dmaengine: consolidate assignment of DMA cookies
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89
90 #define DRIVER_NAME "pl08xdmac"
91
92 static struct amba_driver pl08x_amba_driver;
93
94 /**
95 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
96 * @channels: the number of channels available in this variant
97 * @dualmaster: whether this version supports dual AHB masters or not.
98 */
99 struct vendor_data {
100 u8 channels;
101 bool dualmaster;
102 };
103
104 /*
105 * PL08X private data structures
106 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
107 * start & end do not - their bus bit info is in cctl. Also note that these
108 * are fixed 32-bit quantities.
109 */
110 struct pl08x_lli {
111 u32 src;
112 u32 dst;
113 u32 lli;
114 u32 cctl;
115 };
116
117 /**
118 * struct pl08x_driver_data - the local state holder for the PL08x
119 * @slave: slave engine for this instance
120 * @memcpy: memcpy engine for this instance
121 * @base: virtual memory base (remapped) for the PL08x
122 * @adev: the corresponding AMBA (PrimeCell) bus entry
123 * @vd: vendor data for this PL08x variant
124 * @pd: platform data passed in from the platform/machine
125 * @phy_chans: array of data for the physical channels
126 * @pool: a pool for the LLI descriptors
127 * @pool_ctr: counter of LLIs in the pool
128 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
129 * fetches
130 * @mem_buses: set to indicate memory transfers on AHB2.
131 * @lock: a spinlock for this struct
132 */
133 struct pl08x_driver_data {
134 struct dma_device slave;
135 struct dma_device memcpy;
136 void __iomem *base;
137 struct amba_device *adev;
138 const struct vendor_data *vd;
139 struct pl08x_platform_data *pd;
140 struct pl08x_phy_chan *phy_chans;
141 struct dma_pool *pool;
142 int pool_ctr;
143 u8 lli_buses;
144 u8 mem_buses;
145 spinlock_t lock;
146 };
147
148 /*
149 * PL08X specific defines
150 */
151
152 /* Size (bytes) of each LLI buffer allocated for one transfer */
153 # define PL08X_LLI_TSFR_SIZE 0x2000
154
155 /* Maximum times we call dma_pool_alloc on this pool without freeing */
156 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
157 #define PL08X_ALIGN 8
158
159 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
160 {
161 return container_of(chan, struct pl08x_dma_chan, chan);
162 }
163
164 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
165 {
166 return container_of(tx, struct pl08x_txd, tx);
167 }
168
169 /*
170 * Physical channel handling
171 */
172
173 /* Whether a certain channel is busy or not */
174 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
175 {
176 unsigned int val;
177
178 val = readl(ch->base + PL080_CH_CONFIG);
179 return val & PL080_CONFIG_ACTIVE;
180 }
181
182 /*
183 * Set the initial DMA register values i.e. those for the first LLI
184 * The next LLI pointer and the configuration interrupt bit have
185 * been set when the LLIs were constructed. Poke them into the hardware
186 * and start the transfer.
187 */
188 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
189 struct pl08x_txd *txd)
190 {
191 struct pl08x_driver_data *pl08x = plchan->host;
192 struct pl08x_phy_chan *phychan = plchan->phychan;
193 struct pl08x_lli *lli = &txd->llis_va[0];
194 u32 val;
195
196 plchan->at = txd;
197
198 /* Wait for channel inactive */
199 while (pl08x_phy_channel_busy(phychan))
200 cpu_relax();
201
202 dev_vdbg(&pl08x->adev->dev,
203 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
204 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
205 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
206 txd->ccfg);
207
208 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
209 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
210 writel(lli->lli, phychan->base + PL080_CH_LLI);
211 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
212 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
213
214 /* Enable the DMA channel */
215 /* Do not access config register until channel shows as disabled */
216 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
217 cpu_relax();
218
219 /* Do not access config register until channel shows as inactive */
220 val = readl(phychan->base + PL080_CH_CONFIG);
221 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
222 val = readl(phychan->base + PL080_CH_CONFIG);
223
224 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
225 }
226
227 /*
228 * Pause the channel by setting the HALT bit.
229 *
230 * For M->P transfers, pause the DMAC first and then stop the peripheral -
231 * the FIFO can only drain if the peripheral is still requesting data.
232 * (note: this can still timeout if the DMAC FIFO never drains of data.)
233 *
234 * For P->M transfers, disable the peripheral first to stop it filling
235 * the DMAC FIFO, and then pause the DMAC.
236 */
237 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
238 {
239 u32 val;
240 int timeout;
241
242 /* Set the HALT bit and wait for the FIFO to drain */
243 val = readl(ch->base + PL080_CH_CONFIG);
244 val |= PL080_CONFIG_HALT;
245 writel(val, ch->base + PL080_CH_CONFIG);
246
247 /* Wait for channel inactive */
248 for (timeout = 1000; timeout; timeout--) {
249 if (!pl08x_phy_channel_busy(ch))
250 break;
251 udelay(1);
252 }
253 if (pl08x_phy_channel_busy(ch))
254 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
255 }
256
257 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
258 {
259 u32 val;
260
261 /* Clear the HALT bit */
262 val = readl(ch->base + PL080_CH_CONFIG);
263 val &= ~PL080_CONFIG_HALT;
264 writel(val, ch->base + PL080_CH_CONFIG);
265 }
266
267 /*
268 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
269 * clears any pending interrupt status. This should not be used for
270 * an on-going transfer, but as a method of shutting down a channel
271 * (eg, when it's no longer used) or terminating a transfer.
272 */
273 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
274 struct pl08x_phy_chan *ch)
275 {
276 u32 val = readl(ch->base + PL080_CH_CONFIG);
277
278 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
279 PL080_CONFIG_TC_IRQ_MASK);
280
281 writel(val, ch->base + PL080_CH_CONFIG);
282
283 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
284 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
285 }
286
287 static inline u32 get_bytes_in_cctl(u32 cctl)
288 {
289 /* The source width defines the number of bytes */
290 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
291
292 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
293 case PL080_WIDTH_8BIT:
294 break;
295 case PL080_WIDTH_16BIT:
296 bytes *= 2;
297 break;
298 case PL080_WIDTH_32BIT:
299 bytes *= 4;
300 break;
301 }
302 return bytes;
303 }
304
305 /* The channel should be paused when calling this */
306 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
307 {
308 struct pl08x_phy_chan *ch;
309 struct pl08x_txd *txd;
310 unsigned long flags;
311 size_t bytes = 0;
312
313 spin_lock_irqsave(&plchan->lock, flags);
314 ch = plchan->phychan;
315 txd = plchan->at;
316
317 /*
318 * Follow the LLIs to get the number of remaining
319 * bytes in the currently active transaction.
320 */
321 if (ch && txd) {
322 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
323
324 /* First get the remaining bytes in the active transfer */
325 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
326
327 if (clli) {
328 struct pl08x_lli *llis_va = txd->llis_va;
329 dma_addr_t llis_bus = txd->llis_bus;
330 int index;
331
332 BUG_ON(clli < llis_bus || clli >= llis_bus +
333 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
334
335 /*
336 * Locate the next LLI - as this is an array,
337 * it's simple maths to find.
338 */
339 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
340
341 for (; index < MAX_NUM_TSFR_LLIS; index++) {
342 bytes += get_bytes_in_cctl(llis_va[index].cctl);
343
344 /*
345 * A LLI pointer of 0 terminates the LLI list
346 */
347 if (!llis_va[index].lli)
348 break;
349 }
350 }
351 }
352
353 /* Sum up all queued transactions */
354 if (!list_empty(&plchan->pend_list)) {
355 struct pl08x_txd *txdi;
356 list_for_each_entry(txdi, &plchan->pend_list, node) {
357 struct pl08x_sg *dsg;
358 list_for_each_entry(dsg, &txd->dsg_list, node)
359 bytes += dsg->len;
360 }
361 }
362
363 spin_unlock_irqrestore(&plchan->lock, flags);
364
365 return bytes;
366 }
367
368 /*
369 * Allocate a physical channel for a virtual channel
370 *
371 * Try to locate a physical channel to be used for this transfer. If all
372 * are taken return NULL and the requester will have to cope by using
373 * some fallback PIO mode or retrying later.
374 */
375 static struct pl08x_phy_chan *
376 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
377 struct pl08x_dma_chan *virt_chan)
378 {
379 struct pl08x_phy_chan *ch = NULL;
380 unsigned long flags;
381 int i;
382
383 for (i = 0; i < pl08x->vd->channels; i++) {
384 ch = &pl08x->phy_chans[i];
385
386 spin_lock_irqsave(&ch->lock, flags);
387
388 if (!ch->serving) {
389 ch->serving = virt_chan;
390 ch->signal = -1;
391 spin_unlock_irqrestore(&ch->lock, flags);
392 break;
393 }
394
395 spin_unlock_irqrestore(&ch->lock, flags);
396 }
397
398 if (i == pl08x->vd->channels) {
399 /* No physical channel available, cope with it */
400 return NULL;
401 }
402
403 pm_runtime_get_sync(&pl08x->adev->dev);
404 return ch;
405 }
406
407 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
408 struct pl08x_phy_chan *ch)
409 {
410 unsigned long flags;
411
412 spin_lock_irqsave(&ch->lock, flags);
413
414 /* Stop the channel and clear its interrupts */
415 pl08x_terminate_phy_chan(pl08x, ch);
416
417 pm_runtime_put(&pl08x->adev->dev);
418
419 /* Mark it as free */
420 ch->serving = NULL;
421 spin_unlock_irqrestore(&ch->lock, flags);
422 }
423
424 /*
425 * LLI handling
426 */
427
428 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
429 {
430 switch (coded) {
431 case PL080_WIDTH_8BIT:
432 return 1;
433 case PL080_WIDTH_16BIT:
434 return 2;
435 case PL080_WIDTH_32BIT:
436 return 4;
437 default:
438 break;
439 }
440 BUG();
441 return 0;
442 }
443
444 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
445 size_t tsize)
446 {
447 u32 retbits = cctl;
448
449 /* Remove all src, dst and transfer size bits */
450 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
451 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
452 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
453
454 /* Then set the bits according to the parameters */
455 switch (srcwidth) {
456 case 1:
457 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
458 break;
459 case 2:
460 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
461 break;
462 case 4:
463 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
464 break;
465 default:
466 BUG();
467 break;
468 }
469
470 switch (dstwidth) {
471 case 1:
472 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
473 break;
474 case 2:
475 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
476 break;
477 case 4:
478 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
479 break;
480 default:
481 BUG();
482 break;
483 }
484
485 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
486 return retbits;
487 }
488
489 struct pl08x_lli_build_data {
490 struct pl08x_txd *txd;
491 struct pl08x_bus_data srcbus;
492 struct pl08x_bus_data dstbus;
493 size_t remainder;
494 u32 lli_bus;
495 };
496
497 /*
498 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
499 * victim in case src & dest are not similarly aligned. i.e. If after aligning
500 * masters address with width requirements of transfer (by sending few byte by
501 * byte data), slave is still not aligned, then its width will be reduced to
502 * BYTE.
503 * - prefers the destination bus if both available
504 * - prefers bus with fixed address (i.e. peripheral)
505 */
506 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
507 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
508 {
509 if (!(cctl & PL080_CONTROL_DST_INCR)) {
510 *mbus = &bd->dstbus;
511 *sbus = &bd->srcbus;
512 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
513 *mbus = &bd->srcbus;
514 *sbus = &bd->dstbus;
515 } else {
516 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
517 *mbus = &bd->dstbus;
518 *sbus = &bd->srcbus;
519 } else {
520 *mbus = &bd->srcbus;
521 *sbus = &bd->dstbus;
522 }
523 }
524 }
525
526 /*
527 * Fills in one LLI for a certain transfer descriptor and advance the counter
528 */
529 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
530 int num_llis, int len, u32 cctl)
531 {
532 struct pl08x_lli *llis_va = bd->txd->llis_va;
533 dma_addr_t llis_bus = bd->txd->llis_bus;
534
535 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
536
537 llis_va[num_llis].cctl = cctl;
538 llis_va[num_llis].src = bd->srcbus.addr;
539 llis_va[num_llis].dst = bd->dstbus.addr;
540 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
541 sizeof(struct pl08x_lli);
542 llis_va[num_llis].lli |= bd->lli_bus;
543
544 if (cctl & PL080_CONTROL_SRC_INCR)
545 bd->srcbus.addr += len;
546 if (cctl & PL080_CONTROL_DST_INCR)
547 bd->dstbus.addr += len;
548
549 BUG_ON(bd->remainder < len);
550
551 bd->remainder -= len;
552 }
553
554 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
555 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
556 {
557 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
558 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
559 (*total_bytes) += len;
560 }
561
562 /*
563 * This fills in the table of LLIs for the transfer descriptor
564 * Note that we assume we never have to change the burst sizes
565 * Return 0 for error
566 */
567 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
568 struct pl08x_txd *txd)
569 {
570 struct pl08x_bus_data *mbus, *sbus;
571 struct pl08x_lli_build_data bd;
572 int num_llis = 0;
573 u32 cctl, early_bytes = 0;
574 size_t max_bytes_per_lli, total_bytes;
575 struct pl08x_lli *llis_va;
576 struct pl08x_sg *dsg;
577
578 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
579 if (!txd->llis_va) {
580 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
581 return 0;
582 }
583
584 pl08x->pool_ctr++;
585
586 bd.txd = txd;
587 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
588 cctl = txd->cctl;
589
590 /* Find maximum width of the source bus */
591 bd.srcbus.maxwidth =
592 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
593 PL080_CONTROL_SWIDTH_SHIFT);
594
595 /* Find maximum width of the destination bus */
596 bd.dstbus.maxwidth =
597 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
598 PL080_CONTROL_DWIDTH_SHIFT);
599
600 list_for_each_entry(dsg, &txd->dsg_list, node) {
601 total_bytes = 0;
602 cctl = txd->cctl;
603
604 bd.srcbus.addr = dsg->src_addr;
605 bd.dstbus.addr = dsg->dst_addr;
606 bd.remainder = dsg->len;
607 bd.srcbus.buswidth = bd.srcbus.maxwidth;
608 bd.dstbus.buswidth = bd.dstbus.maxwidth;
609
610 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
611
612 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
613 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
614 bd.srcbus.buswidth,
615 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
616 bd.dstbus.buswidth,
617 bd.remainder);
618 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
619 mbus == &bd.srcbus ? "src" : "dst",
620 sbus == &bd.srcbus ? "src" : "dst");
621
622 /*
623 * Zero length is only allowed if all these requirements are
624 * met:
625 * - flow controller is peripheral.
626 * - src.addr is aligned to src.width
627 * - dst.addr is aligned to dst.width
628 *
629 * sg_len == 1 should be true, as there can be two cases here:
630 *
631 * - Memory addresses are contiguous and are not scattered.
632 * Here, Only one sg will be passed by user driver, with
633 * memory address and zero length. We pass this to controller
634 * and after the transfer it will receive the last burst
635 * request from peripheral and so transfer finishes.
636 *
637 * - Memory addresses are scattered and are not contiguous.
638 * Here, Obviously as DMA controller doesn't know when a lli's
639 * transfer gets over, it can't load next lli. So in this
640 * case, there has to be an assumption that only one lli is
641 * supported. Thus, we can't have scattered addresses.
642 */
643 if (!bd.remainder) {
644 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
645 PL080_CONFIG_FLOW_CONTROL_SHIFT;
646 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
647 (fc <= PL080_FLOW_SRC2DST_SRC))) {
648 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
649 __func__);
650 return 0;
651 }
652
653 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
654 (bd.dstbus.addr % bd.dstbus.buswidth)) {
655 dev_err(&pl08x->adev->dev,
656 "%s src & dst address must be aligned to src"
657 " & dst width if peripheral is flow controller",
658 __func__);
659 return 0;
660 }
661
662 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
663 bd.dstbus.buswidth, 0);
664 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
665 break;
666 }
667
668 /*
669 * Send byte by byte for following cases
670 * - Less than a bus width available
671 * - until master bus is aligned
672 */
673 if (bd.remainder < mbus->buswidth)
674 early_bytes = bd.remainder;
675 else if ((mbus->addr) % (mbus->buswidth)) {
676 early_bytes = mbus->buswidth - (mbus->addr) %
677 (mbus->buswidth);
678 if ((bd.remainder - early_bytes) < mbus->buswidth)
679 early_bytes = bd.remainder;
680 }
681
682 if (early_bytes) {
683 dev_vdbg(&pl08x->adev->dev,
684 "%s byte width LLIs (remain 0x%08x)\n",
685 __func__, bd.remainder);
686 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
687 &total_bytes);
688 }
689
690 if (bd.remainder) {
691 /*
692 * Master now aligned
693 * - if slave is not then we must set its width down
694 */
695 if (sbus->addr % sbus->buswidth) {
696 dev_dbg(&pl08x->adev->dev,
697 "%s set down bus width to one byte\n",
698 __func__);
699
700 sbus->buswidth = 1;
701 }
702
703 /*
704 * Bytes transferred = tsize * src width, not
705 * MIN(buswidths)
706 */
707 max_bytes_per_lli = bd.srcbus.buswidth *
708 PL080_CONTROL_TRANSFER_SIZE_MASK;
709 dev_vdbg(&pl08x->adev->dev,
710 "%s max bytes per lli = %zu\n",
711 __func__, max_bytes_per_lli);
712
713 /*
714 * Make largest possible LLIs until less than one bus
715 * width left
716 */
717 while (bd.remainder > (mbus->buswidth - 1)) {
718 size_t lli_len, tsize, width;
719
720 /*
721 * If enough left try to send max possible,
722 * otherwise try to send the remainder
723 */
724 lli_len = min(bd.remainder, max_bytes_per_lli);
725
726 /*
727 * Check against maximum bus alignment:
728 * Calculate actual transfer size in relation to
729 * bus width an get a maximum remainder of the
730 * highest bus width - 1
731 */
732 width = max(mbus->buswidth, sbus->buswidth);
733 lli_len = (lli_len / width) * width;
734 tsize = lli_len / bd.srcbus.buswidth;
735
736 dev_vdbg(&pl08x->adev->dev,
737 "%s fill lli with single lli chunk of "
738 "size 0x%08zx (remainder 0x%08zx)\n",
739 __func__, lli_len, bd.remainder);
740
741 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
742 bd.dstbus.buswidth, tsize);
743 pl08x_fill_lli_for_desc(&bd, num_llis++,
744 lli_len, cctl);
745 total_bytes += lli_len;
746 }
747
748 /*
749 * Send any odd bytes
750 */
751 if (bd.remainder) {
752 dev_vdbg(&pl08x->adev->dev,
753 "%s align with boundary, send odd bytes (remain %zu)\n",
754 __func__, bd.remainder);
755 prep_byte_width_lli(&bd, &cctl, bd.remainder,
756 num_llis++, &total_bytes);
757 }
758 }
759
760 if (total_bytes != dsg->len) {
761 dev_err(&pl08x->adev->dev,
762 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
763 __func__, total_bytes, dsg->len);
764 return 0;
765 }
766
767 if (num_llis >= MAX_NUM_TSFR_LLIS) {
768 dev_err(&pl08x->adev->dev,
769 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
770 __func__, (u32) MAX_NUM_TSFR_LLIS);
771 return 0;
772 }
773 }
774
775 llis_va = txd->llis_va;
776 /* The final LLI terminates the LLI. */
777 llis_va[num_llis - 1].lli = 0;
778 /* The final LLI element shall also fire an interrupt. */
779 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
780
781 #ifdef VERBOSE_DEBUG
782 {
783 int i;
784
785 dev_vdbg(&pl08x->adev->dev,
786 "%-3s %-9s %-10s %-10s %-10s %s\n",
787 "lli", "", "csrc", "cdst", "clli", "cctl");
788 for (i = 0; i < num_llis; i++) {
789 dev_vdbg(&pl08x->adev->dev,
790 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
791 i, &llis_va[i], llis_va[i].src,
792 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
793 );
794 }
795 }
796 #endif
797
798 return num_llis;
799 }
800
801 /* You should call this with the struct pl08x lock held */
802 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
803 struct pl08x_txd *txd)
804 {
805 struct pl08x_sg *dsg, *_dsg;
806
807 /* Free the LLI */
808 if (txd->llis_va)
809 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
810
811 pl08x->pool_ctr--;
812
813 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
814 list_del(&dsg->node);
815 kfree(dsg);
816 }
817
818 kfree(txd);
819 }
820
821 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
822 struct pl08x_dma_chan *plchan)
823 {
824 struct pl08x_txd *txdi = NULL;
825 struct pl08x_txd *next;
826
827 if (!list_empty(&plchan->pend_list)) {
828 list_for_each_entry_safe(txdi,
829 next, &plchan->pend_list, node) {
830 list_del(&txdi->node);
831 pl08x_free_txd(pl08x, txdi);
832 }
833 }
834 }
835
836 /*
837 * The DMA ENGINE API
838 */
839 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
840 {
841 return 0;
842 }
843
844 static void pl08x_free_chan_resources(struct dma_chan *chan)
845 {
846 }
847
848 /*
849 * This should be called with the channel plchan->lock held
850 */
851 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
852 struct pl08x_txd *txd)
853 {
854 struct pl08x_driver_data *pl08x = plchan->host;
855 struct pl08x_phy_chan *ch;
856 int ret;
857
858 /* Check if we already have a channel */
859 if (plchan->phychan) {
860 ch = plchan->phychan;
861 goto got_channel;
862 }
863
864 ch = pl08x_get_phy_channel(pl08x, plchan);
865 if (!ch) {
866 /* No physical channel available, cope with it */
867 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
868 return -EBUSY;
869 }
870
871 /*
872 * OK we have a physical channel: for memcpy() this is all we
873 * need, but for slaves the physical signals may be muxed!
874 * Can the platform allow us to use this channel?
875 */
876 if (plchan->slave && pl08x->pd->get_signal) {
877 ret = pl08x->pd->get_signal(plchan);
878 if (ret < 0) {
879 dev_dbg(&pl08x->adev->dev,
880 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
881 ch->id, plchan->name);
882 /* Release physical channel & return */
883 pl08x_put_phy_channel(pl08x, ch);
884 return -EBUSY;
885 }
886 ch->signal = ret;
887 }
888
889 plchan->phychan = ch;
890 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
891 ch->id,
892 ch->signal,
893 plchan->name);
894
895 got_channel:
896 /* Assign the flow control signal to this channel */
897 if (txd->direction == DMA_MEM_TO_DEV)
898 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
899 else if (txd->direction == DMA_DEV_TO_MEM)
900 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
901
902 plchan->phychan_hold++;
903
904 return 0;
905 }
906
907 static void release_phy_channel(struct pl08x_dma_chan *plchan)
908 {
909 struct pl08x_driver_data *pl08x = plchan->host;
910
911 if ((plchan->phychan->signal >= 0) && pl08x->pd->put_signal) {
912 pl08x->pd->put_signal(plchan);
913 plchan->phychan->signal = -1;
914 }
915 pl08x_put_phy_channel(pl08x, plchan->phychan);
916 plchan->phychan = NULL;
917 }
918
919 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
920 {
921 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
922 struct pl08x_txd *txd = to_pl08x_txd(tx);
923 unsigned long flags;
924 dma_cookie_t cookie;
925
926 spin_lock_irqsave(&plchan->lock, flags);
927 cookie = dma_cookie_assign(tx);
928
929 /* Put this onto the pending list */
930 list_add_tail(&txd->node, &plchan->pend_list);
931
932 /*
933 * If there was no physical channel available for this memcpy,
934 * stack the request up and indicate that the channel is waiting
935 * for a free physical channel.
936 */
937 if (!plchan->slave && !plchan->phychan) {
938 /* Do this memcpy whenever there is a channel ready */
939 plchan->state = PL08X_CHAN_WAITING;
940 plchan->waiting = txd;
941 } else {
942 plchan->phychan_hold--;
943 }
944
945 spin_unlock_irqrestore(&plchan->lock, flags);
946
947 return cookie;
948 }
949
950 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
951 struct dma_chan *chan, unsigned long flags)
952 {
953 struct dma_async_tx_descriptor *retval = NULL;
954
955 return retval;
956 }
957
958 /*
959 * Code accessing dma_async_is_complete() in a tight loop may give problems.
960 * If slaves are relying on interrupts to signal completion this function
961 * must not be called with interrupts disabled.
962 */
963 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
964 dma_cookie_t cookie, struct dma_tx_state *txstate)
965 {
966 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
967 dma_cookie_t last_used;
968 dma_cookie_t last_complete;
969 enum dma_status ret;
970 u32 bytesleft = 0;
971
972 last_used = plchan->chan.cookie;
973 last_complete = plchan->chan.completed_cookie;
974
975 ret = dma_async_is_complete(cookie, last_complete, last_used);
976 if (ret == DMA_SUCCESS) {
977 dma_set_tx_state(txstate, last_complete, last_used, 0);
978 return ret;
979 }
980
981 /*
982 * This cookie not complete yet
983 */
984 last_used = plchan->chan.cookie;
985 last_complete = plchan->chan.completed_cookie;
986
987 /* Get number of bytes left in the active transactions and queue */
988 bytesleft = pl08x_getbytes_chan(plchan);
989
990 dma_set_tx_state(txstate, last_complete, last_used,
991 bytesleft);
992
993 if (plchan->state == PL08X_CHAN_PAUSED)
994 return DMA_PAUSED;
995
996 /* Whether waiting or running, we're in progress */
997 return DMA_IN_PROGRESS;
998 }
999
1000 /* PrimeCell DMA extension */
1001 struct burst_table {
1002 u32 burstwords;
1003 u32 reg;
1004 };
1005
1006 static const struct burst_table burst_sizes[] = {
1007 {
1008 .burstwords = 256,
1009 .reg = PL080_BSIZE_256,
1010 },
1011 {
1012 .burstwords = 128,
1013 .reg = PL080_BSIZE_128,
1014 },
1015 {
1016 .burstwords = 64,
1017 .reg = PL080_BSIZE_64,
1018 },
1019 {
1020 .burstwords = 32,
1021 .reg = PL080_BSIZE_32,
1022 },
1023 {
1024 .burstwords = 16,
1025 .reg = PL080_BSIZE_16,
1026 },
1027 {
1028 .burstwords = 8,
1029 .reg = PL080_BSIZE_8,
1030 },
1031 {
1032 .burstwords = 4,
1033 .reg = PL080_BSIZE_4,
1034 },
1035 {
1036 .burstwords = 0,
1037 .reg = PL080_BSIZE_1,
1038 },
1039 };
1040
1041 /*
1042 * Given the source and destination available bus masks, select which
1043 * will be routed to each port. We try to have source and destination
1044 * on separate ports, but always respect the allowable settings.
1045 */
1046 static u32 pl08x_select_bus(u8 src, u8 dst)
1047 {
1048 u32 cctl = 0;
1049
1050 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1051 cctl |= PL080_CONTROL_DST_AHB2;
1052 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1053 cctl |= PL080_CONTROL_SRC_AHB2;
1054
1055 return cctl;
1056 }
1057
1058 static u32 pl08x_cctl(u32 cctl)
1059 {
1060 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1061 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1062 PL080_CONTROL_PROT_MASK);
1063
1064 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1065 return cctl | PL080_CONTROL_PROT_SYS;
1066 }
1067
1068 static u32 pl08x_width(enum dma_slave_buswidth width)
1069 {
1070 switch (width) {
1071 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1072 return PL080_WIDTH_8BIT;
1073 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1074 return PL080_WIDTH_16BIT;
1075 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1076 return PL080_WIDTH_32BIT;
1077 default:
1078 return ~0;
1079 }
1080 }
1081
1082 static u32 pl08x_burst(u32 maxburst)
1083 {
1084 int i;
1085
1086 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1087 if (burst_sizes[i].burstwords <= maxburst)
1088 break;
1089
1090 return burst_sizes[i].reg;
1091 }
1092
1093 static int dma_set_runtime_config(struct dma_chan *chan,
1094 struct dma_slave_config *config)
1095 {
1096 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1097 struct pl08x_driver_data *pl08x = plchan->host;
1098 enum dma_slave_buswidth addr_width;
1099 u32 width, burst, maxburst;
1100 u32 cctl = 0;
1101
1102 if (!plchan->slave)
1103 return -EINVAL;
1104
1105 /* Transfer direction */
1106 plchan->runtime_direction = config->direction;
1107 if (config->direction == DMA_MEM_TO_DEV) {
1108 addr_width = config->dst_addr_width;
1109 maxburst = config->dst_maxburst;
1110 } else if (config->direction == DMA_DEV_TO_MEM) {
1111 addr_width = config->src_addr_width;
1112 maxburst = config->src_maxburst;
1113 } else {
1114 dev_err(&pl08x->adev->dev,
1115 "bad runtime_config: alien transfer direction\n");
1116 return -EINVAL;
1117 }
1118
1119 width = pl08x_width(addr_width);
1120 if (width == ~0) {
1121 dev_err(&pl08x->adev->dev,
1122 "bad runtime_config: alien address width\n");
1123 return -EINVAL;
1124 }
1125
1126 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1127 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1128
1129 /*
1130 * If this channel will only request single transfers, set this
1131 * down to ONE element. Also select one element if no maxburst
1132 * is specified.
1133 */
1134 if (plchan->cd->single)
1135 maxburst = 1;
1136
1137 burst = pl08x_burst(maxburst);
1138 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1139 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1140
1141 plchan->device_fc = config->device_fc;
1142
1143 if (plchan->runtime_direction == DMA_DEV_TO_MEM) {
1144 plchan->src_addr = config->src_addr;
1145 plchan->src_cctl = pl08x_cctl(cctl) | PL080_CONTROL_DST_INCR |
1146 pl08x_select_bus(plchan->cd->periph_buses,
1147 pl08x->mem_buses);
1148 } else {
1149 plchan->dst_addr = config->dst_addr;
1150 plchan->dst_cctl = pl08x_cctl(cctl) | PL080_CONTROL_SRC_INCR |
1151 pl08x_select_bus(pl08x->mem_buses,
1152 plchan->cd->periph_buses);
1153 }
1154
1155 dev_dbg(&pl08x->adev->dev,
1156 "configured channel %s (%s) for %s, data width %d, "
1157 "maxburst %d words, LE, CCTL=0x%08x\n",
1158 dma_chan_name(chan), plchan->name,
1159 (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX",
1160 addr_width,
1161 maxburst,
1162 cctl);
1163
1164 return 0;
1165 }
1166
1167 /*
1168 * Slave transactions callback to the slave device to allow
1169 * synchronization of slave DMA signals with the DMAC enable
1170 */
1171 static void pl08x_issue_pending(struct dma_chan *chan)
1172 {
1173 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1174 unsigned long flags;
1175
1176 spin_lock_irqsave(&plchan->lock, flags);
1177 /* Something is already active, or we're waiting for a channel... */
1178 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1179 spin_unlock_irqrestore(&plchan->lock, flags);
1180 return;
1181 }
1182
1183 /* Take the first element in the queue and execute it */
1184 if (!list_empty(&plchan->pend_list)) {
1185 struct pl08x_txd *next;
1186
1187 next = list_first_entry(&plchan->pend_list,
1188 struct pl08x_txd,
1189 node);
1190 list_del(&next->node);
1191 plchan->state = PL08X_CHAN_RUNNING;
1192
1193 pl08x_start_txd(plchan, next);
1194 }
1195
1196 spin_unlock_irqrestore(&plchan->lock, flags);
1197 }
1198
1199 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1200 struct pl08x_txd *txd)
1201 {
1202 struct pl08x_driver_data *pl08x = plchan->host;
1203 unsigned long flags;
1204 int num_llis, ret;
1205
1206 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1207 if (!num_llis) {
1208 spin_lock_irqsave(&plchan->lock, flags);
1209 pl08x_free_txd(pl08x, txd);
1210 spin_unlock_irqrestore(&plchan->lock, flags);
1211 return -EINVAL;
1212 }
1213
1214 spin_lock_irqsave(&plchan->lock, flags);
1215
1216 /*
1217 * See if we already have a physical channel allocated,
1218 * else this is the time to try to get one.
1219 */
1220 ret = prep_phy_channel(plchan, txd);
1221 if (ret) {
1222 /*
1223 * No physical channel was available.
1224 *
1225 * memcpy transfers can be sorted out at submission time.
1226 *
1227 * Slave transfers may have been denied due to platform
1228 * channel muxing restrictions. Since there is no guarantee
1229 * that this will ever be resolved, and the signal must be
1230 * acquired AFTER acquiring the physical channel, we will let
1231 * them be NACK:ed with -EBUSY here. The drivers can retry
1232 * the prep() call if they are eager on doing this using DMA.
1233 */
1234 if (plchan->slave) {
1235 pl08x_free_txd_list(pl08x, plchan);
1236 pl08x_free_txd(pl08x, txd);
1237 spin_unlock_irqrestore(&plchan->lock, flags);
1238 return -EBUSY;
1239 }
1240 } else
1241 /*
1242 * Else we're all set, paused and ready to roll, status
1243 * will switch to PL08X_CHAN_RUNNING when we call
1244 * issue_pending(). If there is something running on the
1245 * channel already we don't change its state.
1246 */
1247 if (plchan->state == PL08X_CHAN_IDLE)
1248 plchan->state = PL08X_CHAN_PAUSED;
1249
1250 spin_unlock_irqrestore(&plchan->lock, flags);
1251
1252 return 0;
1253 }
1254
1255 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1256 unsigned long flags)
1257 {
1258 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1259
1260 if (txd) {
1261 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1262 txd->tx.flags = flags;
1263 txd->tx.tx_submit = pl08x_tx_submit;
1264 INIT_LIST_HEAD(&txd->node);
1265 INIT_LIST_HEAD(&txd->dsg_list);
1266
1267 /* Always enable error and terminal interrupts */
1268 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1269 PL080_CONFIG_TC_IRQ_MASK;
1270 }
1271 return txd;
1272 }
1273
1274 /*
1275 * Initialize a descriptor to be used by memcpy submit
1276 */
1277 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1278 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1279 size_t len, unsigned long flags)
1280 {
1281 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1282 struct pl08x_driver_data *pl08x = plchan->host;
1283 struct pl08x_txd *txd;
1284 struct pl08x_sg *dsg;
1285 int ret;
1286
1287 txd = pl08x_get_txd(plchan, flags);
1288 if (!txd) {
1289 dev_err(&pl08x->adev->dev,
1290 "%s no memory for descriptor\n", __func__);
1291 return NULL;
1292 }
1293
1294 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1295 if (!dsg) {
1296 pl08x_free_txd(pl08x, txd);
1297 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1298 __func__);
1299 return NULL;
1300 }
1301 list_add_tail(&dsg->node, &txd->dsg_list);
1302
1303 txd->direction = DMA_NONE;
1304 dsg->src_addr = src;
1305 dsg->dst_addr = dest;
1306 dsg->len = len;
1307
1308 /* Set platform data for m2m */
1309 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1310 txd->cctl = pl08x->pd->memcpy_channel.cctl &
1311 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1312
1313 /* Both to be incremented or the code will break */
1314 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1315
1316 if (pl08x->vd->dualmaster)
1317 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1318 pl08x->mem_buses);
1319
1320 ret = pl08x_prep_channel_resources(plchan, txd);
1321 if (ret)
1322 return NULL;
1323
1324 return &txd->tx;
1325 }
1326
1327 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1328 struct dma_chan *chan, struct scatterlist *sgl,
1329 unsigned int sg_len, enum dma_transfer_direction direction,
1330 unsigned long flags)
1331 {
1332 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1333 struct pl08x_driver_data *pl08x = plchan->host;
1334 struct pl08x_txd *txd;
1335 struct pl08x_sg *dsg;
1336 struct scatterlist *sg;
1337 dma_addr_t slave_addr;
1338 int ret, tmp;
1339
1340 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1341 __func__, sgl->length, plchan->name);
1342
1343 txd = pl08x_get_txd(plchan, flags);
1344 if (!txd) {
1345 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1346 return NULL;
1347 }
1348
1349 if (direction != plchan->runtime_direction)
1350 dev_err(&pl08x->adev->dev, "%s DMA setup does not match "
1351 "the direction configured for the PrimeCell\n",
1352 __func__);
1353
1354 /*
1355 * Set up addresses, the PrimeCell configured address
1356 * will take precedence since this may configure the
1357 * channel target address dynamically at runtime.
1358 */
1359 txd->direction = direction;
1360
1361 if (direction == DMA_MEM_TO_DEV) {
1362 txd->cctl = plchan->dst_cctl;
1363 slave_addr = plchan->dst_addr;
1364 } else if (direction == DMA_DEV_TO_MEM) {
1365 txd->cctl = plchan->src_cctl;
1366 slave_addr = plchan->src_addr;
1367 } else {
1368 pl08x_free_txd(pl08x, txd);
1369 dev_err(&pl08x->adev->dev,
1370 "%s direction unsupported\n", __func__);
1371 return NULL;
1372 }
1373
1374 if (plchan->device_fc)
1375 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1376 PL080_FLOW_PER2MEM_PER;
1377 else
1378 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1379 PL080_FLOW_PER2MEM;
1380
1381 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1382
1383 for_each_sg(sgl, sg, sg_len, tmp) {
1384 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1385 if (!dsg) {
1386 pl08x_free_txd(pl08x, txd);
1387 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1388 __func__);
1389 return NULL;
1390 }
1391 list_add_tail(&dsg->node, &txd->dsg_list);
1392
1393 dsg->len = sg_dma_len(sg);
1394 if (direction == DMA_MEM_TO_DEV) {
1395 dsg->src_addr = sg_phys(sg);
1396 dsg->dst_addr = slave_addr;
1397 } else {
1398 dsg->src_addr = slave_addr;
1399 dsg->dst_addr = sg_phys(sg);
1400 }
1401 }
1402
1403 ret = pl08x_prep_channel_resources(plchan, txd);
1404 if (ret)
1405 return NULL;
1406
1407 return &txd->tx;
1408 }
1409
1410 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1411 unsigned long arg)
1412 {
1413 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1414 struct pl08x_driver_data *pl08x = plchan->host;
1415 unsigned long flags;
1416 int ret = 0;
1417
1418 /* Controls applicable to inactive channels */
1419 if (cmd == DMA_SLAVE_CONFIG) {
1420 return dma_set_runtime_config(chan,
1421 (struct dma_slave_config *)arg);
1422 }
1423
1424 /*
1425 * Anything succeeds on channels with no physical allocation and
1426 * no queued transfers.
1427 */
1428 spin_lock_irqsave(&plchan->lock, flags);
1429 if (!plchan->phychan && !plchan->at) {
1430 spin_unlock_irqrestore(&plchan->lock, flags);
1431 return 0;
1432 }
1433
1434 switch (cmd) {
1435 case DMA_TERMINATE_ALL:
1436 plchan->state = PL08X_CHAN_IDLE;
1437
1438 if (plchan->phychan) {
1439 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1440
1441 /*
1442 * Mark physical channel as free and free any slave
1443 * signal
1444 */
1445 release_phy_channel(plchan);
1446 }
1447 /* Dequeue jobs and free LLIs */
1448 if (plchan->at) {
1449 pl08x_free_txd(pl08x, plchan->at);
1450 plchan->at = NULL;
1451 }
1452 /* Dequeue jobs not yet fired as well */
1453 pl08x_free_txd_list(pl08x, plchan);
1454 break;
1455 case DMA_PAUSE:
1456 pl08x_pause_phy_chan(plchan->phychan);
1457 plchan->state = PL08X_CHAN_PAUSED;
1458 break;
1459 case DMA_RESUME:
1460 pl08x_resume_phy_chan(plchan->phychan);
1461 plchan->state = PL08X_CHAN_RUNNING;
1462 break;
1463 default:
1464 /* Unknown command */
1465 ret = -ENXIO;
1466 break;
1467 }
1468
1469 spin_unlock_irqrestore(&plchan->lock, flags);
1470
1471 return ret;
1472 }
1473
1474 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1475 {
1476 struct pl08x_dma_chan *plchan;
1477 char *name = chan_id;
1478
1479 /* Reject channels for devices not bound to this driver */
1480 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1481 return false;
1482
1483 plchan = to_pl08x_chan(chan);
1484
1485 /* Check that the channel is not taken! */
1486 if (!strcmp(plchan->name, name))
1487 return true;
1488
1489 return false;
1490 }
1491
1492 /*
1493 * Just check that the device is there and active
1494 * TODO: turn this bit on/off depending on the number of physical channels
1495 * actually used, if it is zero... well shut it off. That will save some
1496 * power. Cut the clock at the same time.
1497 */
1498 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1499 {
1500 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1501 }
1502
1503 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1504 {
1505 struct device *dev = txd->tx.chan->device->dev;
1506 struct pl08x_sg *dsg;
1507
1508 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1509 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1510 list_for_each_entry(dsg, &txd->dsg_list, node)
1511 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1512 DMA_TO_DEVICE);
1513 else {
1514 list_for_each_entry(dsg, &txd->dsg_list, node)
1515 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1516 DMA_TO_DEVICE);
1517 }
1518 }
1519 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1520 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1521 list_for_each_entry(dsg, &txd->dsg_list, node)
1522 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1523 DMA_FROM_DEVICE);
1524 else
1525 list_for_each_entry(dsg, &txd->dsg_list, node)
1526 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1527 DMA_FROM_DEVICE);
1528 }
1529 }
1530
1531 static void pl08x_tasklet(unsigned long data)
1532 {
1533 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1534 struct pl08x_driver_data *pl08x = plchan->host;
1535 struct pl08x_txd *txd;
1536 unsigned long flags;
1537
1538 spin_lock_irqsave(&plchan->lock, flags);
1539
1540 txd = plchan->at;
1541 plchan->at = NULL;
1542
1543 if (txd) {
1544 /* Update last completed */
1545 plchan->chan.completed_cookie = txd->tx.cookie;
1546 }
1547
1548 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1549 if (!list_empty(&plchan->pend_list)) {
1550 struct pl08x_txd *next;
1551
1552 next = list_first_entry(&plchan->pend_list,
1553 struct pl08x_txd,
1554 node);
1555 list_del(&next->node);
1556
1557 pl08x_start_txd(plchan, next);
1558 } else if (plchan->phychan_hold) {
1559 /*
1560 * This channel is still in use - we have a new txd being
1561 * prepared and will soon be queued. Don't give up the
1562 * physical channel.
1563 */
1564 } else {
1565 struct pl08x_dma_chan *waiting = NULL;
1566
1567 /*
1568 * No more jobs, so free up the physical channel
1569 * Free any allocated signal on slave transfers too
1570 */
1571 release_phy_channel(plchan);
1572 plchan->state = PL08X_CHAN_IDLE;
1573
1574 /*
1575 * And NOW before anyone else can grab that free:d up
1576 * physical channel, see if there is some memcpy pending
1577 * that seriously needs to start because of being stacked
1578 * up while we were choking the physical channels with data.
1579 */
1580 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1581 chan.device_node) {
1582 if (waiting->state == PL08X_CHAN_WAITING &&
1583 waiting->waiting != NULL) {
1584 int ret;
1585
1586 /* This should REALLY not fail now */
1587 ret = prep_phy_channel(waiting,
1588 waiting->waiting);
1589 BUG_ON(ret);
1590 waiting->phychan_hold--;
1591 waiting->state = PL08X_CHAN_RUNNING;
1592 waiting->waiting = NULL;
1593 pl08x_issue_pending(&waiting->chan);
1594 break;
1595 }
1596 }
1597 }
1598
1599 spin_unlock_irqrestore(&plchan->lock, flags);
1600
1601 if (txd) {
1602 dma_async_tx_callback callback = txd->tx.callback;
1603 void *callback_param = txd->tx.callback_param;
1604
1605 /* Don't try to unmap buffers on slave channels */
1606 if (!plchan->slave)
1607 pl08x_unmap_buffers(txd);
1608
1609 /* Free the descriptor */
1610 spin_lock_irqsave(&plchan->lock, flags);
1611 pl08x_free_txd(pl08x, txd);
1612 spin_unlock_irqrestore(&plchan->lock, flags);
1613
1614 /* Callback to signal completion */
1615 if (callback)
1616 callback(callback_param);
1617 }
1618 }
1619
1620 static irqreturn_t pl08x_irq(int irq, void *dev)
1621 {
1622 struct pl08x_driver_data *pl08x = dev;
1623 u32 mask = 0, err, tc, i;
1624
1625 /* check & clear - ERR & TC interrupts */
1626 err = readl(pl08x->base + PL080_ERR_STATUS);
1627 if (err) {
1628 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1629 __func__, err);
1630 writel(err, pl08x->base + PL080_ERR_CLEAR);
1631 }
1632 tc = readl(pl08x->base + PL080_INT_STATUS);
1633 if (tc)
1634 writel(tc, pl08x->base + PL080_TC_CLEAR);
1635
1636 if (!err && !tc)
1637 return IRQ_NONE;
1638
1639 for (i = 0; i < pl08x->vd->channels; i++) {
1640 if (((1 << i) & err) || ((1 << i) & tc)) {
1641 /* Locate physical channel */
1642 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1643 struct pl08x_dma_chan *plchan = phychan->serving;
1644
1645 if (!plchan) {
1646 dev_err(&pl08x->adev->dev,
1647 "%s Error TC interrupt on unused channel: 0x%08x\n",
1648 __func__, i);
1649 continue;
1650 }
1651
1652 /* Schedule tasklet on this channel */
1653 tasklet_schedule(&plchan->tasklet);
1654 mask |= (1 << i);
1655 }
1656 }
1657
1658 return mask ? IRQ_HANDLED : IRQ_NONE;
1659 }
1660
1661 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1662 {
1663 u32 cctl = pl08x_cctl(chan->cd->cctl);
1664
1665 chan->slave = true;
1666 chan->name = chan->cd->bus_id;
1667 chan->src_addr = chan->cd->addr;
1668 chan->dst_addr = chan->cd->addr;
1669 chan->src_cctl = cctl | PL080_CONTROL_DST_INCR |
1670 pl08x_select_bus(chan->cd->periph_buses, chan->host->mem_buses);
1671 chan->dst_cctl = cctl | PL080_CONTROL_SRC_INCR |
1672 pl08x_select_bus(chan->host->mem_buses, chan->cd->periph_buses);
1673 }
1674
1675 /*
1676 * Initialise the DMAC memcpy/slave channels.
1677 * Make a local wrapper to hold required data
1678 */
1679 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1680 struct dma_device *dmadev, unsigned int channels, bool slave)
1681 {
1682 struct pl08x_dma_chan *chan;
1683 int i;
1684
1685 INIT_LIST_HEAD(&dmadev->channels);
1686
1687 /*
1688 * Register as many many memcpy as we have physical channels,
1689 * we won't always be able to use all but the code will have
1690 * to cope with that situation.
1691 */
1692 for (i = 0; i < channels; i++) {
1693 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1694 if (!chan) {
1695 dev_err(&pl08x->adev->dev,
1696 "%s no memory for channel\n", __func__);
1697 return -ENOMEM;
1698 }
1699
1700 chan->host = pl08x;
1701 chan->state = PL08X_CHAN_IDLE;
1702
1703 if (slave) {
1704 chan->cd = &pl08x->pd->slave_channels[i];
1705 pl08x_dma_slave_init(chan);
1706 } else {
1707 chan->cd = &pl08x->pd->memcpy_channel;
1708 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1709 if (!chan->name) {
1710 kfree(chan);
1711 return -ENOMEM;
1712 }
1713 }
1714 if (chan->cd->circular_buffer) {
1715 dev_err(&pl08x->adev->dev,
1716 "channel %s: circular buffers not supported\n",
1717 chan->name);
1718 kfree(chan);
1719 continue;
1720 }
1721 dev_dbg(&pl08x->adev->dev,
1722 "initialize virtual channel \"%s\"\n",
1723 chan->name);
1724
1725 chan->chan.device = dmadev;
1726 chan->chan.cookie = 0;
1727 chan->chan.completed_cookie = 0;
1728
1729 spin_lock_init(&chan->lock);
1730 INIT_LIST_HEAD(&chan->pend_list);
1731 tasklet_init(&chan->tasklet, pl08x_tasklet,
1732 (unsigned long) chan);
1733
1734 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1735 }
1736 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1737 i, slave ? "slave" : "memcpy");
1738 return i;
1739 }
1740
1741 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1742 {
1743 struct pl08x_dma_chan *chan = NULL;
1744 struct pl08x_dma_chan *next;
1745
1746 list_for_each_entry_safe(chan,
1747 next, &dmadev->channels, chan.device_node) {
1748 list_del(&chan->chan.device_node);
1749 kfree(chan);
1750 }
1751 }
1752
1753 #ifdef CONFIG_DEBUG_FS
1754 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1755 {
1756 switch (state) {
1757 case PL08X_CHAN_IDLE:
1758 return "idle";
1759 case PL08X_CHAN_RUNNING:
1760 return "running";
1761 case PL08X_CHAN_PAUSED:
1762 return "paused";
1763 case PL08X_CHAN_WAITING:
1764 return "waiting";
1765 default:
1766 break;
1767 }
1768 return "UNKNOWN STATE";
1769 }
1770
1771 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1772 {
1773 struct pl08x_driver_data *pl08x = s->private;
1774 struct pl08x_dma_chan *chan;
1775 struct pl08x_phy_chan *ch;
1776 unsigned long flags;
1777 int i;
1778
1779 seq_printf(s, "PL08x physical channels:\n");
1780 seq_printf(s, "CHANNEL:\tUSER:\n");
1781 seq_printf(s, "--------\t-----\n");
1782 for (i = 0; i < pl08x->vd->channels; i++) {
1783 struct pl08x_dma_chan *virt_chan;
1784
1785 ch = &pl08x->phy_chans[i];
1786
1787 spin_lock_irqsave(&ch->lock, flags);
1788 virt_chan = ch->serving;
1789
1790 seq_printf(s, "%d\t\t%s\n",
1791 ch->id, virt_chan ? virt_chan->name : "(none)");
1792
1793 spin_unlock_irqrestore(&ch->lock, flags);
1794 }
1795
1796 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1797 seq_printf(s, "CHANNEL:\tSTATE:\n");
1798 seq_printf(s, "--------\t------\n");
1799 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1800 seq_printf(s, "%s\t\t%s\n", chan->name,
1801 pl08x_state_str(chan->state));
1802 }
1803
1804 seq_printf(s, "\nPL08x virtual slave channels:\n");
1805 seq_printf(s, "CHANNEL:\tSTATE:\n");
1806 seq_printf(s, "--------\t------\n");
1807 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1808 seq_printf(s, "%s\t\t%s\n", chan->name,
1809 pl08x_state_str(chan->state));
1810 }
1811
1812 return 0;
1813 }
1814
1815 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1816 {
1817 return single_open(file, pl08x_debugfs_show, inode->i_private);
1818 }
1819
1820 static const struct file_operations pl08x_debugfs_operations = {
1821 .open = pl08x_debugfs_open,
1822 .read = seq_read,
1823 .llseek = seq_lseek,
1824 .release = single_release,
1825 };
1826
1827 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1828 {
1829 /* Expose a simple debugfs interface to view all clocks */
1830 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1831 S_IFREG | S_IRUGO, NULL, pl08x,
1832 &pl08x_debugfs_operations);
1833 }
1834
1835 #else
1836 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1837 {
1838 }
1839 #endif
1840
1841 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1842 {
1843 struct pl08x_driver_data *pl08x;
1844 const struct vendor_data *vd = id->data;
1845 int ret = 0;
1846 int i;
1847
1848 ret = amba_request_regions(adev, NULL);
1849 if (ret)
1850 return ret;
1851
1852 /* Create the driver state holder */
1853 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1854 if (!pl08x) {
1855 ret = -ENOMEM;
1856 goto out_no_pl08x;
1857 }
1858
1859 pm_runtime_set_active(&adev->dev);
1860 pm_runtime_enable(&adev->dev);
1861
1862 /* Initialize memcpy engine */
1863 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1864 pl08x->memcpy.dev = &adev->dev;
1865 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1866 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1867 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1868 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1869 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1870 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1871 pl08x->memcpy.device_control = pl08x_control;
1872
1873 /* Initialize slave engine */
1874 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1875 pl08x->slave.dev = &adev->dev;
1876 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1877 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1878 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1879 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1880 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1881 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1882 pl08x->slave.device_control = pl08x_control;
1883
1884 /* Get the platform data */
1885 pl08x->pd = dev_get_platdata(&adev->dev);
1886 if (!pl08x->pd) {
1887 dev_err(&adev->dev, "no platform data supplied\n");
1888 goto out_no_platdata;
1889 }
1890
1891 /* Assign useful pointers to the driver state */
1892 pl08x->adev = adev;
1893 pl08x->vd = vd;
1894
1895 /* By default, AHB1 only. If dualmaster, from platform */
1896 pl08x->lli_buses = PL08X_AHB1;
1897 pl08x->mem_buses = PL08X_AHB1;
1898 if (pl08x->vd->dualmaster) {
1899 pl08x->lli_buses = pl08x->pd->lli_buses;
1900 pl08x->mem_buses = pl08x->pd->mem_buses;
1901 }
1902
1903 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1904 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1905 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1906 if (!pl08x->pool) {
1907 ret = -ENOMEM;
1908 goto out_no_lli_pool;
1909 }
1910
1911 spin_lock_init(&pl08x->lock);
1912
1913 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1914 if (!pl08x->base) {
1915 ret = -ENOMEM;
1916 goto out_no_ioremap;
1917 }
1918
1919 /* Turn on the PL08x */
1920 pl08x_ensure_on(pl08x);
1921
1922 /* Attach the interrupt handler */
1923 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1924 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1925
1926 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1927 DRIVER_NAME, pl08x);
1928 if (ret) {
1929 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1930 __func__, adev->irq[0]);
1931 goto out_no_irq;
1932 }
1933
1934 /* Initialize physical channels */
1935 pl08x->phy_chans = kmalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1936 GFP_KERNEL);
1937 if (!pl08x->phy_chans) {
1938 dev_err(&adev->dev, "%s failed to allocate "
1939 "physical channel holders\n",
1940 __func__);
1941 goto out_no_phychans;
1942 }
1943
1944 for (i = 0; i < vd->channels; i++) {
1945 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1946
1947 ch->id = i;
1948 ch->base = pl08x->base + PL080_Cx_BASE(i);
1949 spin_lock_init(&ch->lock);
1950 ch->serving = NULL;
1951 ch->signal = -1;
1952 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1953 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1954 }
1955
1956 /* Register as many memcpy channels as there are physical channels */
1957 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1958 pl08x->vd->channels, false);
1959 if (ret <= 0) {
1960 dev_warn(&pl08x->adev->dev,
1961 "%s failed to enumerate memcpy channels - %d\n",
1962 __func__, ret);
1963 goto out_no_memcpy;
1964 }
1965 pl08x->memcpy.chancnt = ret;
1966
1967 /* Register slave channels */
1968 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
1969 pl08x->pd->num_slave_channels, true);
1970 if (ret <= 0) {
1971 dev_warn(&pl08x->adev->dev,
1972 "%s failed to enumerate slave channels - %d\n",
1973 __func__, ret);
1974 goto out_no_slave;
1975 }
1976 pl08x->slave.chancnt = ret;
1977
1978 ret = dma_async_device_register(&pl08x->memcpy);
1979 if (ret) {
1980 dev_warn(&pl08x->adev->dev,
1981 "%s failed to register memcpy as an async device - %d\n",
1982 __func__, ret);
1983 goto out_no_memcpy_reg;
1984 }
1985
1986 ret = dma_async_device_register(&pl08x->slave);
1987 if (ret) {
1988 dev_warn(&pl08x->adev->dev,
1989 "%s failed to register slave as an async device - %d\n",
1990 __func__, ret);
1991 goto out_no_slave_reg;
1992 }
1993
1994 amba_set_drvdata(adev, pl08x);
1995 init_pl08x_debugfs(pl08x);
1996 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
1997 amba_part(adev), amba_rev(adev),
1998 (unsigned long long)adev->res.start, adev->irq[0]);
1999
2000 pm_runtime_put(&adev->dev);
2001 return 0;
2002
2003 out_no_slave_reg:
2004 dma_async_device_unregister(&pl08x->memcpy);
2005 out_no_memcpy_reg:
2006 pl08x_free_virtual_channels(&pl08x->slave);
2007 out_no_slave:
2008 pl08x_free_virtual_channels(&pl08x->memcpy);
2009 out_no_memcpy:
2010 kfree(pl08x->phy_chans);
2011 out_no_phychans:
2012 free_irq(adev->irq[0], pl08x);
2013 out_no_irq:
2014 iounmap(pl08x->base);
2015 out_no_ioremap:
2016 dma_pool_destroy(pl08x->pool);
2017 out_no_lli_pool:
2018 out_no_platdata:
2019 pm_runtime_put(&adev->dev);
2020 pm_runtime_disable(&adev->dev);
2021
2022 kfree(pl08x);
2023 out_no_pl08x:
2024 amba_release_regions(adev);
2025 return ret;
2026 }
2027
2028 /* PL080 has 8 channels and the PL080 have just 2 */
2029 static struct vendor_data vendor_pl080 = {
2030 .channels = 8,
2031 .dualmaster = true,
2032 };
2033
2034 static struct vendor_data vendor_pl081 = {
2035 .channels = 2,
2036 .dualmaster = false,
2037 };
2038
2039 static struct amba_id pl08x_ids[] = {
2040 /* PL080 */
2041 {
2042 .id = 0x00041080,
2043 .mask = 0x000fffff,
2044 .data = &vendor_pl080,
2045 },
2046 /* PL081 */
2047 {
2048 .id = 0x00041081,
2049 .mask = 0x000fffff,
2050 .data = &vendor_pl081,
2051 },
2052 /* Nomadik 8815 PL080 variant */
2053 {
2054 .id = 0x00280880,
2055 .mask = 0x00ffffff,
2056 .data = &vendor_pl080,
2057 },
2058 { 0, 0 },
2059 };
2060
2061 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2062
2063 static struct amba_driver pl08x_amba_driver = {
2064 .drv.name = DRIVER_NAME,
2065 .id_table = pl08x_ids,
2066 .probe = pl08x_probe,
2067 };
2068
2069 static int __init pl08x_init(void)
2070 {
2071 int retval;
2072 retval = amba_driver_register(&pl08x_amba_driver);
2073 if (retval)
2074 printk(KERN_WARNING DRIVER_NAME
2075 "failed to register as an AMBA device (%d)\n",
2076 retval);
2077 return retval;
2078 }
2079 subsys_initcall(pl08x_init);
This page took 0.181388 seconds and 5 git commands to generate.