dmaengine: PL08x: clean up get_signal/put_signal
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89
90 #define DRIVER_NAME "pl08xdmac"
91
92 static struct amba_driver pl08x_amba_driver;
93
94 /**
95 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters or not.
98 * @nomadik: whether the channels have Nomadik security extension bits
99 * that need to be checked for permission before use and some registers are
100 * missing
101 */
102 struct vendor_data {
103 u8 channels;
104 bool dualmaster;
105 bool nomadik;
106 };
107
108 /*
109 * PL08X private data structures
110 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
111 * start & end do not - their bus bit info is in cctl. Also note that these
112 * are fixed 32-bit quantities.
113 */
114 struct pl08x_lli {
115 u32 src;
116 u32 dst;
117 u32 lli;
118 u32 cctl;
119 };
120
121 /**
122 * struct pl08x_driver_data - the local state holder for the PL08x
123 * @slave: slave engine for this instance
124 * @memcpy: memcpy engine for this instance
125 * @base: virtual memory base (remapped) for the PL08x
126 * @adev: the corresponding AMBA (PrimeCell) bus entry
127 * @vd: vendor data for this PL08x variant
128 * @pd: platform data passed in from the platform/machine
129 * @phy_chans: array of data for the physical channels
130 * @pool: a pool for the LLI descriptors
131 * @pool_ctr: counter of LLIs in the pool
132 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
133 * fetches
134 * @mem_buses: set to indicate memory transfers on AHB2.
135 * @lock: a spinlock for this struct
136 */
137 struct pl08x_driver_data {
138 struct dma_device slave;
139 struct dma_device memcpy;
140 void __iomem *base;
141 struct amba_device *adev;
142 const struct vendor_data *vd;
143 struct pl08x_platform_data *pd;
144 struct pl08x_phy_chan *phy_chans;
145 struct dma_pool *pool;
146 int pool_ctr;
147 u8 lli_buses;
148 u8 mem_buses;
149 };
150
151 /*
152 * PL08X specific defines
153 */
154
155 /* Size (bytes) of each LLI buffer allocated for one transfer */
156 # define PL08X_LLI_TSFR_SIZE 0x2000
157
158 /* Maximum times we call dma_pool_alloc on this pool without freeing */
159 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
160 #define PL08X_ALIGN 8
161
162 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
163 {
164 return container_of(chan, struct pl08x_dma_chan, chan);
165 }
166
167 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
168 {
169 return container_of(tx, struct pl08x_txd, tx);
170 }
171
172 /*
173 * Physical channel handling
174 */
175
176 /* Whether a certain channel is busy or not */
177 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
178 {
179 unsigned int val;
180
181 val = readl(ch->base + PL080_CH_CONFIG);
182 return val & PL080_CONFIG_ACTIVE;
183 }
184
185 /*
186 * Set the initial DMA register values i.e. those for the first LLI
187 * The next LLI pointer and the configuration interrupt bit have
188 * been set when the LLIs were constructed. Poke them into the hardware
189 * and start the transfer.
190 */
191 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
192 struct pl08x_txd *txd)
193 {
194 struct pl08x_driver_data *pl08x = plchan->host;
195 struct pl08x_phy_chan *phychan = plchan->phychan;
196 struct pl08x_lli *lli = &txd->llis_va[0];
197 u32 val;
198
199 plchan->at = txd;
200
201 /* Wait for channel inactive */
202 while (pl08x_phy_channel_busy(phychan))
203 cpu_relax();
204
205 dev_vdbg(&pl08x->adev->dev,
206 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
207 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
208 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
209 txd->ccfg);
210
211 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
212 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
213 writel(lli->lli, phychan->base + PL080_CH_LLI);
214 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
215 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
216
217 /* Enable the DMA channel */
218 /* Do not access config register until channel shows as disabled */
219 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
220 cpu_relax();
221
222 /* Do not access config register until channel shows as inactive */
223 val = readl(phychan->base + PL080_CH_CONFIG);
224 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
225 val = readl(phychan->base + PL080_CH_CONFIG);
226
227 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
228 }
229
230 /*
231 * Pause the channel by setting the HALT bit.
232 *
233 * For M->P transfers, pause the DMAC first and then stop the peripheral -
234 * the FIFO can only drain if the peripheral is still requesting data.
235 * (note: this can still timeout if the DMAC FIFO never drains of data.)
236 *
237 * For P->M transfers, disable the peripheral first to stop it filling
238 * the DMAC FIFO, and then pause the DMAC.
239 */
240 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
241 {
242 u32 val;
243 int timeout;
244
245 /* Set the HALT bit and wait for the FIFO to drain */
246 val = readl(ch->base + PL080_CH_CONFIG);
247 val |= PL080_CONFIG_HALT;
248 writel(val, ch->base + PL080_CH_CONFIG);
249
250 /* Wait for channel inactive */
251 for (timeout = 1000; timeout; timeout--) {
252 if (!pl08x_phy_channel_busy(ch))
253 break;
254 udelay(1);
255 }
256 if (pl08x_phy_channel_busy(ch))
257 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
258 }
259
260 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
261 {
262 u32 val;
263
264 /* Clear the HALT bit */
265 val = readl(ch->base + PL080_CH_CONFIG);
266 val &= ~PL080_CONFIG_HALT;
267 writel(val, ch->base + PL080_CH_CONFIG);
268 }
269
270 /*
271 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
272 * clears any pending interrupt status. This should not be used for
273 * an on-going transfer, but as a method of shutting down a channel
274 * (eg, when it's no longer used) or terminating a transfer.
275 */
276 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
277 struct pl08x_phy_chan *ch)
278 {
279 u32 val = readl(ch->base + PL080_CH_CONFIG);
280
281 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
282 PL080_CONFIG_TC_IRQ_MASK);
283
284 writel(val, ch->base + PL080_CH_CONFIG);
285
286 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
287 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
288 }
289
290 static inline u32 get_bytes_in_cctl(u32 cctl)
291 {
292 /* The source width defines the number of bytes */
293 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
294
295 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
296 case PL080_WIDTH_8BIT:
297 break;
298 case PL080_WIDTH_16BIT:
299 bytes *= 2;
300 break;
301 case PL080_WIDTH_32BIT:
302 bytes *= 4;
303 break;
304 }
305 return bytes;
306 }
307
308 /* The channel should be paused when calling this */
309 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
310 {
311 struct pl08x_phy_chan *ch;
312 struct pl08x_txd *txd;
313 unsigned long flags;
314 size_t bytes = 0;
315
316 spin_lock_irqsave(&plchan->lock, flags);
317 ch = plchan->phychan;
318 txd = plchan->at;
319
320 /*
321 * Follow the LLIs to get the number of remaining
322 * bytes in the currently active transaction.
323 */
324 if (ch && txd) {
325 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
326
327 /* First get the remaining bytes in the active transfer */
328 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
329
330 if (clli) {
331 struct pl08x_lli *llis_va = txd->llis_va;
332 dma_addr_t llis_bus = txd->llis_bus;
333 int index;
334
335 BUG_ON(clli < llis_bus || clli >= llis_bus +
336 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
337
338 /*
339 * Locate the next LLI - as this is an array,
340 * it's simple maths to find.
341 */
342 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
343
344 for (; index < MAX_NUM_TSFR_LLIS; index++) {
345 bytes += get_bytes_in_cctl(llis_va[index].cctl);
346
347 /*
348 * A LLI pointer of 0 terminates the LLI list
349 */
350 if (!llis_va[index].lli)
351 break;
352 }
353 }
354 }
355
356 /* Sum up all queued transactions */
357 if (!list_empty(&plchan->pend_list)) {
358 struct pl08x_txd *txdi;
359 list_for_each_entry(txdi, &plchan->pend_list, node) {
360 struct pl08x_sg *dsg;
361 list_for_each_entry(dsg, &txd->dsg_list, node)
362 bytes += dsg->len;
363 }
364 }
365
366 spin_unlock_irqrestore(&plchan->lock, flags);
367
368 return bytes;
369 }
370
371 /*
372 * Allocate a physical channel for a virtual channel
373 *
374 * Try to locate a physical channel to be used for this transfer. If all
375 * are taken return NULL and the requester will have to cope by using
376 * some fallback PIO mode or retrying later.
377 */
378 static struct pl08x_phy_chan *
379 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
380 struct pl08x_dma_chan *virt_chan)
381 {
382 struct pl08x_phy_chan *ch = NULL;
383 unsigned long flags;
384 int i;
385
386 for (i = 0; i < pl08x->vd->channels; i++) {
387 ch = &pl08x->phy_chans[i];
388
389 spin_lock_irqsave(&ch->lock, flags);
390
391 if (!ch->locked && !ch->serving) {
392 ch->serving = virt_chan;
393 ch->signal = -1;
394 spin_unlock_irqrestore(&ch->lock, flags);
395 break;
396 }
397
398 spin_unlock_irqrestore(&ch->lock, flags);
399 }
400
401 if (i == pl08x->vd->channels) {
402 /* No physical channel available, cope with it */
403 return NULL;
404 }
405
406 return ch;
407 }
408
409 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
410 struct pl08x_phy_chan *ch)
411 {
412 unsigned long flags;
413
414 spin_lock_irqsave(&ch->lock, flags);
415
416 /* Stop the channel and clear its interrupts */
417 pl08x_terminate_phy_chan(pl08x, ch);
418
419 /* Mark it as free */
420 ch->serving = NULL;
421 spin_unlock_irqrestore(&ch->lock, flags);
422 }
423
424 /*
425 * LLI handling
426 */
427
428 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
429 {
430 switch (coded) {
431 case PL080_WIDTH_8BIT:
432 return 1;
433 case PL080_WIDTH_16BIT:
434 return 2;
435 case PL080_WIDTH_32BIT:
436 return 4;
437 default:
438 break;
439 }
440 BUG();
441 return 0;
442 }
443
444 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
445 size_t tsize)
446 {
447 u32 retbits = cctl;
448
449 /* Remove all src, dst and transfer size bits */
450 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
451 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
452 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
453
454 /* Then set the bits according to the parameters */
455 switch (srcwidth) {
456 case 1:
457 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
458 break;
459 case 2:
460 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
461 break;
462 case 4:
463 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
464 break;
465 default:
466 BUG();
467 break;
468 }
469
470 switch (dstwidth) {
471 case 1:
472 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
473 break;
474 case 2:
475 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
476 break;
477 case 4:
478 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
479 break;
480 default:
481 BUG();
482 break;
483 }
484
485 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
486 return retbits;
487 }
488
489 struct pl08x_lli_build_data {
490 struct pl08x_txd *txd;
491 struct pl08x_bus_data srcbus;
492 struct pl08x_bus_data dstbus;
493 size_t remainder;
494 u32 lli_bus;
495 };
496
497 /*
498 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
499 * victim in case src & dest are not similarly aligned. i.e. If after aligning
500 * masters address with width requirements of transfer (by sending few byte by
501 * byte data), slave is still not aligned, then its width will be reduced to
502 * BYTE.
503 * - prefers the destination bus if both available
504 * - prefers bus with fixed address (i.e. peripheral)
505 */
506 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508 {
509 if (!(cctl & PL080_CONTROL_DST_INCR)) {
510 *mbus = &bd->dstbus;
511 *sbus = &bd->srcbus;
512 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513 *mbus = &bd->srcbus;
514 *sbus = &bd->dstbus;
515 } else {
516 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
517 *mbus = &bd->dstbus;
518 *sbus = &bd->srcbus;
519 } else {
520 *mbus = &bd->srcbus;
521 *sbus = &bd->dstbus;
522 }
523 }
524 }
525
526 /*
527 * Fills in one LLI for a certain transfer descriptor and advance the counter
528 */
529 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
530 int num_llis, int len, u32 cctl)
531 {
532 struct pl08x_lli *llis_va = bd->txd->llis_va;
533 dma_addr_t llis_bus = bd->txd->llis_bus;
534
535 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
536
537 llis_va[num_llis].cctl = cctl;
538 llis_va[num_llis].src = bd->srcbus.addr;
539 llis_va[num_llis].dst = bd->dstbus.addr;
540 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
541 sizeof(struct pl08x_lli);
542 llis_va[num_llis].lli |= bd->lli_bus;
543
544 if (cctl & PL080_CONTROL_SRC_INCR)
545 bd->srcbus.addr += len;
546 if (cctl & PL080_CONTROL_DST_INCR)
547 bd->dstbus.addr += len;
548
549 BUG_ON(bd->remainder < len);
550
551 bd->remainder -= len;
552 }
553
554 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
555 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
556 {
557 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
558 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
559 (*total_bytes) += len;
560 }
561
562 /*
563 * This fills in the table of LLIs for the transfer descriptor
564 * Note that we assume we never have to change the burst sizes
565 * Return 0 for error
566 */
567 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
568 struct pl08x_txd *txd)
569 {
570 struct pl08x_bus_data *mbus, *sbus;
571 struct pl08x_lli_build_data bd;
572 int num_llis = 0;
573 u32 cctl, early_bytes = 0;
574 size_t max_bytes_per_lli, total_bytes;
575 struct pl08x_lli *llis_va;
576 struct pl08x_sg *dsg;
577
578 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
579 if (!txd->llis_va) {
580 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
581 return 0;
582 }
583
584 pl08x->pool_ctr++;
585
586 bd.txd = txd;
587 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
588 cctl = txd->cctl;
589
590 /* Find maximum width of the source bus */
591 bd.srcbus.maxwidth =
592 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
593 PL080_CONTROL_SWIDTH_SHIFT);
594
595 /* Find maximum width of the destination bus */
596 bd.dstbus.maxwidth =
597 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
598 PL080_CONTROL_DWIDTH_SHIFT);
599
600 list_for_each_entry(dsg, &txd->dsg_list, node) {
601 total_bytes = 0;
602 cctl = txd->cctl;
603
604 bd.srcbus.addr = dsg->src_addr;
605 bd.dstbus.addr = dsg->dst_addr;
606 bd.remainder = dsg->len;
607 bd.srcbus.buswidth = bd.srcbus.maxwidth;
608 bd.dstbus.buswidth = bd.dstbus.maxwidth;
609
610 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
611
612 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
613 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
614 bd.srcbus.buswidth,
615 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
616 bd.dstbus.buswidth,
617 bd.remainder);
618 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
619 mbus == &bd.srcbus ? "src" : "dst",
620 sbus == &bd.srcbus ? "src" : "dst");
621
622 /*
623 * Zero length is only allowed if all these requirements are
624 * met:
625 * - flow controller is peripheral.
626 * - src.addr is aligned to src.width
627 * - dst.addr is aligned to dst.width
628 *
629 * sg_len == 1 should be true, as there can be two cases here:
630 *
631 * - Memory addresses are contiguous and are not scattered.
632 * Here, Only one sg will be passed by user driver, with
633 * memory address and zero length. We pass this to controller
634 * and after the transfer it will receive the last burst
635 * request from peripheral and so transfer finishes.
636 *
637 * - Memory addresses are scattered and are not contiguous.
638 * Here, Obviously as DMA controller doesn't know when a lli's
639 * transfer gets over, it can't load next lli. So in this
640 * case, there has to be an assumption that only one lli is
641 * supported. Thus, we can't have scattered addresses.
642 */
643 if (!bd.remainder) {
644 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
645 PL080_CONFIG_FLOW_CONTROL_SHIFT;
646 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
647 (fc <= PL080_FLOW_SRC2DST_SRC))) {
648 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
649 __func__);
650 return 0;
651 }
652
653 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
654 (bd.dstbus.addr % bd.dstbus.buswidth)) {
655 dev_err(&pl08x->adev->dev,
656 "%s src & dst address must be aligned to src"
657 " & dst width if peripheral is flow controller",
658 __func__);
659 return 0;
660 }
661
662 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
663 bd.dstbus.buswidth, 0);
664 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
665 break;
666 }
667
668 /*
669 * Send byte by byte for following cases
670 * - Less than a bus width available
671 * - until master bus is aligned
672 */
673 if (bd.remainder < mbus->buswidth)
674 early_bytes = bd.remainder;
675 else if ((mbus->addr) % (mbus->buswidth)) {
676 early_bytes = mbus->buswidth - (mbus->addr) %
677 (mbus->buswidth);
678 if ((bd.remainder - early_bytes) < mbus->buswidth)
679 early_bytes = bd.remainder;
680 }
681
682 if (early_bytes) {
683 dev_vdbg(&pl08x->adev->dev,
684 "%s byte width LLIs (remain 0x%08x)\n",
685 __func__, bd.remainder);
686 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
687 &total_bytes);
688 }
689
690 if (bd.remainder) {
691 /*
692 * Master now aligned
693 * - if slave is not then we must set its width down
694 */
695 if (sbus->addr % sbus->buswidth) {
696 dev_dbg(&pl08x->adev->dev,
697 "%s set down bus width to one byte\n",
698 __func__);
699
700 sbus->buswidth = 1;
701 }
702
703 /*
704 * Bytes transferred = tsize * src width, not
705 * MIN(buswidths)
706 */
707 max_bytes_per_lli = bd.srcbus.buswidth *
708 PL080_CONTROL_TRANSFER_SIZE_MASK;
709 dev_vdbg(&pl08x->adev->dev,
710 "%s max bytes per lli = %zu\n",
711 __func__, max_bytes_per_lli);
712
713 /*
714 * Make largest possible LLIs until less than one bus
715 * width left
716 */
717 while (bd.remainder > (mbus->buswidth - 1)) {
718 size_t lli_len, tsize, width;
719
720 /*
721 * If enough left try to send max possible,
722 * otherwise try to send the remainder
723 */
724 lli_len = min(bd.remainder, max_bytes_per_lli);
725
726 /*
727 * Check against maximum bus alignment:
728 * Calculate actual transfer size in relation to
729 * bus width an get a maximum remainder of the
730 * highest bus width - 1
731 */
732 width = max(mbus->buswidth, sbus->buswidth);
733 lli_len = (lli_len / width) * width;
734 tsize = lli_len / bd.srcbus.buswidth;
735
736 dev_vdbg(&pl08x->adev->dev,
737 "%s fill lli with single lli chunk of "
738 "size 0x%08zx (remainder 0x%08zx)\n",
739 __func__, lli_len, bd.remainder);
740
741 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
742 bd.dstbus.buswidth, tsize);
743 pl08x_fill_lli_for_desc(&bd, num_llis++,
744 lli_len, cctl);
745 total_bytes += lli_len;
746 }
747
748 /*
749 * Send any odd bytes
750 */
751 if (bd.remainder) {
752 dev_vdbg(&pl08x->adev->dev,
753 "%s align with boundary, send odd bytes (remain %zu)\n",
754 __func__, bd.remainder);
755 prep_byte_width_lli(&bd, &cctl, bd.remainder,
756 num_llis++, &total_bytes);
757 }
758 }
759
760 if (total_bytes != dsg->len) {
761 dev_err(&pl08x->adev->dev,
762 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
763 __func__, total_bytes, dsg->len);
764 return 0;
765 }
766
767 if (num_llis >= MAX_NUM_TSFR_LLIS) {
768 dev_err(&pl08x->adev->dev,
769 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
770 __func__, (u32) MAX_NUM_TSFR_LLIS);
771 return 0;
772 }
773 }
774
775 llis_va = txd->llis_va;
776 /* The final LLI terminates the LLI. */
777 llis_va[num_llis - 1].lli = 0;
778 /* The final LLI element shall also fire an interrupt. */
779 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
780
781 #ifdef VERBOSE_DEBUG
782 {
783 int i;
784
785 dev_vdbg(&pl08x->adev->dev,
786 "%-3s %-9s %-10s %-10s %-10s %s\n",
787 "lli", "", "csrc", "cdst", "clli", "cctl");
788 for (i = 0; i < num_llis; i++) {
789 dev_vdbg(&pl08x->adev->dev,
790 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
791 i, &llis_va[i], llis_va[i].src,
792 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
793 );
794 }
795 }
796 #endif
797
798 return num_llis;
799 }
800
801 /* You should call this with the struct pl08x lock held */
802 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
803 struct pl08x_txd *txd)
804 {
805 struct pl08x_sg *dsg, *_dsg;
806
807 /* Free the LLI */
808 if (txd->llis_va)
809 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
810
811 pl08x->pool_ctr--;
812
813 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
814 list_del(&dsg->node);
815 kfree(dsg);
816 }
817
818 kfree(txd);
819 }
820
821 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
822 struct pl08x_dma_chan *plchan)
823 {
824 struct pl08x_txd *txdi = NULL;
825 struct pl08x_txd *next;
826
827 if (!list_empty(&plchan->pend_list)) {
828 list_for_each_entry_safe(txdi,
829 next, &plchan->pend_list, node) {
830 list_del(&txdi->node);
831 pl08x_free_txd(pl08x, txdi);
832 }
833 }
834 }
835
836 /*
837 * The DMA ENGINE API
838 */
839 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
840 {
841 return 0;
842 }
843
844 static void pl08x_free_chan_resources(struct dma_chan *chan)
845 {
846 }
847
848 /*
849 * This should be called with the channel plchan->lock held
850 */
851 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
852 struct pl08x_txd *txd)
853 {
854 struct pl08x_driver_data *pl08x = plchan->host;
855 struct pl08x_phy_chan *ch;
856 int ret;
857
858 /* Check if we already have a channel */
859 if (plchan->phychan) {
860 ch = plchan->phychan;
861 goto got_channel;
862 }
863
864 ch = pl08x_get_phy_channel(pl08x, plchan);
865 if (!ch) {
866 /* No physical channel available, cope with it */
867 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
868 return -EBUSY;
869 }
870
871 /*
872 * OK we have a physical channel: for memcpy() this is all we
873 * need, but for slaves the physical signals may be muxed!
874 * Can the platform allow us to use this channel?
875 */
876 if (plchan->slave && pl08x->pd->get_signal) {
877 ret = pl08x->pd->get_signal(plchan->cd);
878 if (ret < 0) {
879 dev_dbg(&pl08x->adev->dev,
880 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
881 ch->id, plchan->name);
882 /* Release physical channel & return */
883 pl08x_put_phy_channel(pl08x, ch);
884 return -EBUSY;
885 }
886 ch->signal = ret;
887 }
888
889 plchan->phychan = ch;
890 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
891 ch->id,
892 ch->signal,
893 plchan->name);
894
895 got_channel:
896 /* Assign the flow control signal to this channel */
897 if (txd->direction == DMA_MEM_TO_DEV)
898 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
899 else if (txd->direction == DMA_DEV_TO_MEM)
900 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
901
902 plchan->phychan_hold++;
903
904 return 0;
905 }
906
907 static void release_phy_channel(struct pl08x_dma_chan *plchan)
908 {
909 struct pl08x_driver_data *pl08x = plchan->host;
910
911 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
912 pl08x->pd->put_signal(plchan->cd, plchan->phychan->signal);
913 plchan->phychan->signal = -1;
914 }
915 pl08x_put_phy_channel(pl08x, plchan->phychan);
916 plchan->phychan = NULL;
917 }
918
919 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
920 {
921 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
922 struct pl08x_txd *txd = to_pl08x_txd(tx);
923 unsigned long flags;
924 dma_cookie_t cookie;
925
926 spin_lock_irqsave(&plchan->lock, flags);
927 cookie = dma_cookie_assign(tx);
928
929 /* Put this onto the pending list */
930 list_add_tail(&txd->node, &plchan->pend_list);
931
932 /*
933 * If there was no physical channel available for this memcpy,
934 * stack the request up and indicate that the channel is waiting
935 * for a free physical channel.
936 */
937 if (!plchan->slave && !plchan->phychan) {
938 /* Do this memcpy whenever there is a channel ready */
939 plchan->state = PL08X_CHAN_WAITING;
940 plchan->waiting = txd;
941 } else {
942 plchan->phychan_hold--;
943 }
944
945 spin_unlock_irqrestore(&plchan->lock, flags);
946
947 return cookie;
948 }
949
950 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
951 struct dma_chan *chan, unsigned long flags)
952 {
953 struct dma_async_tx_descriptor *retval = NULL;
954
955 return retval;
956 }
957
958 /*
959 * Code accessing dma_async_is_complete() in a tight loop may give problems.
960 * If slaves are relying on interrupts to signal completion this function
961 * must not be called with interrupts disabled.
962 */
963 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
964 dma_cookie_t cookie, struct dma_tx_state *txstate)
965 {
966 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
967 enum dma_status ret;
968
969 ret = dma_cookie_status(chan, cookie, txstate);
970 if (ret == DMA_SUCCESS)
971 return ret;
972
973 /*
974 * This cookie not complete yet
975 * Get number of bytes left in the active transactions and queue
976 */
977 dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
978
979 if (plchan->state == PL08X_CHAN_PAUSED)
980 return DMA_PAUSED;
981
982 /* Whether waiting or running, we're in progress */
983 return DMA_IN_PROGRESS;
984 }
985
986 /* PrimeCell DMA extension */
987 struct burst_table {
988 u32 burstwords;
989 u32 reg;
990 };
991
992 static const struct burst_table burst_sizes[] = {
993 {
994 .burstwords = 256,
995 .reg = PL080_BSIZE_256,
996 },
997 {
998 .burstwords = 128,
999 .reg = PL080_BSIZE_128,
1000 },
1001 {
1002 .burstwords = 64,
1003 .reg = PL080_BSIZE_64,
1004 },
1005 {
1006 .burstwords = 32,
1007 .reg = PL080_BSIZE_32,
1008 },
1009 {
1010 .burstwords = 16,
1011 .reg = PL080_BSIZE_16,
1012 },
1013 {
1014 .burstwords = 8,
1015 .reg = PL080_BSIZE_8,
1016 },
1017 {
1018 .burstwords = 4,
1019 .reg = PL080_BSIZE_4,
1020 },
1021 {
1022 .burstwords = 0,
1023 .reg = PL080_BSIZE_1,
1024 },
1025 };
1026
1027 /*
1028 * Given the source and destination available bus masks, select which
1029 * will be routed to each port. We try to have source and destination
1030 * on separate ports, but always respect the allowable settings.
1031 */
1032 static u32 pl08x_select_bus(u8 src, u8 dst)
1033 {
1034 u32 cctl = 0;
1035
1036 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1037 cctl |= PL080_CONTROL_DST_AHB2;
1038 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1039 cctl |= PL080_CONTROL_SRC_AHB2;
1040
1041 return cctl;
1042 }
1043
1044 static u32 pl08x_cctl(u32 cctl)
1045 {
1046 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1047 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1048 PL080_CONTROL_PROT_MASK);
1049
1050 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1051 return cctl | PL080_CONTROL_PROT_SYS;
1052 }
1053
1054 static u32 pl08x_width(enum dma_slave_buswidth width)
1055 {
1056 switch (width) {
1057 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1058 return PL080_WIDTH_8BIT;
1059 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1060 return PL080_WIDTH_16BIT;
1061 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1062 return PL080_WIDTH_32BIT;
1063 default:
1064 return ~0;
1065 }
1066 }
1067
1068 static u32 pl08x_burst(u32 maxburst)
1069 {
1070 int i;
1071
1072 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1073 if (burst_sizes[i].burstwords <= maxburst)
1074 break;
1075
1076 return burst_sizes[i].reg;
1077 }
1078
1079 static int dma_set_runtime_config(struct dma_chan *chan,
1080 struct dma_slave_config *config)
1081 {
1082 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1083 struct pl08x_driver_data *pl08x = plchan->host;
1084 enum dma_slave_buswidth addr_width;
1085 u32 width, burst, maxburst;
1086 u32 cctl = 0;
1087
1088 if (!plchan->slave)
1089 return -EINVAL;
1090
1091 /* Transfer direction */
1092 plchan->runtime_direction = config->direction;
1093 if (config->direction == DMA_MEM_TO_DEV) {
1094 addr_width = config->dst_addr_width;
1095 maxburst = config->dst_maxburst;
1096 } else if (config->direction == DMA_DEV_TO_MEM) {
1097 addr_width = config->src_addr_width;
1098 maxburst = config->src_maxburst;
1099 } else {
1100 dev_err(&pl08x->adev->dev,
1101 "bad runtime_config: alien transfer direction\n");
1102 return -EINVAL;
1103 }
1104
1105 width = pl08x_width(addr_width);
1106 if (width == ~0) {
1107 dev_err(&pl08x->adev->dev,
1108 "bad runtime_config: alien address width\n");
1109 return -EINVAL;
1110 }
1111
1112 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1113 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1114
1115 /*
1116 * If this channel will only request single transfers, set this
1117 * down to ONE element. Also select one element if no maxburst
1118 * is specified.
1119 */
1120 if (plchan->cd->single)
1121 maxburst = 1;
1122
1123 burst = pl08x_burst(maxburst);
1124 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1125 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1126
1127 plchan->device_fc = config->device_fc;
1128
1129 if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1130 plchan->src_addr = config->src_addr;
1131 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1132 pl08x_select_bus(plchan->cd->periph_buses,
1133 pl08x->mem_buses);
1134 } else {
1135 plchan->dst_addr = config->dst_addr;
1136 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1137 pl08x_select_bus(pl08x->mem_buses,
1138 plchan->cd->periph_buses);
1139 }
1140
1141 dev_dbg(&pl08x->adev->dev,
1142 "configured channel %s (%s) for %s, data width %d, "
1143 "maxburst %d words, LE, CCTL=0x%08x\n",
1144 dma_chan_name(chan), plchan->name,
1145 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1146 addr_width,
1147 maxburst,
1148 cctl);
1149
1150 return 0;
1151 }
1152
1153 /*
1154 * Slave transactions callback to the slave device to allow
1155 * synchronization of slave DMA signals with the DMAC enable
1156 */
1157 static void pl08x_issue_pending(struct dma_chan *chan)
1158 {
1159 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1160 unsigned long flags;
1161
1162 spin_lock_irqsave(&plchan->lock, flags);
1163 /* Something is already active, or we're waiting for a channel... */
1164 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1165 spin_unlock_irqrestore(&plchan->lock, flags);
1166 return;
1167 }
1168
1169 /* Take the first element in the queue and execute it */
1170 if (!list_empty(&plchan->pend_list)) {
1171 struct pl08x_txd *next;
1172
1173 next = list_first_entry(&plchan->pend_list,
1174 struct pl08x_txd,
1175 node);
1176 list_del(&next->node);
1177 plchan->state = PL08X_CHAN_RUNNING;
1178
1179 pl08x_start_txd(plchan, next);
1180 }
1181
1182 spin_unlock_irqrestore(&plchan->lock, flags);
1183 }
1184
1185 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1186 struct pl08x_txd *txd)
1187 {
1188 struct pl08x_driver_data *pl08x = plchan->host;
1189 unsigned long flags;
1190 int num_llis, ret;
1191
1192 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1193 if (!num_llis) {
1194 spin_lock_irqsave(&plchan->lock, flags);
1195 pl08x_free_txd(pl08x, txd);
1196 spin_unlock_irqrestore(&plchan->lock, flags);
1197 return -EINVAL;
1198 }
1199
1200 spin_lock_irqsave(&plchan->lock, flags);
1201
1202 /*
1203 * See if we already have a physical channel allocated,
1204 * else this is the time to try to get one.
1205 */
1206 ret = prep_phy_channel(plchan, txd);
1207 if (ret) {
1208 /*
1209 * No physical channel was available.
1210 *
1211 * memcpy transfers can be sorted out at submission time.
1212 *
1213 * Slave transfers may have been denied due to platform
1214 * channel muxing restrictions. Since there is no guarantee
1215 * that this will ever be resolved, and the signal must be
1216 * acquired AFTER acquiring the physical channel, we will let
1217 * them be NACK:ed with -EBUSY here. The drivers can retry
1218 * the prep() call if they are eager on doing this using DMA.
1219 */
1220 if (plchan->slave) {
1221 pl08x_free_txd_list(pl08x, plchan);
1222 pl08x_free_txd(pl08x, txd);
1223 spin_unlock_irqrestore(&plchan->lock, flags);
1224 return -EBUSY;
1225 }
1226 } else
1227 /*
1228 * Else we're all set, paused and ready to roll, status
1229 * will switch to PL08X_CHAN_RUNNING when we call
1230 * issue_pending(). If there is something running on the
1231 * channel already we don't change its state.
1232 */
1233 if (plchan->state == PL08X_CHAN_IDLE)
1234 plchan->state = PL08X_CHAN_PAUSED;
1235
1236 spin_unlock_irqrestore(&plchan->lock, flags);
1237
1238 return 0;
1239 }
1240
1241 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1242 unsigned long flags)
1243 {
1244 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1245
1246 if (txd) {
1247 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1248 txd->tx.flags = flags;
1249 txd->tx.tx_submit = pl08x_tx_submit;
1250 INIT_LIST_HEAD(&txd->node);
1251 INIT_LIST_HEAD(&txd->dsg_list);
1252
1253 /* Always enable error and terminal interrupts */
1254 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1255 PL080_CONFIG_TC_IRQ_MASK;
1256 }
1257 return txd;
1258 }
1259
1260 /*
1261 * Initialize a descriptor to be used by memcpy submit
1262 */
1263 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1264 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1265 size_t len, unsigned long flags)
1266 {
1267 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1268 struct pl08x_driver_data *pl08x = plchan->host;
1269 struct pl08x_txd *txd;
1270 struct pl08x_sg *dsg;
1271 int ret;
1272
1273 txd = pl08x_get_txd(plchan, flags);
1274 if (!txd) {
1275 dev_err(&pl08x->adev->dev,
1276 "%s no memory for descriptor\n", __func__);
1277 return NULL;
1278 }
1279
1280 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1281 if (!dsg) {
1282 pl08x_free_txd(pl08x, txd);
1283 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1284 __func__);
1285 return NULL;
1286 }
1287 list_add_tail(&dsg->node, &txd->dsg_list);
1288
1289 txd->direction = DMA_MEM_TO_MEM;
1290 dsg->src_addr = src;
1291 dsg->dst_addr = dest;
1292 dsg->len = len;
1293
1294 /* Set platform data for m2m */
1295 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1296 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1297 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1298
1299 /* Both to be incremented or the code will break */
1300 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1301
1302 if (pl08x->vd->dualmaster)
1303 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1304 pl08x->mem_buses);
1305
1306 ret = pl08x_prep_channel_resources(plchan, txd);
1307 if (ret)
1308 return NULL;
1309
1310 return &txd->tx;
1311 }
1312
1313 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1314 struct dma_chan *chan, struct scatterlist *sgl,
1315 unsigned int sg_len, enum dma_transfer_direction direction,
1316 unsigned long flags, void *context)
1317 {
1318 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1319 struct pl08x_driver_data *pl08x = plchan->host;
1320 struct pl08x_txd *txd;
1321 struct pl08x_sg *dsg;
1322 struct scatterlist *sg;
1323 dma_addr_t slave_addr;
1324 int ret, tmp;
1325
1326 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1327 __func__, sg_dma_len(sgl), plchan->name);
1328
1329 txd = pl08x_get_txd(plchan, flags);
1330 if (!txd) {
1331 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1332 return NULL;
1333 }
1334
1335 if (direction != plchan->runtime_direction)
1336 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1337 "the direction configured for the PrimeCell\n",
1338 __func__);
1339
1340 /*
1341 * Set up addresses, the PrimeCell configured address
1342 * will take precedence since this may configure the
1343 * channel target address dynamically at runtime.
1344 */
1345 txd->direction = direction;
1346
1347 if (direction == DMA_MEM_TO_DEV) {
1348 txd->cctl = plchan->dst_cctl;
1349 slave_addr = plchan->dst_addr;
1350 } else if (direction == DMA_DEV_TO_MEM) {
1351 txd->cctl = plchan->src_cctl;
1352 slave_addr = plchan->src_addr;
1353 } else {
1354 pl08x_free_txd(pl08x, txd);
1355 dev_err(&pl08x->adev->dev,
1356 "%s direction unsupported\n", __func__);
1357 return NULL;
1358 }
1359
1360 if (plchan->device_fc)
1361 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1362 PL080_FLOW_PER2MEM_PER;
1363 else
1364 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1365 PL080_FLOW_PER2MEM;
1366
1367 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1368
1369 for_each_sg(sgl, sg, sg_len, tmp) {
1370 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1371 if (!dsg) {
1372 pl08x_free_txd(pl08x, txd);
1373 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1374 __func__);
1375 return NULL;
1376 }
1377 list_add_tail(&dsg->node, &txd->dsg_list);
1378
1379 dsg->len = sg_dma_len(sg);
1380 if (direction == DMA_MEM_TO_DEV) {
1381 dsg->src_addr = sg_dma_address(sg);
1382 dsg->dst_addr = slave_addr;
1383 } else {
1384 dsg->src_addr = slave_addr;
1385 dsg->dst_addr = sg_dma_address(sg);
1386 }
1387 }
1388
1389 ret = pl08x_prep_channel_resources(plchan, txd);
1390 if (ret)
1391 return NULL;
1392
1393 return &txd->tx;
1394 }
1395
1396 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1397 unsigned long arg)
1398 {
1399 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1400 struct pl08x_driver_data *pl08x = plchan->host;
1401 unsigned long flags;
1402 int ret = 0;
1403
1404 /* Controls applicable to inactive channels */
1405 if (cmd == DMA_SLAVE_CONFIG) {
1406 return dma_set_runtime_config(chan,
1407 (struct dma_slave_config *)arg);
1408 }
1409
1410 /*
1411 * Anything succeeds on channels with no physical allocation and
1412 * no queued transfers.
1413 */
1414 spin_lock_irqsave(&plchan->lock, flags);
1415 if (!plchan->phychan && !plchan->at) {
1416 spin_unlock_irqrestore(&plchan->lock, flags);
1417 return 0;
1418 }
1419
1420 switch (cmd) {
1421 case DMA_TERMINATE_ALL:
1422 plchan->state = PL08X_CHAN_IDLE;
1423
1424 if (plchan->phychan) {
1425 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1426
1427 /*
1428 * Mark physical channel as free and free any slave
1429 * signal
1430 */
1431 release_phy_channel(plchan);
1432 plchan->phychan_hold = 0;
1433 }
1434 /* Dequeue jobs and free LLIs */
1435 if (plchan->at) {
1436 pl08x_free_txd(pl08x, plchan->at);
1437 plchan->at = NULL;
1438 }
1439 /* Dequeue jobs not yet fired as well */
1440 pl08x_free_txd_list(pl08x, plchan);
1441 break;
1442 case DMA_PAUSE:
1443 pl08x_pause_phy_chan(plchan->phychan);
1444 plchan->state = PL08X_CHAN_PAUSED;
1445 break;
1446 case DMA_RESUME:
1447 pl08x_resume_phy_chan(plchan->phychan);
1448 plchan->state = PL08X_CHAN_RUNNING;
1449 break;
1450 default:
1451 /* Unknown command */
1452 ret = -ENXIO;
1453 break;
1454 }
1455
1456 spin_unlock_irqrestore(&plchan->lock, flags);
1457
1458 return ret;
1459 }
1460
1461 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1462 {
1463 struct pl08x_dma_chan *plchan;
1464 char *name = chan_id;
1465
1466 /* Reject channels for devices not bound to this driver */
1467 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1468 return false;
1469
1470 plchan = to_pl08x_chan(chan);
1471
1472 /* Check that the channel is not taken! */
1473 if (!strcmp(plchan->name, name))
1474 return true;
1475
1476 return false;
1477 }
1478
1479 /*
1480 * Just check that the device is there and active
1481 * TODO: turn this bit on/off depending on the number of physical channels
1482 * actually used, if it is zero... well shut it off. That will save some
1483 * power. Cut the clock at the same time.
1484 */
1485 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1486 {
1487 /* The Nomadik variant does not have the config register */
1488 if (pl08x->vd->nomadik)
1489 return;
1490 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1491 }
1492
1493 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1494 {
1495 struct device *dev = txd->tx.chan->device->dev;
1496 struct pl08x_sg *dsg;
1497
1498 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1499 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1500 list_for_each_entry(dsg, &txd->dsg_list, node)
1501 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1502 DMA_TO_DEVICE);
1503 else {
1504 list_for_each_entry(dsg, &txd->dsg_list, node)
1505 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1506 DMA_TO_DEVICE);
1507 }
1508 }
1509 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1510 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1511 list_for_each_entry(dsg, &txd->dsg_list, node)
1512 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1513 DMA_FROM_DEVICE);
1514 else
1515 list_for_each_entry(dsg, &txd->dsg_list, node)
1516 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1517 DMA_FROM_DEVICE);
1518 }
1519 }
1520
1521 static void pl08x_tasklet(unsigned long data)
1522 {
1523 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1524 struct pl08x_driver_data *pl08x = plchan->host;
1525 struct pl08x_txd *txd;
1526 unsigned long flags;
1527
1528 spin_lock_irqsave(&plchan->lock, flags);
1529
1530 txd = plchan->at;
1531 plchan->at = NULL;
1532
1533 if (txd) {
1534 /* Update last completed */
1535 dma_cookie_complete(&txd->tx);
1536 }
1537
1538 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1539 if (!list_empty(&plchan->pend_list)) {
1540 struct pl08x_txd *next;
1541
1542 next = list_first_entry(&plchan->pend_list,
1543 struct pl08x_txd,
1544 node);
1545 list_del(&next->node);
1546
1547 pl08x_start_txd(plchan, next);
1548 } else if (plchan->phychan_hold) {
1549 /*
1550 * This channel is still in use - we have a new txd being
1551 * prepared and will soon be queued. Don't give up the
1552 * physical channel.
1553 */
1554 } else {
1555 struct pl08x_dma_chan *waiting = NULL;
1556
1557 /*
1558 * No more jobs, so free up the physical channel
1559 * Free any allocated signal on slave transfers too
1560 */
1561 release_phy_channel(plchan);
1562 plchan->state = PL08X_CHAN_IDLE;
1563
1564 /*
1565 * And NOW before anyone else can grab that free:d up
1566 * physical channel, see if there is some memcpy pending
1567 * that seriously needs to start because of being stacked
1568 * up while we were choking the physical channels with data.
1569 */
1570 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1571 chan.device_node) {
1572 if (waiting->state == PL08X_CHAN_WAITING &&
1573 waiting->waiting != NULL) {
1574 int ret;
1575
1576 /* This should REALLY not fail now */
1577 ret = prep_phy_channel(waiting,
1578 waiting->waiting);
1579 BUG_ON(ret);
1580 waiting->phychan_hold--;
1581 waiting->state = PL08X_CHAN_RUNNING;
1582 waiting->waiting = NULL;
1583 pl08x_issue_pending(&waiting->chan);
1584 break;
1585 }
1586 }
1587 }
1588
1589 spin_unlock_irqrestore(&plchan->lock, flags);
1590
1591 if (txd) {
1592 dma_async_tx_callback callback = txd->tx.callback;
1593 void *callback_param = txd->tx.callback_param;
1594
1595 /* Don't try to unmap buffers on slave channels */
1596 if (!plchan->slave)
1597 pl08x_unmap_buffers(txd);
1598
1599 /* Free the descriptor */
1600 spin_lock_irqsave(&plchan->lock, flags);
1601 pl08x_free_txd(pl08x, txd);
1602 spin_unlock_irqrestore(&plchan->lock, flags);
1603
1604 /* Callback to signal completion */
1605 if (callback)
1606 callback(callback_param);
1607 }
1608 }
1609
1610 static irqreturn_t pl08x_irq(int irq, void *dev)
1611 {
1612 struct pl08x_driver_data *pl08x = dev;
1613 u32 mask = 0, err, tc, i;
1614
1615 /* check & clear - ERR & TC interrupts */
1616 err = readl(pl08x->base + PL080_ERR_STATUS);
1617 if (err) {
1618 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1619 __func__, err);
1620 writel(err, pl08x->base + PL080_ERR_CLEAR);
1621 }
1622 tc = readl(pl08x->base + PL080_TC_STATUS);
1623 if (tc)
1624 writel(tc, pl08x->base + PL080_TC_CLEAR);
1625
1626 if (!err && !tc)
1627 return IRQ_NONE;
1628
1629 for (i = 0; i < pl08x->vd->channels; i++) {
1630 if (((1 << i) & err) || ((1 << i) & tc)) {
1631 /* Locate physical channel */
1632 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1633 struct pl08x_dma_chan *plchan = phychan->serving;
1634
1635 if (!plchan) {
1636 dev_err(&pl08x->adev->dev,
1637 "%s Error TC interrupt on unused channel: 0x%08x\n",
1638 __func__, i);
1639 continue;
1640 }
1641
1642 /* Schedule tasklet on this channel */
1643 tasklet_schedule(&plchan->tasklet);
1644 mask |= (1 << i);
1645 }
1646 }
1647
1648 return mask ? IRQ_HANDLED : IRQ_NONE;
1649 }
1650
1651 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1652 {
1653 u32 cctl = pl08x_cctl(chan->cd->cctl);
1654
1655 chan->slave = true;
1656 chan->name = chan->cd->bus_id;
1657 chan->src_addr = chan->cd->addr;
1658 chan->dst_addr = chan->cd->addr;
1659 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1660 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1661 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1662 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1663 }
1664
1665 /*
1666 * Initialise the DMAC memcpy/slave channels.
1667 * Make a local wrapper to hold required data
1668 */
1669 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1670 struct dma_device *dmadev, unsigned int channels, bool slave)
1671 {
1672 struct pl08x_dma_chan *chan;
1673 int i;
1674
1675 INIT_LIST_HEAD(&dmadev->channels);
1676
1677 /*
1678 * Register as many many memcpy as we have physical channels,
1679 * we won't always be able to use all but the code will have
1680 * to cope with that situation.
1681 */
1682 for (i = 0; i < channels; i++) {
1683 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1684 if (!chan) {
1685 dev_err(&pl08x->adev->dev,
1686 "%s no memory for channel\n", __func__);
1687 return -ENOMEM;
1688 }
1689
1690 chan->host = pl08x;
1691 chan->state = PL08X_CHAN_IDLE;
1692
1693 if (slave) {
1694 chan->cd = &pl08x->pd->slave_channels[i];
1695 pl08x_dma_slave_init(chan);
1696 } else {
1697 chan->cd = &pl08x->pd->memcpy_channel;
1698 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1699 if (!chan->name) {
1700 kfree(chan);
1701 return -ENOMEM;
1702 }
1703 }
1704 dev_dbg(&pl08x->adev->dev,
1705 "initialize virtual channel \"%s\"\n",
1706 chan->name);
1707
1708 chan->chan.device = dmadev;
1709 dma_cookie_init(&chan->chan);
1710
1711 spin_lock_init(&chan->lock);
1712 INIT_LIST_HEAD(&chan->pend_list);
1713 tasklet_init(&chan->tasklet, pl08x_tasklet,
1714 (unsigned long) chan);
1715
1716 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1717 }
1718 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1719 i, slave ? "slave" : "memcpy");
1720 return i;
1721 }
1722
1723 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1724 {
1725 struct pl08x_dma_chan *chan = NULL;
1726 struct pl08x_dma_chan *next;
1727
1728 list_for_each_entry_safe(chan,
1729 next, &dmadev->channels, chan.device_node) {
1730 list_del(&chan->chan.device_node);
1731 kfree(chan);
1732 }
1733 }
1734
1735 #ifdef CONFIG_DEBUG_FS
1736 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1737 {
1738 switch (state) {
1739 case PL08X_CHAN_IDLE:
1740 return "idle";
1741 case PL08X_CHAN_RUNNING:
1742 return "running";
1743 case PL08X_CHAN_PAUSED:
1744 return "paused";
1745 case PL08X_CHAN_WAITING:
1746 return "waiting";
1747 default:
1748 break;
1749 }
1750 return "UNKNOWN STATE";
1751 }
1752
1753 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1754 {
1755 struct pl08x_driver_data *pl08x = s->private;
1756 struct pl08x_dma_chan *chan;
1757 struct pl08x_phy_chan *ch;
1758 unsigned long flags;
1759 int i;
1760
1761 seq_printf(s, "PL08x physical channels:\n");
1762 seq_printf(s, "CHANNEL:\tUSER:\n");
1763 seq_printf(s, "--------\t-----\n");
1764 for (i = 0; i < pl08x->vd->channels; i++) {
1765 struct pl08x_dma_chan *virt_chan;
1766
1767 ch = &pl08x->phy_chans[i];
1768
1769 spin_lock_irqsave(&ch->lock, flags);
1770 virt_chan = ch->serving;
1771
1772 seq_printf(s, "%d\t\t%s%s\n",
1773 ch->id,
1774 virt_chan ? virt_chan->name : "(none)",
1775 ch->locked ? " LOCKED" : "");
1776
1777 spin_unlock_irqrestore(&ch->lock, flags);
1778 }
1779
1780 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1781 seq_printf(s, "CHANNEL:\tSTATE:\n");
1782 seq_printf(s, "--------\t------\n");
1783 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1784 seq_printf(s, "%s\t\t%s\n", chan->name,
1785 pl08x_state_str(chan->state));
1786 }
1787
1788 seq_printf(s, "\nPL08x virtual slave channels:\n");
1789 seq_printf(s, "CHANNEL:\tSTATE:\n");
1790 seq_printf(s, "--------\t------\n");
1791 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1792 seq_printf(s, "%s\t\t%s\n", chan->name,
1793 pl08x_state_str(chan->state));
1794 }
1795
1796 return 0;
1797 }
1798
1799 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1800 {
1801 return single_open(file, pl08x_debugfs_show, inode->i_private);
1802 }
1803
1804 static const struct file_operations pl08x_debugfs_operations = {
1805 .open = pl08x_debugfs_open,
1806 .read = seq_read,
1807 .llseek = seq_lseek,
1808 .release = single_release,
1809 };
1810
1811 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1812 {
1813 /* Expose a simple debugfs interface to view all clocks */
1814 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1815 S_IFREG | S_IRUGO, NULL, pl08x,
1816 &pl08x_debugfs_operations);
1817 }
1818
1819 #else
1820 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1821 {
1822 }
1823 #endif
1824
1825 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1826 {
1827 struct pl08x_driver_data *pl08x;
1828 const struct vendor_data *vd = id->data;
1829 int ret = 0;
1830 int i;
1831
1832 ret = amba_request_regions(adev, NULL);
1833 if (ret)
1834 return ret;
1835
1836 /* Create the driver state holder */
1837 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1838 if (!pl08x) {
1839 ret = -ENOMEM;
1840 goto out_no_pl08x;
1841 }
1842
1843 /* Initialize memcpy engine */
1844 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1845 pl08x->memcpy.dev = &adev->dev;
1846 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1847 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1848 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1849 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1850 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1851 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1852 pl08x->memcpy.device_control = pl08x_control;
1853
1854 /* Initialize slave engine */
1855 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1856 pl08x->slave.dev = &adev->dev;
1857 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1858 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1859 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1860 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1861 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1862 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1863 pl08x->slave.device_control = pl08x_control;
1864
1865 /* Get the platform data */
1866 pl08x->pd = dev_get_platdata(&adev->dev);
1867 if (!pl08x->pd) {
1868 dev_err(&adev->dev, "no platform data supplied\n");
1869 goto out_no_platdata;
1870 }
1871
1872 /* Assign useful pointers to the driver state */
1873 pl08x->adev = adev;
1874 pl08x->vd = vd;
1875
1876 /* By default, AHB1 only. If dualmaster, from platform */
1877 pl08x->lli_buses = PL08X_AHB1;
1878 pl08x->mem_buses = PL08X_AHB1;
1879 if (pl08x->vd->dualmaster) {
1880 pl08x->lli_buses = pl08x->pd->lli_buses;
1881 pl08x->mem_buses = pl08x->pd->mem_buses;
1882 }
1883
1884 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1885 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1886 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1887 if (!pl08x->pool) {
1888 ret = -ENOMEM;
1889 goto out_no_lli_pool;
1890 }
1891
1892 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1893 if (!pl08x->base) {
1894 ret = -ENOMEM;
1895 goto out_no_ioremap;
1896 }
1897
1898 /* Turn on the PL08x */
1899 pl08x_ensure_on(pl08x);
1900
1901 /* Attach the interrupt handler */
1902 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1903 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1904
1905 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1906 DRIVER_NAME, pl08x);
1907 if (ret) {
1908 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1909 __func__, adev->irq[0]);
1910 goto out_no_irq;
1911 }
1912
1913 /* Initialize physical channels */
1914 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1915 GFP_KERNEL);
1916 if (!pl08x->phy_chans) {
1917 dev_err(&adev->dev, "%s failed to allocate "
1918 "physical channel holders\n",
1919 __func__);
1920 goto out_no_phychans;
1921 }
1922
1923 for (i = 0; i < vd->channels; i++) {
1924 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1925
1926 ch->id = i;
1927 ch->base = pl08x->base + PL080_Cx_BASE(i);
1928 spin_lock_init(&ch->lock);
1929 ch->signal = -1;
1930
1931 /*
1932 * Nomadik variants can have channels that are locked
1933 * down for the secure world only. Lock up these channels
1934 * by perpetually serving a dummy virtual channel.
1935 */
1936 if (vd->nomadik) {
1937 u32 val;
1938
1939 val = readl(ch->base + PL080_CH_CONFIG);
1940 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1941 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1942 ch->locked = true;
1943 }
1944 }
1945
1946 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1947 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1948 }
1949
1950 /* Register as many memcpy channels as there are physical channels */
1951 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1952 pl08x->vd->channels, false);
1953 if (ret <= 0) {
1954 dev_warn(&pl08x->adev->dev,
1955 "%s failed to enumerate memcpy channels - %d\n",
1956 __func__, ret);
1957 goto out_no_memcpy;
1958 }
1959 pl08x->memcpy.chancnt = ret;
1960
1961 /* Register slave channels */
1962 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1963 pl08x->pd->num_slave_channels, true);
1964 if (ret <= 0) {
1965 dev_warn(&pl08x->adev->dev,
1966 "%s failed to enumerate slave channels - %d\n",
1967 __func__, ret);
1968 goto out_no_slave;
1969 }
1970 pl08x->slave.chancnt = ret;
1971
1972 ret = dma_async_device_register(&pl08x->memcpy);
1973 if (ret) {
1974 dev_warn(&pl08x->adev->dev,
1975 "%s failed to register memcpy as an async device - %d\n",
1976 __func__, ret);
1977 goto out_no_memcpy_reg;
1978 }
1979
1980 ret = dma_async_device_register(&pl08x->slave);
1981 if (ret) {
1982 dev_warn(&pl08x->adev->dev,
1983 "%s failed to register slave as an async device - %d\n",
1984 __func__, ret);
1985 goto out_no_slave_reg;
1986 }
1987
1988 amba_set_drvdata(adev, pl08x);
1989 init_pl08x_debugfs(pl08x);
1990 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1991 amba_part(adev), amba_rev(adev),
1992 (unsigned long long)adev->res.start, adev->irq[0]);
1993
1994 return 0;
1995
1996 out_no_slave_reg:
1997 dma_async_device_unregister(&pl08x->memcpy);
1998 out_no_memcpy_reg:
1999 pl08x_free_virtual_channels(&pl08x->slave);
2000 out_no_slave:
2001 pl08x_free_virtual_channels(&pl08x->memcpy);
2002 out_no_memcpy:
2003 kfree(pl08x->phy_chans);
2004 out_no_phychans:
2005 free_irq(adev->irq[0], pl08x);
2006 out_no_irq:
2007 iounmap(pl08x->base);
2008 out_no_ioremap:
2009 dma_pool_destroy(pl08x->pool);
2010 out_no_lli_pool:
2011 out_no_platdata:
2012 kfree(pl08x);
2013 out_no_pl08x:
2014 amba_release_regions(adev);
2015 return ret;
2016 }
2017
2018 /* PL080 has 8 channels and the PL080 have just 2 */
2019 static struct vendor_data vendor_pl080 = {
2020 .channels = 8,
2021 .dualmaster = true,
2022 };
2023
2024 static struct vendor_data vendor_nomadik = {
2025 .channels = 8,
2026 .dualmaster = true,
2027 .nomadik = true,
2028 };
2029
2030 static struct vendor_data vendor_pl081 = {
2031 .channels = 2,
2032 .dualmaster = false,
2033 };
2034
2035 static struct amba_id pl08x_ids[] = {
2036 /* PL080 */
2037 {
2038 .id = 0x00041080,
2039 .mask = 0x000fffff,
2040 .data = &vendor_pl080,
2041 },
2042 /* PL081 */
2043 {
2044 .id = 0x00041081,
2045 .mask = 0x000fffff,
2046 .data = &vendor_pl081,
2047 },
2048 /* Nomadik 8815 PL080 variant */
2049 {
2050 .id = 0x00280080,
2051 .mask = 0x00ffffff,
2052 .data = &vendor_nomadik,
2053 },
2054 { 0, 0 },
2055 };
2056
2057 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2058
2059 static struct amba_driver pl08x_amba_driver = {
2060 .drv.name = DRIVER_NAME,
2061 .id_table = pl08x_ids,
2062 .probe = pl08x_probe,
2063 };
2064
2065 static int __init pl08x_init(void)
2066 {
2067 int retval;
2068 retval = amba_driver_register(&pl08x_amba_driver);
2069 if (retval)
2070 printk(KERN_WARNING DRIVER_NAME
2071 "failed to register as an AMBA device (%d)\n",
2072 retval);
2073 return retval;
2074 }
2075 subsys_initcall(pl08x_init);
This page took 0.074291 seconds and 5 git commands to generate.