ccfg;
208 phychan->ccfg &= ~PL080_CONFIG_SRC_SEL_MASK;
209 phychan->ccfg &= ~PL080_CONFIG_DST_SEL_MASK;
210 /* If it wasn't set from AMBA, ignore it */
211 if (txd->direction == DMA_TO_DEVICE)
212 /* Select signal as destination */
213 phychan->ccfg |=
214 (phychan->signal << PL080_CONFIG_DST_SEL_SHIFT);
215 else if (txd->direction == DMA_FROM_DEVICE)
216 /* Select signal as source */
217 phychan->ccfg |=
218 (phychan->signal << PL080_CONFIG_SRC_SEL_SHIFT);
219 /* Always enable error interrupts */
220 phychan->ccfg |= PL080_CONFIG_ERR_IRQ_MASK;
221 /* Always enable terminal interrupts */
222 phychan->ccfg |= PL080_CONFIG_TC_IRQ_MASK;
223
224 /* Wait for channel inactive */
225 while (pl08x_phy_channel_busy(phychan))
226 cpu_relax();
227
228 dev_vdbg(&pl08x->adev->dev,
229 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
230 "cctl=0x%08x, clli=0x%08x, ccfg=0x%08x\n",
231 phychan->id,
232 phychan->csrc,
233 phychan->cdst,
234 phychan->cctl,
235 phychan->clli,
236 phychan->ccfg);
237
238 writel(phychan->csrc, phychan->base + PL080_CH_SRC_ADDR);
239 writel(phychan->cdst, phychan->base + PL080_CH_DST_ADDR);
240 writel(phychan->clli, phychan->base + PL080_CH_LLI);
241 writel(phychan->cctl, phychan->base + PL080_CH_CONTROL);
242 writel(phychan->ccfg, phychan->base + PL080_CH_CONFIG);
243
244 /* Enable the DMA channel */
245 /* Do not access config register until channel shows as disabled */
246 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
247 cpu_relax();
248
249 /* Do not access config register until channel shows as inactive */
250 val = readl(phychan->base + PL080_CH_CONFIG);
251 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
252 val = readl(phychan->base + PL080_CH_CONFIG);
253
254 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
255 }
256
257 /*
258 * Overall DMAC remains enabled always.
259 *
260 * Disabling individual channels could lose data.
261 *
262 * Disable the peripheral DMA after disabling the DMAC
263 * in order to allow the DMAC FIFO to drain, and
264 * hence allow the channel to show inactive
265 *
266 */
267 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
268 {
269 u32 val;
270
271 /* Set the HALT bit and wait for the FIFO to drain */
272 val = readl(ch->base + PL080_CH_CONFIG);
273 val |= PL080_CONFIG_HALT;
274 writel(val, ch->base + PL080_CH_CONFIG);
275
276 /* Wait for channel inactive */
277 while (pl08x_phy_channel_busy(ch))
278 cpu_relax();
279 }
280
281 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
282 {
283 u32 val;
284
285 /* Clear the HALT bit */
286 val = readl(ch->base + PL080_CH_CONFIG);
287 val &= ~PL080_CONFIG_HALT;
288 writel(val, ch->base + PL080_CH_CONFIG);
289 }
290
291
292 /* Stops the channel */
293 static void pl08x_stop_phy_chan(struct pl08x_phy_chan *ch)
294 {
295 u32 val;
296
297 pl08x_pause_phy_chan(ch);
298
299 /* Disable channel */
300 val = readl(ch->base + PL080_CH_CONFIG);
301 val &= ~PL080_CONFIG_ENABLE;
302 val &= ~PL080_CONFIG_ERR_IRQ_MASK;
303 val &= ~PL080_CONFIG_TC_IRQ_MASK;
304 writel(val, ch->base + PL080_CH_CONFIG);
305 }
306
307 static inline u32 get_bytes_in_cctl(u32 cctl)
308 {
309 /* The source width defines the number of bytes */
310 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
311
312 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
313 case PL080_WIDTH_8BIT:
314 break;
315 case PL080_WIDTH_16BIT:
316 bytes *= 2;
317 break;
318 case PL080_WIDTH_32BIT:
319 bytes *= 4;
320 break;
321 }
322 return bytes;
323 }
324
325 /* The channel should be paused when calling this */
326 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
327 {
328 struct pl08x_phy_chan *ch;
329 struct pl08x_txd *txd;
330 unsigned long flags;
331 size_t bytes = 0;
332
333 spin_lock_irqsave(&plchan->lock, flags);
334 ch = plchan->phychan;
335 txd = plchan->at;
336
337 /*
338 * Follow the LLIs to get the number of remaining
339 * bytes in the currently active transaction.
340 */
341 if (ch && txd) {
342 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
343
344 /* First get the remaining bytes in the active transfer */
345 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
346
347 if (clli) {
348 struct pl08x_lli *llis_va = txd->llis_va;
349 dma_addr_t llis_bus = txd->llis_bus;
350 int index;
351
352 BUG_ON(clli < llis_bus || clli >= llis_bus +
353 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
354
355 /*
356 * Locate the next LLI - as this is an array,
357 * it's simple maths to find.
358 */
359 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
360
361 for (; index < MAX_NUM_TSFR_LLIS; index++) {
362 bytes += get_bytes_in_cctl(llis_va[index].cctl);
363
364 /*
365 * A LLI pointer of 0 terminates the LLI list
366 */
367 if (!llis_va[index].lli)
368 break;
369 }
370 }
371 }
372
373 /* Sum up all queued transactions */
374 if (!list_empty(&plchan->desc_list)) {
375 struct pl08x_txd *txdi;
376 list_for_each_entry(txdi, &plchan->desc_list, node) {
377 bytes += txdi->len;
378 }
379 }
380
381 spin_unlock_irqrestore(&plchan->lock, flags);
382
383 return bytes;
384 }
385
386 /*
387 * Allocate a physical channel for a virtual channel
388 */
389 static struct pl08x_phy_chan *
390 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
391 struct pl08x_dma_chan *virt_chan)
392 {
393 struct pl08x_phy_chan *ch = NULL;
394 unsigned long flags;
395 int i;
396
397 /*
398 * Try to locate a physical channel to be used for
399 * this transfer. If all are taken return NULL and
400 * the requester will have to cope by using some fallback
401 * PIO mode or retrying later.
402 */
403 for (i = 0; i < pl08x->vd->channels; i++) {
404 ch = &pl08x->phy_chans[i];
405
406 spin_lock_irqsave(&ch->lock, flags);
407
408 if (!ch->serving) {
409 ch->serving = virt_chan;
410 ch->signal = -1;
411 spin_unlock_irqrestore(&ch->lock, flags);
412 break;
413 }
414
415 spin_unlock_irqrestore(&ch->lock, flags);
416 }
417
418 if (i == pl08x->vd->channels) {
419 /* No physical channel available, cope with it */
420 return NULL;
421 }
422
423 return ch;
424 }
425
426 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
427 struct pl08x_phy_chan *ch)
428 {
429 unsigned long flags;
430
431 /* Stop the channel and clear its interrupts */
432 pl08x_stop_phy_chan(ch);
433 writel((1 << ch->id), pl08x->base + PL080_ERR_CLEAR);
434 writel((1 << ch->id), pl08x->base + PL080_TC_CLEAR);
435
436 /* Mark it as free */
437 spin_lock_irqsave(&ch->lock, flags);
438 ch->serving = NULL;
439 spin_unlock_irqrestore(&ch->lock, flags);
440 }
441
442 /*
443 * LLI handling
444 */
445
446 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
447 {
448 switch (coded) {
449 case PL080_WIDTH_8BIT:
450 return 1;
451 case PL080_WIDTH_16BIT:
452 return 2;
453 case PL080_WIDTH_32BIT:
454 return 4;
455 default:
456 break;
457 }
458 BUG();
459 return 0;
460 }
461
462 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
463 size_t tsize)
464 {
465 u32 retbits = cctl;
466
467 /* Remove all src, dst and transfer size bits */
468 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
469 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
470 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
471
472 /* Then set the bits according to the parameters */
473 switch (srcwidth) {
474 case 1:
475 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
476 break;
477 case 2:
478 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
479 break;
480 case 4:
481 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
482 break;
483 default:
484 BUG();
485 break;
486 }
487
488 switch (dstwidth) {
489 case 1:
490 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
491 break;
492 case 2:
493 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
494 break;
495 case 4:
496 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
497 break;
498 default:
499 BUG();
500 break;
501 }
502
503 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
504 return retbits;
505 }
506
507 /*
508 * Autoselect a master bus to use for the transfer
509 * this prefers the destination bus if both available
510 * if fixed address on one bus the other will be chosen
511 */
512 static void pl08x_choose_master_bus(struct pl08x_bus_data *src_bus,
513 struct pl08x_bus_data *dst_bus, struct pl08x_bus_data **mbus,
514 struct pl08x_bus_data **sbus, u32 cctl)
515 {
516 if (!(cctl & PL080_CONTROL_DST_INCR)) {
517 *mbus = src_bus;
518 *sbus = dst_bus;
519 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
520 *mbus = dst_bus;
521 *sbus = src_bus;
522 } else {
523 if (dst_bus->buswidth == 4) {
524 *mbus = dst_bus;
525 *sbus = src_bus;
526 } else if (src_bus->buswidth == 4) {
527 *mbus = src_bus;
528 *sbus = dst_bus;
529 } else if (dst_bus->buswidth == 2) {
530 *mbus = dst_bus;
531 *sbus = src_bus;
532 } else if (src_bus->buswidth == 2) {
533 *mbus = src_bus;
534 *sbus = dst_bus;
535 } else {
536 /* src_bus->buswidth == 1 */
537 *mbus = dst_bus;
538 *sbus = src_bus;
539 }
540 }
541 }
542
543 /*
544 * Fills in one LLI for a certain transfer descriptor
545 * and advance the counter
546 */
547 static int pl08x_fill_lli_for_desc(struct pl08x_driver_data *pl08x,
548 struct pl08x_txd *txd, int num_llis, int len,
549 u32 cctl, u32 *remainder)
550 {
551 struct pl08x_lli *llis_va = txd->llis_va;
552 dma_addr_t llis_bus = txd->llis_bus;
553
554 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
555
556 llis_va[num_llis].cctl = cctl;
557 llis_va[num_llis].src = txd->srcbus.addr;
558 llis_va[num_llis].dst = txd->dstbus.addr;
559
560 /*
561 * On versions with dual masters, you can optionally AND on
562 * PL080_LLI_LM_AHB2 to the LLI to tell the hardware to read
563 * in new LLIs with that controller, but we always try to
564 * choose AHB1 to point into memory. The idea is to have AHB2
565 * fixed on the peripheral and AHB1 messing around in the
566 * memory. So we don't manipulate this bit currently.
567 */
568
569 llis_va[num_llis].lli = llis_bus + (num_llis + 1) * sizeof(struct pl08x_lli);
570
571 if (cctl & PL080_CONTROL_SRC_INCR)
572 txd->srcbus.addr += len;
573 if (cctl & PL080_CONTROL_DST_INCR)
574 txd->dstbus.addr += len;
575
576 BUG_ON(*remainder < len);
577
578 *remainder -= len;
579
580 return num_llis + 1;
581 }
582
583 /*
584 * Return number of bytes to fill to boundary, or len
585 */
586 static inline size_t pl08x_pre_boundary(u32 addr, size_t len)
587 {
588 u32 boundary;
589
590 boundary = ((addr >> PL08X_BOUNDARY_SHIFT) + 1)
591 << PL08X_BOUNDARY_SHIFT;
592
593 if (boundary < addr + len)
594 return boundary - addr;
595 else
596 return len;
597 }
598
599 /*
600 * This fills in the table of LLIs for the transfer descriptor
601 * Note that we assume we never have to change the burst sizes
602 * Return 0 for error
603 */
604 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
605 struct pl08x_txd *txd)
606 {
607 struct pl08x_channel_data *cd = txd->cd;
608 struct pl08x_bus_data *mbus, *sbus;
609 size_t remainder;
610 int num_llis = 0;
611 u32 cctl;
612 size_t max_bytes_per_lli;
613 size_t total_bytes = 0;
614 struct pl08x_lli *llis_va;
615
616 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT,
617 &txd->llis_bus);
618 if (!txd->llis_va) {
619 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
620 return 0;
621 }
622
623 pl08x->pool_ctr++;
624
625 /*
626 * Initialize bus values for this transfer
627 * from the passed optimal values
628 */
629 if (!cd) {
630 dev_err(&pl08x->adev->dev, "%s no channel data\n", __func__);
631 return 0;
632 }
633
634 /* Get the default CCTL from the platform data */
635 cctl = cd->cctl;
636
637 /*
638 * On the PL080 we have two bus masters and we
639 * should select one for source and one for
640 * destination. We try to use AHB2 for the
641 * bus which does not increment (typically the
642 * peripheral) else we just choose something.
643 */
644 cctl &= ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
645 if (pl08x->vd->dualmaster) {
646 if (cctl & PL080_CONTROL_SRC_INCR)
647 /* Source increments, use AHB2 for destination */
648 cctl |= PL080_CONTROL_DST_AHB2;
649 else if (cctl & PL080_CONTROL_DST_INCR)
650 /* Destination increments, use AHB2 for source */
651 cctl |= PL080_CONTROL_SRC_AHB2;
652 else
653 /* Just pick something, source AHB1 dest AHB2 */
654 cctl |= PL080_CONTROL_DST_AHB2;
655 }
656
657 /* Find maximum width of the source bus */
658 txd->srcbus.maxwidth =
659 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
660 PL080_CONTROL_SWIDTH_SHIFT);
661
662 /* Find maximum width of the destination bus */
663 txd->dstbus.maxwidth =
664 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
665 PL080_CONTROL_DWIDTH_SHIFT);
666
667 /* Set up the bus widths to the maximum */
668 txd->srcbus.buswidth = txd->srcbus.maxwidth;
669 txd->dstbus.buswidth = txd->dstbus.maxwidth;
670 dev_vdbg(&pl08x->adev->dev,
671 "%s source bus is %d bytes wide, dest bus is %d bytes wide\n",
672 __func__, txd->srcbus.buswidth, txd->dstbus.buswidth);
673
674
675 /*
676 * Bytes transferred == tsize * MIN(buswidths), not max(buswidths)
677 */
678 max_bytes_per_lli = min(txd->srcbus.buswidth, txd->dstbus.buswidth) *
679 PL080_CONTROL_TRANSFER_SIZE_MASK;
680 dev_vdbg(&pl08x->adev->dev,
681 "%s max bytes per lli = %zu\n",
682 __func__, max_bytes_per_lli);
683
684 /* We need to count this down to zero */
685 remainder = txd->len;
686 dev_vdbg(&pl08x->adev->dev,
687 "%s remainder = %zu\n",
688 __func__, remainder);
689
690 /*
691 * Choose bus to align to
692 * - prefers destination bus if both available
693 * - if fixed address on one bus chooses other
694 * - modifies cctl to choose an appropriate master
695 */
696 pl08x_choose_master_bus(&txd->srcbus, &txd->dstbus,
697 &mbus, &sbus, cctl);
698
699
700 /*
701 * The lowest bit of the LLI register
702 * is also used to indicate which master to
703 * use for reading the LLIs.
704 */
705
706 if (txd->len < mbus->buswidth) {
707 /*
708 * Less than a bus width available
709 * - send as single bytes
710 */
711 while (remainder) {
712 dev_vdbg(&pl08x->adev->dev,
713 "%s single byte LLIs for a transfer of "
714 "less than a bus width (remain 0x%08x)\n",
715 __func__, remainder);
716 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
717 num_llis =
718 pl08x_fill_lli_for_desc(pl08x, txd, num_llis, 1,
719 cctl, &remainder);
720 total_bytes++;
721 }
722 } else {
723 /*
724 * Make one byte LLIs until master bus is aligned
725 * - slave will then be aligned also
726 */
727 while ((mbus->addr) % (mbus->buswidth)) {
728 dev_vdbg(&pl08x->adev->dev,
729 "%s adjustment lli for less than bus width "
730 "(remain 0x%08x)\n",
731 __func__, remainder);
732 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
733 num_llis = pl08x_fill_lli_for_desc
734 (pl08x, txd, num_llis, 1, cctl, &remainder);
735 total_bytes++;
736 }
737
738 /*
739 * Master now aligned
740 * - if slave is not then we must set its width down
741 */
742 if (sbus->addr % sbus->buswidth) {
743 dev_dbg(&pl08x->adev->dev,
744 "%s set down bus width to one byte\n",
745 __func__);
746
747 sbus->buswidth = 1;
748 }
749
750 /*
751 * Make largest possible LLIs until less than one bus
752 * width left
753 */
754 while (remainder > (mbus->buswidth - 1)) {
755 size_t lli_len, target_len, tsize, odd_bytes;
756
757 /*
758 * If enough left try to send max possible,
759 * otherwise try to send the remainder
760 */
761 target_len = remainder;
762 if (remainder > max_bytes_per_lli)
763 target_len = max_bytes_per_lli;
764
765 /*
766 * Set bus lengths for incrementing buses
767 * to number of bytes which fill to next memory
768 * boundary
769 */
770 if (cctl & PL080_CONTROL_SRC_INCR)
771 txd->srcbus.fill_bytes =
772 pl08x_pre_boundary(
773 txd->srcbus.addr,
774 remainder);
775 else
776 txd->srcbus.fill_bytes =
777 max_bytes_per_lli;
778
779 if (cctl & PL080_CONTROL_DST_INCR)
780 txd->dstbus.fill_bytes =
781 pl08x_pre_boundary(
782 txd->dstbus.addr,
783 remainder);
784 else
785 txd->dstbus.fill_bytes =
786 max_bytes_per_lli;
787
788 /*
789 * Find the nearest
790 */
791 lli_len = min(txd->srcbus.fill_bytes,
792 txd->dstbus.fill_bytes);
793
794 BUG_ON(lli_len > remainder);
795
796 if (lli_len <= 0) {
797 dev_err(&pl08x->adev->dev,
798 "%s lli_len is %zu, <= 0\n",
799 __func__, lli_len);
800 return 0;
801 }
802
803 if (lli_len == target_len) {
804 /*
805 * Can send what we wanted
806 */
807 /*
808 * Maintain alignment
809 */
810 lli_len = (lli_len/mbus->buswidth) *
811 mbus->buswidth;
812 odd_bytes = 0;
813 } else {
814 /*
815 * So now we know how many bytes to transfer
816 * to get to the nearest boundary
817 * The next LLI will past the boundary
818 * - however we may be working to a boundary
819 * on the slave bus
820 * We need to ensure the master stays aligned
821 */
822 odd_bytes = lli_len % mbus->buswidth;
823 /*
824 * - and that we are working in multiples
825 * of the bus widths
826 */
827 lli_len -= odd_bytes;
828
829 }
830
831 if (lli_len) {
832 /*
833 * Check against minimum bus alignment:
834 * Calculate actual transfer size in relation
835 * to bus width an get a maximum remainder of
836 * the smallest bus width - 1
837 */
838 /* FIXME: use round_down()? */
839 tsize = lli_len / min(mbus->buswidth,
840 sbus->buswidth);
841 lli_len = tsize * min(mbus->buswidth,
842 sbus->buswidth);
843
844 if (target_len != lli_len) {
845 dev_vdbg(&pl08x->adev->dev,
846 "%s can't send what we want. Desired 0x%08zx, lli of 0x%08zx bytes in txd of 0x%08zx\n",
847 __func__, target_len, lli_len, txd->len);
848 }
849
850 cctl = pl08x_cctl_bits(cctl,
851 txd->srcbus.buswidth,
852 txd->dstbus.buswidth,
853 tsize);
854
855 dev_vdbg(&pl08x->adev->dev,
856 "%s fill lli with single lli chunk of size 0x%08zx (remainder 0x%08zx)\n",
857 __func__, lli_len, remainder);
858 num_llis = pl08x_fill_lli_for_desc(pl08x, txd,
859 num_llis, lli_len, cctl,
860 &remainder);
861 total_bytes += lli_len;
862 }
863
864
865 if (odd_bytes) {
866 /*
867 * Creep past the boundary,
868 * maintaining master alignment
869 */
870 int j;
871 for (j = 0; (j < mbus->buswidth)
872 && (remainder); j++) {
873 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
874 dev_vdbg(&pl08x->adev->dev,
875 "%s align with boundary, single byte (remain 0x%08zx)\n",
876 __func__, remainder);
877 num_llis =
878 pl08x_fill_lli_for_desc(pl08x,
879 txd, num_llis, 1,
880 cctl, &remainder);
881 total_bytes++;
882 }
883 }
884 }
885
886 /*
887 * Send any odd bytes
888 */
889 while (remainder) {
890 cctl = pl08x_cctl_bits(cctl, 1, 1, 1);
891 dev_vdbg(&pl08x->adev->dev,
892 "%s align with boundary, single odd byte (remain %zu)\n",
893 __func__, remainder);
894 num_llis = pl08x_fill_lli_for_desc(pl08x, txd, num_llis,
895 1, cctl, &remainder);
896 total_bytes++;
897 }
898 }
899 if (total_bytes != txd->len) {
900 dev_err(&pl08x->adev->dev,
901 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
902 __func__, total_bytes, txd->len);
903 return 0;
904 }
905
906 if (num_llis >= MAX_NUM_TSFR_LLIS) {
907 dev_err(&pl08x->adev->dev,
908 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
909 __func__, (u32) MAX_NUM_TSFR_LLIS);
910 return 0;
911 }
912
913 llis_va = txd->llis_va;
914 /*
915 * The final LLI terminates the LLI.
916 */
917 llis_va[num_llis - 1].lli = 0;
918 /*
919 * The final LLI element shall also fire an interrupt
920 */
921 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
922
923 /* Now store the channel register values */
924 txd->csrc = llis_va[0].src;
925 txd->cdst = llis_va[0].dst;
926 txd->clli = llis_va[0].lli;
927 txd->cctl = llis_va[0].cctl;
928 /* ccfg will be set at physical channel allocation time */
929
930 #ifdef VERBOSE_DEBUG
931 {
932 int i;
933
934 for (i = 0; i < num_llis; i++) {
935 dev_vdbg(&pl08x->adev->dev,
936 "lli %d @%p: csrc=0x%08x, cdst=0x%08x, cctl=0x%08x, clli=0x%08x\n",
937 i,
938 &llis_va[i],
939 llis_va[i].src,
940 llis_va[i].dst,
941 llis_va[i].cctl,
942 llis_va[i].lli
943 );
944 }
945 }
946 #endif
947
948 return num_llis;
949 }
950
951 /* You should call this with the struct pl08x lock held */
952 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
953 struct pl08x_txd *txd)
954 {
955 /* Free the LLI */
956 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
957
958 pl08x->pool_ctr--;
959
960 kfree(txd);
961 }
962
963 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
964 struct pl08x_dma_chan *plchan)
965 {
966 struct pl08x_txd *txdi = NULL;
967 struct pl08x_txd *next;
968
969 if (!list_empty(&plchan->desc_list)) {
970 list_for_each_entry_safe(txdi,
971 next, &plchan->desc_list, node) {
972 list_del(&txdi->node);
973 pl08x_free_txd(pl08x, txdi);
974 }
975
976 }
977 }
978
979 /*
980 * The DMA ENGINE API
981 */
982 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
983 {
984 return 0;
985 }
986
987 static void pl08x_free_chan_resources(struct dma_chan *chan)
988 {
989 }
990
991 /*
992 * This should be called with the channel plchan->lock held
993 */
994 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
995 struct pl08x_txd *txd)
996 {
997 struct pl08x_driver_data *pl08x = plchan->host;
998 struct pl08x_phy_chan *ch;
999 int ret;
1000
1001 /* Check if we already have a channel */
1002 if (plchan->phychan)
1003 return 0;
1004
1005 ch = pl08x_get_phy_channel(pl08x, plchan);
1006 if (!ch) {
1007 /* No physical channel available, cope with it */
1008 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
1009 return -EBUSY;
1010 }
1011
1012 /*
1013 * OK we have a physical channel: for memcpy() this is all we
1014 * need, but for slaves the physical signals may be muxed!
1015 * Can the platform allow us to use this channel?
1016 */
1017 if (plchan->slave &&
1018 ch->signal < 0 &&
1019 pl08x->pd->get_signal) {
1020 ret = pl08x->pd->get_signal(plchan);
1021 if (ret < 0) {
1022 dev_dbg(&pl08x->adev->dev,
1023 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
1024 ch->id, plchan->name);
1025 /* Release physical channel & return */
1026 pl08x_put_phy_channel(pl08x, ch);
1027 return -EBUSY;
1028 }
1029 ch->signal = ret;
1030 }
1031
1032 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
1033 ch->id,
1034 ch->signal,
1035 plchan->name);
1036
1037 plchan->phychan = ch;
1038
1039 return 0;
1040 }
1041
1042 static void release_phy_channel(struct pl08x_dma_chan *plchan)
1043 {
1044 struct pl08x_driver_data *pl08x = plchan->host;
1045
1046 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
1047 pl08x->pd->put_signal(plchan);
1048 plchan->phychan->signal = -1;
1049 }
1050 pl08x_put_phy_channel(pl08x, plchan->phychan);
1051 plchan->phychan = NULL;
1052 }
1053
1054 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1055 {
1056 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1057
1058 plchan->chan.cookie += 1;
1059 if (plchan->chan.cookie < 0)
1060 plchan->chan.cookie = 1;
1061 tx->cookie = plchan->chan.cookie;
1062 /* This unlock follows the lock in the prep() function */
1063 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1064
1065 return tx->cookie;
1066 }
1067
1068 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1069 struct dma_chan *chan, unsigned long flags)
1070 {
1071 struct dma_async_tx_descriptor *retval = NULL;
1072
1073 return retval;
1074 }
1075
1076 /*
1077 * Code accessing dma_async_is_complete() in a tight loop
1078 * may give problems - could schedule where indicated.
1079 * If slaves are relying on interrupts to signal completion this
1080 * function must not be called with interrupts disabled
1081 */
1082 static enum dma_status
1083 pl08x_dma_tx_status(struct dma_chan *chan,
1084 dma_cookie_t cookie,
1085 struct dma_tx_state *txstate)
1086 {
1087 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1088 dma_cookie_t last_used;
1089 dma_cookie_t last_complete;
1090 enum dma_status ret;
1091 u32 bytesleft = 0;
1092
1093 last_used = plchan->chan.cookie;
1094 last_complete = plchan->lc;
1095
1096 ret = dma_async_is_complete(cookie, last_complete, last_used);
1097 if (ret == DMA_SUCCESS) {
1098 dma_set_tx_state(txstate, last_complete, last_used, 0);
1099 return ret;
1100 }
1101
1102 /*
1103 * schedule(); could be inserted here
1104 */
1105
1106 /*
1107 * This cookie not complete yet
1108 */
1109 last_used = plchan->chan.cookie;
1110 last_complete = plchan->lc;
1111
1112 /* Get number of bytes left in the active transactions and queue */
1113 bytesleft = pl08x_getbytes_chan(plchan);
1114
1115 dma_set_tx_state(txstate, last_complete, last_used,
1116 bytesleft);
1117
1118 if (plchan->state == PL08X_CHAN_PAUSED)
1119 return DMA_PAUSED;
1120
1121 /* Whether waiting or running, we're in progress */
1122 return DMA_IN_PROGRESS;
1123 }
1124
1125 /* PrimeCell DMA extension */
1126 struct burst_table {
1127 int burstwords;
1128 u32 reg;
1129 };
1130
1131 static const struct burst_table burst_sizes[] = {
1132 {
1133 .burstwords = 256,
1134 .reg = (PL080_BSIZE_256 << PL080_CONTROL_SB_SIZE_SHIFT) |
1135 (PL080_BSIZE_256 << PL080_CONTROL_DB_SIZE_SHIFT),
1136 },
1137 {
1138 .burstwords = 128,
1139 .reg = (PL080_BSIZE_128 << PL080_CONTROL_SB_SIZE_SHIFT) |
1140 (PL080_BSIZE_128 << PL080_CONTROL_DB_SIZE_SHIFT),
1141 },
1142 {
1143 .burstwords = 64,
1144 .reg = (PL080_BSIZE_64 << PL080_CONTROL_SB_SIZE_SHIFT) |
1145 (PL080_BSIZE_64 << PL080_CONTROL_DB_SIZE_SHIFT),
1146 },
1147 {
1148 .burstwords = 32,
1149 .reg = (PL080_BSIZE_32 << PL080_CONTROL_SB_SIZE_SHIFT) |
1150 (PL080_BSIZE_32 << PL080_CONTROL_DB_SIZE_SHIFT),
1151 },
1152 {
1153 .burstwords = 16,
1154 .reg = (PL080_BSIZE_16 << PL080_CONTROL_SB_SIZE_SHIFT) |
1155 (PL080_BSIZE_16 << PL080_CONTROL_DB_SIZE_SHIFT),
1156 },
1157 {
1158 .burstwords = 8,
1159 .reg = (PL080_BSIZE_8 << PL080_CONTROL_SB_SIZE_SHIFT) |
1160 (PL080_BSIZE_8 << PL080_CONTROL_DB_SIZE_SHIFT),
1161 },
1162 {
1163 .burstwords = 4,
1164 .reg = (PL080_BSIZE_4 << PL080_CONTROL_SB_SIZE_SHIFT) |
1165 (PL080_BSIZE_4 << PL080_CONTROL_DB_SIZE_SHIFT),
1166 },
1167 {
1168 .burstwords = 1,
1169 .reg = (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1170 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT),
1171 },
1172 };
1173
1174 static void dma_set_runtime_config(struct dma_chan *chan,
1175 struct dma_slave_config *config)
1176 {
1177 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1178 struct pl08x_driver_data *pl08x = plchan->host;
1179 struct pl08x_channel_data *cd = plchan->cd;
1180 enum dma_slave_buswidth addr_width;
1181 u32 maxburst;
1182 u32 cctl = 0;
1183 /* Mask out all except src and dst channel */
1184 u32 ccfg = cd->ccfg & 0x000003DEU;
1185 int i;
1186
1187 /* Transfer direction */
1188 plchan->runtime_direction = config->direction;
1189 if (config->direction == DMA_TO_DEVICE) {
1190 plchan->runtime_addr = config->dst_addr;
1191 cctl |= PL080_CONTROL_SRC_INCR;
1192 ccfg |= PL080_FLOW_MEM2PER << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1193 addr_width = config->dst_addr_width;
1194 maxburst = config->dst_maxburst;
1195 } else if (config->direction == DMA_FROM_DEVICE) {
1196 plchan->runtime_addr = config->src_addr;
1197 cctl |= PL080_CONTROL_DST_INCR;
1198 ccfg |= PL080_FLOW_PER2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1199 addr_width = config->src_addr_width;
1200 maxburst = config->src_maxburst;
1201 } else {
1202 dev_err(&pl08x->adev->dev,
1203 "bad runtime_config: alien transfer direction\n");
1204 return;
1205 }
1206
1207 switch (addr_width) {
1208 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1209 cctl |= (PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1210 (PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT);
1211 break;
1212 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1213 cctl |= (PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1214 (PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT);
1215 break;
1216 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1217 cctl |= (PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT) |
1218 (PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT);
1219 break;
1220 default:
1221 dev_err(&pl08x->adev->dev,
1222 "bad runtime_config: alien address width\n");
1223 return;
1224 }
1225
1226 /*
1227 * Now decide on a maxburst:
1228 * If this channel will only request single transfers, set this
1229 * down to ONE element. Also select one element if no maxburst
1230 * is specified.
1231 */
1232 if (plchan->cd->single || maxburst == 0) {
1233 cctl |= (PL080_BSIZE_1 << PL080_CONTROL_SB_SIZE_SHIFT) |
1234 (PL080_BSIZE_1 << PL080_CONTROL_DB_SIZE_SHIFT);
1235 } else {
1236 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1237 if (burst_sizes[i].burstwords <= maxburst)
1238 break;
1239 cctl |= burst_sizes[i].reg;
1240 }
1241
1242 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1243 cctl &= ~PL080_CONTROL_PROT_MASK;
1244 cctl |= PL080_CONTROL_PROT_SYS;
1245
1246 /* Modify the default channel data to fit PrimeCell request */
1247 cd->cctl = cctl;
1248 cd->ccfg = ccfg;
1249
1250 dev_dbg(&pl08x->adev->dev,
1251 "configured channel %s (%s) for %s, data width %d, "
1252 "maxburst %d words, LE, CCTL=0x%08x, CCFG=0x%08x\n",
1253 dma_chan_name(chan), plchan->name,
1254 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
1255 addr_width,
1256 maxburst,
1257 cctl, ccfg);
1258 }
1259
1260 /*
1261 * Slave transactions callback to the slave device to allow
1262 * synchronization of slave DMA signals with the DMAC enable
1263 */
1264 static void pl08x_issue_pending(struct dma_chan *chan)
1265 {
1266 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1267 unsigned long flags;
1268
1269 spin_lock_irqsave(&plchan->lock, flags);
1270 /* Something is already active, or we're waiting for a channel... */
1271 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1272 spin_unlock_irqrestore(&plchan->lock, flags);
1273 return;
1274 }
1275
1276 /* Take the first element in the queue and execute it */
1277 if (!list_empty(&plchan->desc_list)) {
1278 struct pl08x_txd *next;
1279
1280 next = list_first_entry(&plchan->desc_list,
1281 struct pl08x_txd,
1282 node);
1283 list_del(&next->node);
1284 plchan->state = PL08X_CHAN_RUNNING;
1285
1286 pl08x_start_txd(plchan, next);
1287 }
1288
1289 spin_unlock_irqrestore(&plchan->lock, flags);
1290 }
1291
1292 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1293 struct pl08x_txd *txd)
1294 {
1295 int num_llis;
1296 struct pl08x_driver_data *pl08x = plchan->host;
1297 int ret;
1298
1299 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1300 if (!num_llis) {
1301 kfree(txd);
1302 return -EINVAL;
1303 }
1304
1305 spin_lock_irqsave(&plchan->lock, plchan->lockflags);
1306
1307 list_add_tail(&txd->node, &plchan->desc_list);
1308
1309 /*
1310 * See if we already have a physical channel allocated,
1311 * else this is the time to try to get one.
1312 */
1313 ret = prep_phy_channel(plchan, txd);
1314 if (ret) {
1315 /*
1316 * No physical channel available, we will
1317 * stack up the memcpy channels until there is a channel
1318 * available to handle it whereas slave transfers may
1319 * have been denied due to platform channel muxing restrictions
1320 * and since there is no guarantee that this will ever be
1321 * resolved, and since the signal must be acquired AFTER
1322 * acquiring the physical channel, we will let them be NACK:ed
1323 * with -EBUSY here. The drivers can alway retry the prep()
1324 * call if they are eager on doing this using DMA.
1325 */
1326 if (plchan->slave) {
1327 pl08x_free_txd_list(pl08x, plchan);
1328 spin_unlock_irqrestore(&plchan->lock, plchan->lockflags);
1329 return -EBUSY;
1330 }
1331 /* Do this memcpy whenever there is a channel ready */
1332 plchan->state = PL08X_CHAN_WAITING;
1333 plchan->waiting = txd;
1334 } else
1335 /*
1336 * Else we're all set, paused and ready to roll,
1337 * status will switch to PL08X_CHAN_RUNNING when
1338 * we call issue_pending(). If there is something
1339 * running on the channel already we don't change
1340 * its state.
1341 */
1342 if (plchan->state == PL08X_CHAN_IDLE)
1343 plchan->state = PL08X_CHAN_PAUSED;
1344
1345 /*
1346 * Notice that we leave plchan->lock locked on purpose:
1347 * it will be unlocked in the subsequent tx_submit()
1348 * call. This is a consequence of the current API.
1349 */
1350
1351 return 0;
1352 }
1353
1354 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1355 {
1356 struct pl08x_txd *txd = kzalloc(sizeof(struct pl08x_txd), GFP_NOWAIT);
1357
1358 if (txd) {
1359 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1360 txd->tx.tx_submit = pl08x_tx_submit;
1361 INIT_LIST_HEAD(&txd->node);
1362 }
1363 return txd;
1364 }
1365
1366 /*
1367 * Initialize a descriptor to be used by memcpy submit
1368 */
1369 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1370 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1371 size_t len, unsigned long flags)
1372 {
1373 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1374 struct pl08x_driver_data *pl08x = plchan->host;
1375 struct pl08x_txd *txd;
1376 int ret;
1377
1378 txd = pl08x_get_txd(plchan);
1379 if (!txd) {
1380 dev_err(&pl08x->adev->dev,
1381 "%s no memory for descriptor\n", __func__);
1382 return NULL;
1383 }
1384
1385 txd->direction = DMA_NONE;
1386 txd->srcbus.addr = src;
1387 txd->dstbus.addr = dest;
1388
1389 /* Set platform data for m2m */
1390 txd->cd = &pl08x->pd->memcpy_channel;
1391 /* Both to be incremented or the code will break */
1392 txd->cd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1393 txd->len = len;
1394
1395 ret = pl08x_prep_channel_resources(plchan, txd);
1396 if (ret)
1397 return NULL;
1398 /*
1399 * NB: the channel lock is held at this point so tx_submit()
1400 * must be called in direct succession.
1401 */
1402
1403 return &txd->tx;
1404 }
1405
1406 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1407 struct dma_chan *chan, struct scatterlist *sgl,
1408 unsigned int sg_len, enum dma_data_direction direction,
1409 unsigned long flags)
1410 {
1411 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1412 struct pl08x_driver_data *pl08x = plchan->host;
1413 struct pl08x_txd *txd;
1414 int ret;
1415
1416 /*
1417 * Current implementation ASSUMES only one sg
1418 */
1419 if (sg_len != 1) {
1420 dev_err(&pl08x->adev->dev, "%s prepared too long sglist\n",
1421 __func__);
1422 BUG();
1423 }
1424
1425 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1426 __func__, sgl->length, plchan->name);
1427
1428 txd = pl08x_get_txd(plchan);
1429 if (!txd) {
1430 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1431 return NULL;
1432 }
1433
1434 if (direction != plchan->runtime_direction)
1435 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1436 "the direction configured for the PrimeCell\n",
1437 __func__);
1438
1439 /*
1440 * Set up addresses, the PrimeCell configured address
1441 * will take precedence since this may configure the
1442 * channel target address dynamically at runtime.
1443 */
1444 txd->direction = direction;
1445 if (direction == DMA_TO_DEVICE) {
1446 txd->srcbus.addr = sgl->dma_address;
1447 if (plchan->runtime_addr)
1448 txd->dstbus.addr = plchan->runtime_addr;
1449 else
1450 txd->dstbus.addr = plchan->cd->addr;
1451 } else if (direction == DMA_FROM_DEVICE) {
1452 if (plchan->runtime_addr)
1453 txd->srcbus.addr = plchan->runtime_addr;
1454 else
1455 txd->srcbus.addr = plchan->cd->addr;
1456 txd->dstbus.addr = sgl->dma_address;
1457 } else {
1458 dev_err(&pl08x->adev->dev,
1459 "%s direction unsupported\n", __func__);
1460 return NULL;
1461 }
1462 txd->cd = plchan->cd;
1463 txd->len = sgl->length;
1464
1465 ret = pl08x_prep_channel_resources(plchan, txd);
1466 if (ret)
1467 return NULL;
1468 /*
1469 * NB: the channel lock is held at this point so tx_submit()
1470 * must be called in direct succession.
1471 */
1472
1473 return &txd->tx;
1474 }
1475
1476 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1477 unsigned long arg)
1478 {
1479 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1480 struct pl08x_driver_data *pl08x = plchan->host;
1481 unsigned long flags;
1482 int ret = 0;
1483
1484 /* Controls applicable to inactive channels */
1485 if (cmd == DMA_SLAVE_CONFIG) {
1486 dma_set_runtime_config(chan,
1487 (struct dma_slave_config *)
1488 arg);
1489 return 0;
1490 }
1491
1492 /*
1493 * Anything succeeds on channels with no physical allocation and
1494 * no queued transfers.
1495 */
1496 spin_lock_irqsave(&plchan->lock, flags);
1497 if (!plchan->phychan && !plchan->at) {
1498 spin_unlock_irqrestore(&plchan->lock, flags);
1499 return 0;
1500 }
1501
1502 switch (cmd) {
1503 case DMA_TERMINATE_ALL:
1504 plchan->state = PL08X_CHAN_IDLE;
1505
1506 if (plchan->phychan) {
1507 pl08x_stop_phy_chan(plchan->phychan);
1508
1509 /*
1510 * Mark physical channel as free and free any slave
1511 * signal
1512 */
1513 release_phy_channel(plchan);
1514 }
1515 /* Dequeue jobs and free LLIs */
1516 if (plchan->at) {
1517 pl08x_free_txd(pl08x, plchan->at);
1518 plchan->at = NULL;
1519 }
1520 /* Dequeue jobs not yet fired as well */
1521 pl08x_free_txd_list(pl08x, plchan);
1522 break;
1523 case DMA_PAUSE:
1524 pl08x_pause_phy_chan(plchan->phychan);
1525 plchan->state = PL08X_CHAN_PAUSED;
1526 break;
1527 case DMA_RESUME:
1528 pl08x_resume_phy_chan(plchan->phychan);
1529 plchan->state = PL08X_CHAN_RUNNING;
1530 break;
1531 default:
1532 /* Unknown command */
1533 ret = -ENXIO;
1534 break;
1535 }
1536
1537 spin_unlock_irqrestore(&plchan->lock, flags);
1538
1539 return ret;
1540 }
1541
1542 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1543 {
1544 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1545 char *name = chan_id;
1546
1547 /* Check that the channel is not taken! */
1548 if (!strcmp(plchan->name, name))
1549 return true;
1550
1551 return false;
1552 }
1553
1554 /*
1555 * Just check that the device is there and active
1556 * TODO: turn this bit on/off depending on the number of
1557 * physical channels actually used, if it is zero... well
1558 * shut it off. That will save some power. Cut the clock
1559 * at the same time.
1560 */
1561 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1562 {
1563 u32 val;
1564
1565 val = readl(pl08x->base + PL080_CONFIG);
1566 val &= ~(PL080_CONFIG_M2_BE | PL080_CONFIG_M1_BE | PL080_CONFIG_ENABLE);
1567 /* We implicitly clear bit 1 and that means little-endian mode */
1568 val |= PL080_CONFIG_ENABLE;
1569 writel(val, pl08x->base + PL080_CONFIG);
1570 }
1571
1572 static void pl08x_tasklet(unsigned long data)
1573 {
1574 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1575 struct pl08x_driver_data *pl08x = plchan->host;
1576 unsigned long flags;
1577
1578 spin_lock_irqsave(&plchan->lock, flags);
1579
1580 if (plchan->at) {
1581 dma_async_tx_callback callback =
1582 plchan->at->tx.callback;
1583 void *callback_param =
1584 plchan->at->tx.callback_param;
1585
1586 /*
1587 * Update last completed
1588 */
1589 plchan->lc = plchan->at->tx.cookie;
1590
1591 /*
1592 * Callback to signal completion
1593 */
1594 if (callback)
1595 callback(callback_param);
1596
1597 /*
1598 * Free the descriptor
1599 */
1600 pl08x_free_txd(pl08x, plchan->at);
1601 plchan->at = NULL;
1602 }
1603 /*
1604 * If a new descriptor is queued, set it up
1605 * plchan->at is NULL here
1606 */
1607 if (!list_empty(&plchan->desc_list)) {
1608 struct pl08x_txd *next;
1609
1610 next = list_first_entry(&plchan->desc_list,
1611 struct pl08x_txd,
1612 node);
1613 list_del(&next->node);
1614
1615 pl08x_start_txd(plchan, next);
1616 } else {
1617 struct pl08x_dma_chan *waiting = NULL;
1618
1619 /*
1620 * No more jobs, so free up the physical channel
1621 * Free any allocated signal on slave transfers too
1622 */
1623 release_phy_channel(plchan);
1624 plchan->state = PL08X_CHAN_IDLE;
1625
1626 /*
1627 * And NOW before anyone else can grab that free:d
1628 * up physical channel, see if there is some memcpy
1629 * pending that seriously needs to start because of
1630 * being stacked up while we were choking the
1631 * physical channels with data.
1632 */
1633 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1634 chan.device_node) {
1635 if (waiting->state == PL08X_CHAN_WAITING &&
1636 waiting->waiting != NULL) {
1637 int ret;
1638
1639 /* This should REALLY not fail now */
1640 ret = prep_phy_channel(waiting,
1641 waiting->waiting);
1642 BUG_ON(ret);
1643 waiting->state = PL08X_CHAN_RUNNING;
1644 waiting->waiting = NULL;
1645 pl08x_issue_pending(&waiting->chan);
1646 break;
1647 }
1648 }
1649 }
1650
1651 spin_unlock_irqrestore(&plchan->lock, flags);
1652 }
1653
1654 static irqreturn_t pl08x_irq(int irq, void *dev)
1655 {
1656 struct pl08x_driver_data *pl08x = dev;
1657 u32 mask = 0;
1658 u32 val;
1659 int i;
1660
1661 val = readl(pl08x->base + PL080_ERR_STATUS);
1662 if (val) {
1663 /*
1664 * An error interrupt (on one or more channels)
1665 */
1666 dev_err(&pl08x->adev->dev,
1667 "%s error interrupt, register value 0x%08x\n",
1668 __func__, val);
1669 /*
1670 * Simply clear ALL PL08X error interrupts,
1671 * regardless of channel and cause
1672 * FIXME: should be 0x00000003 on PL081 really.
1673 */
1674 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1675 }
1676 val = readl(pl08x->base + PL080_INT_STATUS);
1677 for (i = 0; i < pl08x->vd->channels; i++) {
1678 if ((1 << i) & val) {
1679 /* Locate physical channel */
1680 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1681 struct pl08x_dma_chan *plchan = phychan->serving;
1682
1683 /* Schedule tasklet on this channel */
1684 tasklet_schedule(&plchan->tasklet);
1685
1686 mask |= (1 << i);
1687 }
1688 }
1689 /*
1690 * Clear only the terminal interrupts on channels we processed
1691 */
1692 writel(mask, pl08x->base + PL080_TC_CLEAR);
1693
1694 return mask ? IRQ_HANDLED : IRQ_NONE;
1695 }
1696
1697 /*
1698 * Initialise the DMAC memcpy/slave channels.
1699 * Make a local wrapper to hold required data
1700 */
1701 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1702 struct dma_device *dmadev,
1703 unsigned int channels,
1704 bool slave)
1705 {
1706 struct pl08x_dma_chan *chan;
1707 int i;
1708
1709 INIT_LIST_HEAD(&dmadev->channels);
1710 /*
1711 * Register as many many memcpy as we have physical channels,
1712 * we won't always be able to use all but the code will have
1713 * to cope with that situation.
1714 */
1715 for (i = 0; i < channels; i++) {
1716 chan = kzalloc(sizeof(struct pl08x_dma_chan), GFP_KERNEL);
1717 if (!chan) {
1718 dev_err(&pl08x->adev->dev,
1719 "%s no memory for channel\n", __func__);
1720 return -ENOMEM;
1721 }
1722
1723 chan->host = pl08x;
1724 chan->state = PL08X_CHAN_IDLE;
1725
1726 if (slave) {
1727 chan->slave = true;
1728 chan->name = pl08x->pd->slave_channels[i].bus_id;
1729 chan->cd = &pl08x->pd->slave_channels[i];
1730 } else {
1731 chan->cd = &pl08x->pd->memcpy_channel;
1732 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1733 if (!chan->name) {
1734 kfree(chan);
1735 return -ENOMEM;
1736 }
1737 }
1738 if (chan->cd->circular_buffer) {
1739 dev_err(&pl08x->adev->dev,
1740 "channel %s: circular buffers not supported\n",
1741 chan->name);
1742 kfree(chan);
1743 continue;
1744 }
1745 dev_info(&pl08x->adev->dev,
1746 "initialize virtual channel \"%s\"\n",
1747 chan->name);
1748
1749 chan->chan.device = dmadev;
1750 chan->chan.cookie = 0;
1751 chan->lc = 0;
1752
1753 spin_lock_init(&chan->lock);
1754 INIT_LIST_HEAD(&chan->desc_list);
1755 tasklet_init(&chan->tasklet, pl08x_tasklet,
1756 (unsigned long) chan);
1757
1758 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1759 }
1760 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1761 i, slave ? "slave" : "memcpy");
1762 return i;
1763 }
1764
1765 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1766 {
1767 struct pl08x_dma_chan *chan = NULL;
1768 struct pl08x_dma_chan *next;
1769
1770 list_for_each_entry_safe(chan,
1771 next, &dmadev->channels, chan.device_node) {
1772 list_del(&chan->chan.device_node);
1773 kfree(chan);
1774 }
1775 }
1776
1777 #ifdef CONFIG_DEBUG_FS
1778 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1779 {
1780 switch (state) {
1781 case PL08X_CHAN_IDLE:
1782 return "idle";
1783 case PL08X_CHAN_RUNNING:
1784 return "running";
1785 case PL08X_CHAN_PAUSED:
1786 return "paused";
1787 case PL08X_CHAN_WAITING:
1788 return "waiting";
1789 default:
1790 break;
1791 }
1792 return "UNKNOWN STATE";
1793 }
1794
1795 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1796 {
1797 struct pl08x_driver_data *pl08x = s->private;
1798 struct pl08x_dma_chan *chan;
1799 struct pl08x_phy_chan *ch;
1800 unsigned long flags;
1801 int i;
1802
1803 seq_printf(s, "PL08x physical channels:\n");
1804 seq_printf(s, "CHANNEL:\tUSER:\n");
1805 seq_printf(s, "--------\t-----\n");
1806 for (i = 0; i < pl08x->vd->channels; i++) {
1807 struct pl08x_dma_chan *virt_chan;
1808
1809 ch = &pl08x->phy_chans[i];
1810
1811 spin_lock_irqsave(&ch->lock, flags);
1812 virt_chan = ch->serving;
1813
1814 seq_printf(s, "%d\t\t%s\n",
1815 ch->id, virt_chan ? virt_chan->name : "(none)");
1816
1817 spin_unlock_irqrestore(&ch->lock, flags);
1818 }
1819
1820 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1821 seq_printf(s, "CHANNEL:\tSTATE:\n");
1822 seq_printf(s, "--------\t------\n");
1823 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1824 seq_printf(s, "%s\t\t%s\n", chan->name,
1825 pl08x_state_str(chan->state));
1826 }
1827
1828 seq_printf(s, "\nPL08x virtual slave channels:\n");
1829 seq_printf(s, "CHANNEL:\tSTATE:\n");
1830 seq_printf(s, "--------\t------\n");
1831 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1832 seq_printf(s, "%s\t\t%s\n", chan->name,
1833 pl08x_state_str(chan->state));
1834 }
1835
1836 return 0;
1837 }
1838
1839 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1840 {
1841 return single_open(file, pl08x_debugfs_show, inode->i_private);
1842 }
1843
1844 static const struct file_operations pl08x_debugfs_operations = {
1845 .open = pl08x_debugfs_open,
1846 .read = seq_read,
1847 .llseek = seq_lseek,
1848 .release = single_release,
1849 };
1850
1851 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1852 {
1853 /* Expose a simple debugfs interface to view all clocks */
1854 (void) debugfs_create_file(dev_name(&pl08x->adev->dev), S_IFREG | S_IRUGO,
1855 NULL, pl08x,
1856 &pl08x_debugfs_operations);
1857 }
1858
1859 #else
1860 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1861 {
1862 }
1863 #endif
1864
1865 static int pl08x_probe(struct amba_device *adev, struct amba_id *id)
1866 {
1867 struct pl08x_driver_data *pl08x;
1868 const struct vendor_data *vd = id->data;
1869 int ret = 0;
1870 int i;
1871
1872 ret = amba_request_regions(adev, NULL);
1873 if (ret)
1874 return ret;
1875
1876 /* Create the driver state holder */
1877 pl08x = kzalloc(sizeof(struct pl08x_driver_data), GFP_KERNEL);
1878 if (!pl08x) {
1879 ret = -ENOMEM;
1880 goto out_no_pl08x;
1881 }
1882
1883 /* Initialize memcpy engine */
1884 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1885 pl08x->memcpy.dev = &adev->dev;
1886 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1887 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1888 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1889 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1890 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1891 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1892 pl08x->memcpy.device_control = pl08x_control;
1893
1894 /* Initialize slave engine */
1895 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1896 pl08x->slave.dev = &adev->dev;
1897 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1898 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1899 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1900 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1901 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1902 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1903 pl08x->slave.device_control = pl08x_control;
1904
1905 /* Get the platform data */
1906 pl08x->pd = dev_get_platdata(&adev->dev);
1907 if (!pl08x->pd) {
1908 dev_err(&adev->dev, "no platform data supplied\n");
1909 goto out_no_platdata;
1910 }
1911
1912 /* Assign useful pointers to the driver state */
1913 pl08x->adev = adev;
1914 pl08x->vd = vd;
1915
1916 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1917 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1918 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1919 if (!pl08x->pool) {
1920 ret = -ENOMEM;
1921 goto out_no_lli_pool;
1922 }
1923
1924 spin_lock_init(&pl08x->lock);
1925
1926 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1927 if (!pl08x->base) {
1928 ret = -ENOMEM;
1929 goto out_no_ioremap;
1930 }
1931
1932 /* Turn on the PL08x */
1933 pl08x_ensure_on(pl08x);
1934
1935 /*
1936 * Attach the interrupt handler
1937 */
1938 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1939 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1940
1941 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1942 DRIVER_NAME, pl08x);
1943 if (ret) {
1944 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1945 __func__, adev->irq[0]);
1946 goto out_no_irq;
1947 }
1948
1949 /* Initialize physical channels */
1950 pl08x->phy_chans = kmalloc((vd->channels * sizeof(struct pl08x_phy_chan)),
1951 GFP_KERNEL);
1952 if (!pl08x->phy_chans) {
1953 dev_err(&adev->dev, "%s failed to allocate "
1954 "physical channel holders\n",
1955 __func__);
1956 goto out_no_phychans;
1957 }
1958
1959 for (i = 0; i < vd->channels; i++) {
1960 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1961
1962 ch->id = i;
1963 ch->base = pl08x->base + PL080_Cx_BASE(i);
1964 spin_lock_init(&ch->lock);
1965 ch->serving = NULL;
1966 ch->signal = -1;
1967 dev_info(&adev->dev,
1968 "physical channel %d is %s\n", i,
1969 pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1970 }
1971
1972 /* Register as many memcpy channels as there are physical channels */
1973 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1974 pl08x->vd->channels, false);
1975 if (ret <= 0) {
1976 dev_warn(&pl08x->adev->dev,
1977 "%s failed to enumerate memcpy channels - %d\n",
1978 __func__, ret);
1979 goto out_no_memcpy;
1980 }
1981 pl08x->memcpy.chancnt = ret;
1982
1983 /* Register slave channels */
1984 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1985 pl08x->pd->num_slave_channels,
1986 true);
1987 if (ret <= 0) {
1988 dev_warn(&pl08x->adev->dev,
1989 "%s failed to enumerate slave channels - %d\n",
1990 __func__, ret);
1991 goto out_no_slave;
1992 }
1993 pl08x->slave.chancnt = ret;
1994
1995 ret = dma_async_device_register(&pl08x->memcpy);
1996 if (ret) {
1997 dev_warn(&pl08x->adev->dev,
1998 "%s failed to register memcpy as an async device - %d\n",
1999 __func__, ret);
2000 goto out_no_memcpy_reg;
2001 }
2002
2003 ret = dma_async_device_register(&pl08x->slave);
2004 if (ret) {
2005 dev_warn(&pl08x->adev->dev,
2006 "%s failed to register slave as an async device - %d\n",
2007 __func__, ret);
2008 goto out_no_slave_reg;
2009 }
2010
2011 amba_set_drvdata(adev, pl08x);
2012 init_pl08x_debugfs(pl08x);
2013 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2014 amba_part(adev), amba_rev(adev),
2015 (unsigned long long)adev->res.start, adev->irq[0]);
2016 return 0;
2017
2018 out_no_slave_reg:
2019 dma_async_device_unregister(&pl08x->memcpy);
2020 out_no_memcpy_reg:
2021 pl08x_free_virtual_channels(&pl08x->slave);
2022 out_no_slave:
2023 pl08x_free_virtual_channels(&pl08x->memcpy);
2024 out_no_memcpy:
2025 kfree(pl08x->phy_chans);
2026 out_no_phychans:
2027 free_irq(adev->irq[0], pl08x);
2028 out_no_irq:
2029 iounmap(pl08x->base);
2030 out_no_ioremap:
2031 dma_pool_destroy(pl08x->pool);
2032 out_no_lli_pool:
2033 out_no_platdata:
2034 kfree(pl08x);
2035 out_no_pl08x:
2036 amba_release_regions(adev);
2037 return ret;
2038 }
2039
2040 /* PL080 has 8 channels and the PL080 have just 2 */
2041 static struct vendor_data vendor_pl080 = {
2042 .channels = 8,
2043 .dualmaster = true,
2044 };
2045
2046 static struct vendor_data vendor_pl081 = {
2047 .channels = 2,
2048 .dualmaster = false,
2049 };
2050
2051 static struct amba_id pl08x_ids[] = {
2052 /* PL080 */
2053 {
2054 .id = 0x00041080,
2055 .mask = 0x000fffff,
2056 .data = &vendor_pl080,
2057 },
2058 /* PL081 */
2059 {
2060 .id = 0x00041081,
2061 .mask = 0x000fffff,
2062 .data = &vendor_pl081,
2063 },
2064 /* Nomadik 8815 PL080 variant */
2065 {
2066 .id = 0x00280880,
2067 .mask = 0x00ffffff,
2068 .data = &vendor_pl080,
2069 },
2070 { 0, 0 },
2071 };
2072
2073 static struct amba_driver pl08x_amba_driver = {
2074 .drv.name = DRIVER_NAME,
2075 .id_table = pl08x_ids,
2076 .probe = pl08x_probe,
2077 };
2078
2079 static int __init pl08x_init(void)
2080 {
2081 int retval;
2082 retval = amba_driver_register(&pl08x_amba_driver);
2083 if (retval)
2084 printk(KERN_WARNING DRIVER_NAME
2085 "failed to register as an AMBA device (%d)\n",
2086 retval);
2087 return retval;
2088 }
2089 subsys_initcall(pl08x_init);
This page took 0.110743 seconds and 5 git commands to generate.