dmaengine: PL08x: convert to use vchan done list
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89 #include "virt-dma.h"
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95
96 /**
97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98 * @channels: the number of channels available in this variant
99 * @dualmaster: whether this version supports dual AHB masters or not.
100 * @nomadik: whether the channels have Nomadik security extension bits
101 * that need to be checked for permission before use and some registers are
102 * missing
103 */
104 struct vendor_data {
105 u8 channels;
106 bool dualmaster;
107 bool nomadik;
108 };
109
110 /*
111 * PL08X private data structures
112 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
113 * start & end do not - their bus bit info is in cctl. Also note that these
114 * are fixed 32-bit quantities.
115 */
116 struct pl08x_lli {
117 u32 src;
118 u32 dst;
119 u32 lli;
120 u32 cctl;
121 };
122
123 /**
124 * struct pl08x_bus_data - information of source or destination
125 * busses for a transfer
126 * @addr: current address
127 * @maxwidth: the maximum width of a transfer on this bus
128 * @buswidth: the width of this bus in bytes: 1, 2 or 4
129 */
130 struct pl08x_bus_data {
131 dma_addr_t addr;
132 u8 maxwidth;
133 u8 buswidth;
134 };
135
136 /**
137 * struct pl08x_phy_chan - holder for the physical channels
138 * @id: physical index to this channel
139 * @lock: a lock to use when altering an instance of this struct
140 * @serving: the virtual channel currently being served by this physical
141 * channel
142 * @locked: channel unavailable for the system, e.g. dedicated to secure
143 * world
144 */
145 struct pl08x_phy_chan {
146 unsigned int id;
147 void __iomem *base;
148 spinlock_t lock;
149 struct pl08x_dma_chan *serving;
150 bool locked;
151 };
152
153 /**
154 * struct pl08x_sg - structure containing data per sg
155 * @src_addr: src address of sg
156 * @dst_addr: dst address of sg
157 * @len: transfer len in bytes
158 * @node: node for txd's dsg_list
159 */
160 struct pl08x_sg {
161 dma_addr_t src_addr;
162 dma_addr_t dst_addr;
163 size_t len;
164 struct list_head node;
165 };
166
167 /**
168 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
169 * @vd: virtual DMA descriptor
170 * @dsg_list: list of children sg's
171 * @llis_bus: DMA memory address (physical) start for the LLIs
172 * @llis_va: virtual memory address start for the LLIs
173 * @cctl: control reg values for current txd
174 * @ccfg: config reg values for current txd
175 * @done: this marks completed descriptors, which should not have their
176 * mux released.
177 */
178 struct pl08x_txd {
179 struct virt_dma_desc vd;
180 struct list_head dsg_list;
181 dma_addr_t llis_bus;
182 struct pl08x_lli *llis_va;
183 /* Default cctl value for LLIs */
184 u32 cctl;
185 /*
186 * Settings to be put into the physical channel when we
187 * trigger this txd. Other registers are in llis_va[0].
188 */
189 u32 ccfg;
190 bool done;
191 };
192
193 /**
194 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
195 * states
196 * @PL08X_CHAN_IDLE: the channel is idle
197 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
198 * channel and is running a transfer on it
199 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
200 * channel, but the transfer is currently paused
201 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
202 * channel to become available (only pertains to memcpy channels)
203 */
204 enum pl08x_dma_chan_state {
205 PL08X_CHAN_IDLE,
206 PL08X_CHAN_RUNNING,
207 PL08X_CHAN_PAUSED,
208 PL08X_CHAN_WAITING,
209 };
210
211 /**
212 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
213 * @vc: wrappped virtual channel
214 * @phychan: the physical channel utilized by this channel, if there is one
215 * @name: name of channel
216 * @cd: channel platform data
217 * @runtime_addr: address for RX/TX according to the runtime config
218 * @at: active transaction on this channel
219 * @lock: a lock for this channel data
220 * @host: a pointer to the host (internal use)
221 * @state: whether the channel is idle, paused, running etc
222 * @slave: whether this channel is a device (slave) or for memcpy
223 * @signal: the physical DMA request signal which this channel is using
224 * @mux_use: count of descriptors using this DMA request signal setting
225 */
226 struct pl08x_dma_chan {
227 struct virt_dma_chan vc;
228 struct pl08x_phy_chan *phychan;
229 const char *name;
230 const struct pl08x_channel_data *cd;
231 struct dma_slave_config cfg;
232 struct pl08x_txd *at;
233 struct pl08x_driver_data *host;
234 enum pl08x_dma_chan_state state;
235 bool slave;
236 int signal;
237 unsigned mux_use;
238 };
239
240 /**
241 * struct pl08x_driver_data - the local state holder for the PL08x
242 * @slave: slave engine for this instance
243 * @memcpy: memcpy engine for this instance
244 * @base: virtual memory base (remapped) for the PL08x
245 * @adev: the corresponding AMBA (PrimeCell) bus entry
246 * @vd: vendor data for this PL08x variant
247 * @pd: platform data passed in from the platform/machine
248 * @phy_chans: array of data for the physical channels
249 * @pool: a pool for the LLI descriptors
250 * @pool_ctr: counter of LLIs in the pool
251 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
252 * fetches
253 * @mem_buses: set to indicate memory transfers on AHB2.
254 * @lock: a spinlock for this struct
255 */
256 struct pl08x_driver_data {
257 struct dma_device slave;
258 struct dma_device memcpy;
259 void __iomem *base;
260 struct amba_device *adev;
261 const struct vendor_data *vd;
262 struct pl08x_platform_data *pd;
263 struct pl08x_phy_chan *phy_chans;
264 struct dma_pool *pool;
265 int pool_ctr;
266 u8 lli_buses;
267 u8 mem_buses;
268 };
269
270 /*
271 * PL08X specific defines
272 */
273
274 /* Size (bytes) of each LLI buffer allocated for one transfer */
275 # define PL08X_LLI_TSFR_SIZE 0x2000
276
277 /* Maximum times we call dma_pool_alloc on this pool without freeing */
278 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
279 #define PL08X_ALIGN 8
280
281 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
282 {
283 return container_of(chan, struct pl08x_dma_chan, vc.chan);
284 }
285
286 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
287 {
288 return container_of(tx, struct pl08x_txd, vd.tx);
289 }
290
291 /*
292 * Mux handling.
293 *
294 * This gives us the DMA request input to the PL08x primecell which the
295 * peripheral described by the channel data will be routed to, possibly
296 * via a board/SoC specific external MUX. One important point to note
297 * here is that this does not depend on the physical channel.
298 */
299 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
300 {
301 const struct pl08x_platform_data *pd = plchan->host->pd;
302 int ret;
303
304 if (plchan->mux_use++ == 0 && pd->get_signal) {
305 ret = pd->get_signal(plchan->cd);
306 if (ret < 0) {
307 plchan->mux_use = 0;
308 return ret;
309 }
310
311 plchan->signal = ret;
312 }
313 return 0;
314 }
315
316 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
317 {
318 const struct pl08x_platform_data *pd = plchan->host->pd;
319
320 if (plchan->signal >= 0) {
321 WARN_ON(plchan->mux_use == 0);
322
323 if (--plchan->mux_use == 0 && pd->put_signal) {
324 pd->put_signal(plchan->cd, plchan->signal);
325 plchan->signal = -1;
326 }
327 }
328 }
329
330 /*
331 * Physical channel handling
332 */
333
334 /* Whether a certain channel is busy or not */
335 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
336 {
337 unsigned int val;
338
339 val = readl(ch->base + PL080_CH_CONFIG);
340 return val & PL080_CONFIG_ACTIVE;
341 }
342
343 /*
344 * Set the initial DMA register values i.e. those for the first LLI
345 * The next LLI pointer and the configuration interrupt bit have
346 * been set when the LLIs were constructed. Poke them into the hardware
347 * and start the transfer.
348 */
349 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
350 {
351 struct pl08x_driver_data *pl08x = plchan->host;
352 struct pl08x_phy_chan *phychan = plchan->phychan;
353 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
354 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
355 struct pl08x_lli *lli;
356 u32 val;
357
358 list_del(&txd->vd.node);
359
360 plchan->at = txd;
361
362 /* Wait for channel inactive */
363 while (pl08x_phy_channel_busy(phychan))
364 cpu_relax();
365
366 lli = &txd->llis_va[0];
367
368 dev_vdbg(&pl08x->adev->dev,
369 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
370 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
371 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
372 txd->ccfg);
373
374 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
375 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
376 writel(lli->lli, phychan->base + PL080_CH_LLI);
377 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
378 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
379
380 /* Enable the DMA channel */
381 /* Do not access config register until channel shows as disabled */
382 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
383 cpu_relax();
384
385 /* Do not access config register until channel shows as inactive */
386 val = readl(phychan->base + PL080_CH_CONFIG);
387 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
388 val = readl(phychan->base + PL080_CH_CONFIG);
389
390 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
391 }
392
393 /*
394 * Pause the channel by setting the HALT bit.
395 *
396 * For M->P transfers, pause the DMAC first and then stop the peripheral -
397 * the FIFO can only drain if the peripheral is still requesting data.
398 * (note: this can still timeout if the DMAC FIFO never drains of data.)
399 *
400 * For P->M transfers, disable the peripheral first to stop it filling
401 * the DMAC FIFO, and then pause the DMAC.
402 */
403 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
404 {
405 u32 val;
406 int timeout;
407
408 /* Set the HALT bit and wait for the FIFO to drain */
409 val = readl(ch->base + PL080_CH_CONFIG);
410 val |= PL080_CONFIG_HALT;
411 writel(val, ch->base + PL080_CH_CONFIG);
412
413 /* Wait for channel inactive */
414 for (timeout = 1000; timeout; timeout--) {
415 if (!pl08x_phy_channel_busy(ch))
416 break;
417 udelay(1);
418 }
419 if (pl08x_phy_channel_busy(ch))
420 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
421 }
422
423 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
424 {
425 u32 val;
426
427 /* Clear the HALT bit */
428 val = readl(ch->base + PL080_CH_CONFIG);
429 val &= ~PL080_CONFIG_HALT;
430 writel(val, ch->base + PL080_CH_CONFIG);
431 }
432
433 /*
434 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
435 * clears any pending interrupt status. This should not be used for
436 * an on-going transfer, but as a method of shutting down a channel
437 * (eg, when it's no longer used) or terminating a transfer.
438 */
439 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
440 struct pl08x_phy_chan *ch)
441 {
442 u32 val = readl(ch->base + PL080_CH_CONFIG);
443
444 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
445 PL080_CONFIG_TC_IRQ_MASK);
446
447 writel(val, ch->base + PL080_CH_CONFIG);
448
449 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
450 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
451 }
452
453 static inline u32 get_bytes_in_cctl(u32 cctl)
454 {
455 /* The source width defines the number of bytes */
456 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
457
458 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
459 case PL080_WIDTH_8BIT:
460 break;
461 case PL080_WIDTH_16BIT:
462 bytes *= 2;
463 break;
464 case PL080_WIDTH_32BIT:
465 bytes *= 4;
466 break;
467 }
468 return bytes;
469 }
470
471 /* The channel should be paused when calling this */
472 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
473 {
474 struct pl08x_phy_chan *ch;
475 struct pl08x_txd *txd;
476 unsigned long flags;
477 size_t bytes = 0;
478
479 spin_lock_irqsave(&plchan->vc.lock, flags);
480 ch = plchan->phychan;
481 txd = plchan->at;
482
483 /*
484 * Follow the LLIs to get the number of remaining
485 * bytes in the currently active transaction.
486 */
487 if (ch && txd) {
488 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
489
490 /* First get the remaining bytes in the active transfer */
491 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
492
493 if (clli) {
494 struct pl08x_lli *llis_va = txd->llis_va;
495 dma_addr_t llis_bus = txd->llis_bus;
496 int index;
497
498 BUG_ON(clli < llis_bus || clli >= llis_bus +
499 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
500
501 /*
502 * Locate the next LLI - as this is an array,
503 * it's simple maths to find.
504 */
505 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
506
507 for (; index < MAX_NUM_TSFR_LLIS; index++) {
508 bytes += get_bytes_in_cctl(llis_va[index].cctl);
509
510 /*
511 * A LLI pointer of 0 terminates the LLI list
512 */
513 if (!llis_va[index].lli)
514 break;
515 }
516 }
517 }
518
519 /* Sum up all queued transactions */
520 if (!list_empty(&plchan->vc.desc_issued)) {
521 struct pl08x_txd *txdi;
522 list_for_each_entry(txdi, &plchan->vc.desc_issued, vd.node) {
523 struct pl08x_sg *dsg;
524 list_for_each_entry(dsg, &txd->dsg_list, node)
525 bytes += dsg->len;
526 }
527 }
528
529 if (!list_empty(&plchan->vc.desc_submitted)) {
530 struct pl08x_txd *txdi;
531 list_for_each_entry(txdi, &plchan->vc.desc_submitted, vd.node) {
532 struct pl08x_sg *dsg;
533 list_for_each_entry(dsg, &txd->dsg_list, node)
534 bytes += dsg->len;
535 }
536 }
537
538 spin_unlock_irqrestore(&plchan->vc.lock, flags);
539
540 return bytes;
541 }
542
543 /*
544 * Allocate a physical channel for a virtual channel
545 *
546 * Try to locate a physical channel to be used for this transfer. If all
547 * are taken return NULL and the requester will have to cope by using
548 * some fallback PIO mode or retrying later.
549 */
550 static struct pl08x_phy_chan *
551 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
552 struct pl08x_dma_chan *virt_chan)
553 {
554 struct pl08x_phy_chan *ch = NULL;
555 unsigned long flags;
556 int i;
557
558 for (i = 0; i < pl08x->vd->channels; i++) {
559 ch = &pl08x->phy_chans[i];
560
561 spin_lock_irqsave(&ch->lock, flags);
562
563 if (!ch->locked && !ch->serving) {
564 ch->serving = virt_chan;
565 spin_unlock_irqrestore(&ch->lock, flags);
566 break;
567 }
568
569 spin_unlock_irqrestore(&ch->lock, flags);
570 }
571
572 if (i == pl08x->vd->channels) {
573 /* No physical channel available, cope with it */
574 return NULL;
575 }
576
577 return ch;
578 }
579
580 /* Mark the physical channel as free. Note, this write is atomic. */
581 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
582 struct pl08x_phy_chan *ch)
583 {
584 ch->serving = NULL;
585 }
586
587 /*
588 * Try to allocate a physical channel. When successful, assign it to
589 * this virtual channel, and initiate the next descriptor. The
590 * virtual channel lock must be held at this point.
591 */
592 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
593 {
594 struct pl08x_driver_data *pl08x = plchan->host;
595 struct pl08x_phy_chan *ch;
596
597 ch = pl08x_get_phy_channel(pl08x, plchan);
598 if (!ch) {
599 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
600 plchan->state = PL08X_CHAN_WAITING;
601 return;
602 }
603
604 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
605 ch->id, plchan->name);
606
607 plchan->phychan = ch;
608 plchan->state = PL08X_CHAN_RUNNING;
609 pl08x_start_next_txd(plchan);
610 }
611
612 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
613 struct pl08x_dma_chan *plchan)
614 {
615 struct pl08x_driver_data *pl08x = plchan->host;
616
617 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
618 ch->id, plchan->name);
619
620 /*
621 * We do this without taking the lock; we're really only concerned
622 * about whether this pointer is NULL or not, and we're guaranteed
623 * that this will only be called when it _already_ is non-NULL.
624 */
625 ch->serving = plchan;
626 plchan->phychan = ch;
627 plchan->state = PL08X_CHAN_RUNNING;
628 pl08x_start_next_txd(plchan);
629 }
630
631 /*
632 * Free a physical DMA channel, potentially reallocating it to another
633 * virtual channel if we have any pending.
634 */
635 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
636 {
637 struct pl08x_driver_data *pl08x = plchan->host;
638 struct pl08x_dma_chan *p, *next;
639
640 retry:
641 next = NULL;
642
643 /* Find a waiting virtual channel for the next transfer. */
644 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
645 if (p->state == PL08X_CHAN_WAITING) {
646 next = p;
647 break;
648 }
649
650 if (!next) {
651 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
652 if (p->state == PL08X_CHAN_WAITING) {
653 next = p;
654 break;
655 }
656 }
657
658 /* Ensure that the physical channel is stopped */
659 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
660
661 if (next) {
662 bool success;
663
664 /*
665 * Eww. We know this isn't going to deadlock
666 * but lockdep probably doesn't.
667 */
668 spin_lock(&next->vc.lock);
669 /* Re-check the state now that we have the lock */
670 success = next->state == PL08X_CHAN_WAITING;
671 if (success)
672 pl08x_phy_reassign_start(plchan->phychan, next);
673 spin_unlock(&next->vc.lock);
674
675 /* If the state changed, try to find another channel */
676 if (!success)
677 goto retry;
678 } else {
679 /* No more jobs, so free up the physical channel */
680 pl08x_put_phy_channel(pl08x, plchan->phychan);
681 }
682
683 plchan->phychan = NULL;
684 plchan->state = PL08X_CHAN_IDLE;
685 }
686
687 /*
688 * LLI handling
689 */
690
691 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
692 {
693 switch (coded) {
694 case PL080_WIDTH_8BIT:
695 return 1;
696 case PL080_WIDTH_16BIT:
697 return 2;
698 case PL080_WIDTH_32BIT:
699 return 4;
700 default:
701 break;
702 }
703 BUG();
704 return 0;
705 }
706
707 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
708 size_t tsize)
709 {
710 u32 retbits = cctl;
711
712 /* Remove all src, dst and transfer size bits */
713 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
714 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
715 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
716
717 /* Then set the bits according to the parameters */
718 switch (srcwidth) {
719 case 1:
720 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
721 break;
722 case 2:
723 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
724 break;
725 case 4:
726 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
727 break;
728 default:
729 BUG();
730 break;
731 }
732
733 switch (dstwidth) {
734 case 1:
735 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
736 break;
737 case 2:
738 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
739 break;
740 case 4:
741 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
742 break;
743 default:
744 BUG();
745 break;
746 }
747
748 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
749 return retbits;
750 }
751
752 struct pl08x_lli_build_data {
753 struct pl08x_txd *txd;
754 struct pl08x_bus_data srcbus;
755 struct pl08x_bus_data dstbus;
756 size_t remainder;
757 u32 lli_bus;
758 };
759
760 /*
761 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
762 * victim in case src & dest are not similarly aligned. i.e. If after aligning
763 * masters address with width requirements of transfer (by sending few byte by
764 * byte data), slave is still not aligned, then its width will be reduced to
765 * BYTE.
766 * - prefers the destination bus if both available
767 * - prefers bus with fixed address (i.e. peripheral)
768 */
769 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
770 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
771 {
772 if (!(cctl & PL080_CONTROL_DST_INCR)) {
773 *mbus = &bd->dstbus;
774 *sbus = &bd->srcbus;
775 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
776 *mbus = &bd->srcbus;
777 *sbus = &bd->dstbus;
778 } else {
779 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
780 *mbus = &bd->dstbus;
781 *sbus = &bd->srcbus;
782 } else {
783 *mbus = &bd->srcbus;
784 *sbus = &bd->dstbus;
785 }
786 }
787 }
788
789 /*
790 * Fills in one LLI for a certain transfer descriptor and advance the counter
791 */
792 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
793 int num_llis, int len, u32 cctl)
794 {
795 struct pl08x_lli *llis_va = bd->txd->llis_va;
796 dma_addr_t llis_bus = bd->txd->llis_bus;
797
798 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
799
800 llis_va[num_llis].cctl = cctl;
801 llis_va[num_llis].src = bd->srcbus.addr;
802 llis_va[num_llis].dst = bd->dstbus.addr;
803 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
804 sizeof(struct pl08x_lli);
805 llis_va[num_llis].lli |= bd->lli_bus;
806
807 if (cctl & PL080_CONTROL_SRC_INCR)
808 bd->srcbus.addr += len;
809 if (cctl & PL080_CONTROL_DST_INCR)
810 bd->dstbus.addr += len;
811
812 BUG_ON(bd->remainder < len);
813
814 bd->remainder -= len;
815 }
816
817 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
818 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
819 {
820 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
821 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
822 (*total_bytes) += len;
823 }
824
825 /*
826 * This fills in the table of LLIs for the transfer descriptor
827 * Note that we assume we never have to change the burst sizes
828 * Return 0 for error
829 */
830 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
831 struct pl08x_txd *txd)
832 {
833 struct pl08x_bus_data *mbus, *sbus;
834 struct pl08x_lli_build_data bd;
835 int num_llis = 0;
836 u32 cctl, early_bytes = 0;
837 size_t max_bytes_per_lli, total_bytes;
838 struct pl08x_lli *llis_va;
839 struct pl08x_sg *dsg;
840
841 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
842 if (!txd->llis_va) {
843 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
844 return 0;
845 }
846
847 pl08x->pool_ctr++;
848
849 bd.txd = txd;
850 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
851 cctl = txd->cctl;
852
853 /* Find maximum width of the source bus */
854 bd.srcbus.maxwidth =
855 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
856 PL080_CONTROL_SWIDTH_SHIFT);
857
858 /* Find maximum width of the destination bus */
859 bd.dstbus.maxwidth =
860 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
861 PL080_CONTROL_DWIDTH_SHIFT);
862
863 list_for_each_entry(dsg, &txd->dsg_list, node) {
864 total_bytes = 0;
865 cctl = txd->cctl;
866
867 bd.srcbus.addr = dsg->src_addr;
868 bd.dstbus.addr = dsg->dst_addr;
869 bd.remainder = dsg->len;
870 bd.srcbus.buswidth = bd.srcbus.maxwidth;
871 bd.dstbus.buswidth = bd.dstbus.maxwidth;
872
873 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
874
875 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
876 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
877 bd.srcbus.buswidth,
878 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
879 bd.dstbus.buswidth,
880 bd.remainder);
881 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
882 mbus == &bd.srcbus ? "src" : "dst",
883 sbus == &bd.srcbus ? "src" : "dst");
884
885 /*
886 * Zero length is only allowed if all these requirements are
887 * met:
888 * - flow controller is peripheral.
889 * - src.addr is aligned to src.width
890 * - dst.addr is aligned to dst.width
891 *
892 * sg_len == 1 should be true, as there can be two cases here:
893 *
894 * - Memory addresses are contiguous and are not scattered.
895 * Here, Only one sg will be passed by user driver, with
896 * memory address and zero length. We pass this to controller
897 * and after the transfer it will receive the last burst
898 * request from peripheral and so transfer finishes.
899 *
900 * - Memory addresses are scattered and are not contiguous.
901 * Here, Obviously as DMA controller doesn't know when a lli's
902 * transfer gets over, it can't load next lli. So in this
903 * case, there has to be an assumption that only one lli is
904 * supported. Thus, we can't have scattered addresses.
905 */
906 if (!bd.remainder) {
907 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
908 PL080_CONFIG_FLOW_CONTROL_SHIFT;
909 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
910 (fc <= PL080_FLOW_SRC2DST_SRC))) {
911 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
912 __func__);
913 return 0;
914 }
915
916 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
917 (bd.dstbus.addr % bd.dstbus.buswidth)) {
918 dev_err(&pl08x->adev->dev,
919 "%s src & dst address must be aligned to src"
920 " & dst width if peripheral is flow controller",
921 __func__);
922 return 0;
923 }
924
925 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
926 bd.dstbus.buswidth, 0);
927 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
928 break;
929 }
930
931 /*
932 * Send byte by byte for following cases
933 * - Less than a bus width available
934 * - until master bus is aligned
935 */
936 if (bd.remainder < mbus->buswidth)
937 early_bytes = bd.remainder;
938 else if ((mbus->addr) % (mbus->buswidth)) {
939 early_bytes = mbus->buswidth - (mbus->addr) %
940 (mbus->buswidth);
941 if ((bd.remainder - early_bytes) < mbus->buswidth)
942 early_bytes = bd.remainder;
943 }
944
945 if (early_bytes) {
946 dev_vdbg(&pl08x->adev->dev,
947 "%s byte width LLIs (remain 0x%08x)\n",
948 __func__, bd.remainder);
949 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
950 &total_bytes);
951 }
952
953 if (bd.remainder) {
954 /*
955 * Master now aligned
956 * - if slave is not then we must set its width down
957 */
958 if (sbus->addr % sbus->buswidth) {
959 dev_dbg(&pl08x->adev->dev,
960 "%s set down bus width to one byte\n",
961 __func__);
962
963 sbus->buswidth = 1;
964 }
965
966 /*
967 * Bytes transferred = tsize * src width, not
968 * MIN(buswidths)
969 */
970 max_bytes_per_lli = bd.srcbus.buswidth *
971 PL080_CONTROL_TRANSFER_SIZE_MASK;
972 dev_vdbg(&pl08x->adev->dev,
973 "%s max bytes per lli = %zu\n",
974 __func__, max_bytes_per_lli);
975
976 /*
977 * Make largest possible LLIs until less than one bus
978 * width left
979 */
980 while (bd.remainder > (mbus->buswidth - 1)) {
981 size_t lli_len, tsize, width;
982
983 /*
984 * If enough left try to send max possible,
985 * otherwise try to send the remainder
986 */
987 lli_len = min(bd.remainder, max_bytes_per_lli);
988
989 /*
990 * Check against maximum bus alignment:
991 * Calculate actual transfer size in relation to
992 * bus width an get a maximum remainder of the
993 * highest bus width - 1
994 */
995 width = max(mbus->buswidth, sbus->buswidth);
996 lli_len = (lli_len / width) * width;
997 tsize = lli_len / bd.srcbus.buswidth;
998
999 dev_vdbg(&pl08x->adev->dev,
1000 "%s fill lli with single lli chunk of "
1001 "size 0x%08zx (remainder 0x%08zx)\n",
1002 __func__, lli_len, bd.remainder);
1003
1004 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1005 bd.dstbus.buswidth, tsize);
1006 pl08x_fill_lli_for_desc(&bd, num_llis++,
1007 lli_len, cctl);
1008 total_bytes += lli_len;
1009 }
1010
1011 /*
1012 * Send any odd bytes
1013 */
1014 if (bd.remainder) {
1015 dev_vdbg(&pl08x->adev->dev,
1016 "%s align with boundary, send odd bytes (remain %zu)\n",
1017 __func__, bd.remainder);
1018 prep_byte_width_lli(&bd, &cctl, bd.remainder,
1019 num_llis++, &total_bytes);
1020 }
1021 }
1022
1023 if (total_bytes != dsg->len) {
1024 dev_err(&pl08x->adev->dev,
1025 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1026 __func__, total_bytes, dsg->len);
1027 return 0;
1028 }
1029
1030 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1031 dev_err(&pl08x->adev->dev,
1032 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1033 __func__, (u32) MAX_NUM_TSFR_LLIS);
1034 return 0;
1035 }
1036 }
1037
1038 llis_va = txd->llis_va;
1039 /* The final LLI terminates the LLI. */
1040 llis_va[num_llis - 1].lli = 0;
1041 /* The final LLI element shall also fire an interrupt. */
1042 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
1043
1044 #ifdef VERBOSE_DEBUG
1045 {
1046 int i;
1047
1048 dev_vdbg(&pl08x->adev->dev,
1049 "%-3s %-9s %-10s %-10s %-10s %s\n",
1050 "lli", "", "csrc", "cdst", "clli", "cctl");
1051 for (i = 0; i < num_llis; i++) {
1052 dev_vdbg(&pl08x->adev->dev,
1053 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1054 i, &llis_va[i], llis_va[i].src,
1055 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
1056 );
1057 }
1058 }
1059 #endif
1060
1061 return num_llis;
1062 }
1063
1064 /* You should call this with the struct pl08x lock held */
1065 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1066 struct pl08x_txd *txd)
1067 {
1068 struct pl08x_sg *dsg, *_dsg;
1069
1070 /* Free the LLI */
1071 if (txd->llis_va)
1072 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1073
1074 pl08x->pool_ctr--;
1075
1076 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1077 list_del(&dsg->node);
1078 kfree(dsg);
1079 }
1080
1081 kfree(txd);
1082 }
1083
1084 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1085 {
1086 struct device *dev = txd->vd.tx.chan->device->dev;
1087 struct pl08x_sg *dsg;
1088
1089 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1090 if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1091 list_for_each_entry(dsg, &txd->dsg_list, node)
1092 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1093 DMA_TO_DEVICE);
1094 else {
1095 list_for_each_entry(dsg, &txd->dsg_list, node)
1096 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1097 DMA_TO_DEVICE);
1098 }
1099 }
1100 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1101 if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1102 list_for_each_entry(dsg, &txd->dsg_list, node)
1103 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1104 DMA_FROM_DEVICE);
1105 else
1106 list_for_each_entry(dsg, &txd->dsg_list, node)
1107 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1108 DMA_FROM_DEVICE);
1109 }
1110 }
1111
1112 static void pl08x_desc_free(struct virt_dma_desc *vd)
1113 {
1114 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
1115 struct pl08x_dma_chan *plchan = to_pl08x_chan(vd->tx.chan);
1116 struct pl08x_driver_data *pl08x = plchan->host;
1117 unsigned long flags;
1118
1119 if (!plchan->slave)
1120 pl08x_unmap_buffers(txd);
1121
1122 if (!txd->done)
1123 pl08x_release_mux(plchan);
1124
1125 spin_lock_irqsave(&pl08x->lock, flags);
1126 pl08x_free_txd(plchan->host, txd);
1127 spin_unlock_irqrestore(&pl08x->lock, flags);
1128 }
1129
1130 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1131 struct pl08x_dma_chan *plchan)
1132 {
1133 LIST_HEAD(head);
1134 struct pl08x_txd *txd;
1135
1136 vchan_get_all_descriptors(&plchan->vc, &head);
1137
1138 while (!list_empty(&head)) {
1139 txd = list_first_entry(&head, struct pl08x_txd, vd.node);
1140 list_del(&txd->vd.node);
1141 pl08x_desc_free(&txd->vd);
1142 }
1143 }
1144
1145 /*
1146 * The DMA ENGINE API
1147 */
1148 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1149 {
1150 return 0;
1151 }
1152
1153 static void pl08x_free_chan_resources(struct dma_chan *chan)
1154 {
1155 }
1156
1157 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1158 struct dma_chan *chan, unsigned long flags)
1159 {
1160 struct dma_async_tx_descriptor *retval = NULL;
1161
1162 return retval;
1163 }
1164
1165 /*
1166 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1167 * If slaves are relying on interrupts to signal completion this function
1168 * must not be called with interrupts disabled.
1169 */
1170 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1171 dma_cookie_t cookie, struct dma_tx_state *txstate)
1172 {
1173 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1174 enum dma_status ret;
1175
1176 ret = dma_cookie_status(chan, cookie, txstate);
1177 if (ret == DMA_SUCCESS)
1178 return ret;
1179
1180 /*
1181 * This cookie not complete yet
1182 * Get number of bytes left in the active transactions and queue
1183 */
1184 dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1185
1186 if (plchan->state == PL08X_CHAN_PAUSED)
1187 return DMA_PAUSED;
1188
1189 /* Whether waiting or running, we're in progress */
1190 return DMA_IN_PROGRESS;
1191 }
1192
1193 /* PrimeCell DMA extension */
1194 struct burst_table {
1195 u32 burstwords;
1196 u32 reg;
1197 };
1198
1199 static const struct burst_table burst_sizes[] = {
1200 {
1201 .burstwords = 256,
1202 .reg = PL080_BSIZE_256,
1203 },
1204 {
1205 .burstwords = 128,
1206 .reg = PL080_BSIZE_128,
1207 },
1208 {
1209 .burstwords = 64,
1210 .reg = PL080_BSIZE_64,
1211 },
1212 {
1213 .burstwords = 32,
1214 .reg = PL080_BSIZE_32,
1215 },
1216 {
1217 .burstwords = 16,
1218 .reg = PL080_BSIZE_16,
1219 },
1220 {
1221 .burstwords = 8,
1222 .reg = PL080_BSIZE_8,
1223 },
1224 {
1225 .burstwords = 4,
1226 .reg = PL080_BSIZE_4,
1227 },
1228 {
1229 .burstwords = 0,
1230 .reg = PL080_BSIZE_1,
1231 },
1232 };
1233
1234 /*
1235 * Given the source and destination available bus masks, select which
1236 * will be routed to each port. We try to have source and destination
1237 * on separate ports, but always respect the allowable settings.
1238 */
1239 static u32 pl08x_select_bus(u8 src, u8 dst)
1240 {
1241 u32 cctl = 0;
1242
1243 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1244 cctl |= PL080_CONTROL_DST_AHB2;
1245 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1246 cctl |= PL080_CONTROL_SRC_AHB2;
1247
1248 return cctl;
1249 }
1250
1251 static u32 pl08x_cctl(u32 cctl)
1252 {
1253 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1254 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1255 PL080_CONTROL_PROT_MASK);
1256
1257 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1258 return cctl | PL080_CONTROL_PROT_SYS;
1259 }
1260
1261 static u32 pl08x_width(enum dma_slave_buswidth width)
1262 {
1263 switch (width) {
1264 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1265 return PL080_WIDTH_8BIT;
1266 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1267 return PL080_WIDTH_16BIT;
1268 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1269 return PL080_WIDTH_32BIT;
1270 default:
1271 return ~0;
1272 }
1273 }
1274
1275 static u32 pl08x_burst(u32 maxburst)
1276 {
1277 int i;
1278
1279 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1280 if (burst_sizes[i].burstwords <= maxburst)
1281 break;
1282
1283 return burst_sizes[i].reg;
1284 }
1285
1286 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1287 enum dma_slave_buswidth addr_width, u32 maxburst)
1288 {
1289 u32 width, burst, cctl = 0;
1290
1291 width = pl08x_width(addr_width);
1292 if (width == ~0)
1293 return ~0;
1294
1295 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1296 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1297
1298 /*
1299 * If this channel will only request single transfers, set this
1300 * down to ONE element. Also select one element if no maxburst
1301 * is specified.
1302 */
1303 if (plchan->cd->single)
1304 maxburst = 1;
1305
1306 burst = pl08x_burst(maxburst);
1307 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1308 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1309
1310 return pl08x_cctl(cctl);
1311 }
1312
1313 static int dma_set_runtime_config(struct dma_chan *chan,
1314 struct dma_slave_config *config)
1315 {
1316 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1317
1318 if (!plchan->slave)
1319 return -EINVAL;
1320
1321 /* Reject definitely invalid configurations */
1322 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1323 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1324 return -EINVAL;
1325
1326 plchan->cfg = *config;
1327
1328 return 0;
1329 }
1330
1331 /*
1332 * Slave transactions callback to the slave device to allow
1333 * synchronization of slave DMA signals with the DMAC enable
1334 */
1335 static void pl08x_issue_pending(struct dma_chan *chan)
1336 {
1337 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1338 unsigned long flags;
1339
1340 spin_lock_irqsave(&plchan->vc.lock, flags);
1341 if (vchan_issue_pending(&plchan->vc)) {
1342 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1343 pl08x_phy_alloc_and_start(plchan);
1344 }
1345 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1346 }
1347
1348 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1349 struct pl08x_txd *txd)
1350 {
1351 struct pl08x_driver_data *pl08x = plchan->host;
1352 int num_llis;
1353
1354 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1355 if (!num_llis) {
1356 unsigned long flags;
1357
1358 spin_lock_irqsave(&plchan->vc.lock, flags);
1359 pl08x_free_txd(pl08x, txd);
1360 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1361
1362 return -EINVAL;
1363 }
1364 return 0;
1365 }
1366
1367 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1368 {
1369 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1370
1371 if (txd) {
1372 INIT_LIST_HEAD(&txd->dsg_list);
1373
1374 /* Always enable error and terminal interrupts */
1375 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1376 PL080_CONFIG_TC_IRQ_MASK;
1377 }
1378 return txd;
1379 }
1380
1381 /*
1382 * Initialize a descriptor to be used by memcpy submit
1383 */
1384 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1385 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1386 size_t len, unsigned long flags)
1387 {
1388 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1389 struct pl08x_driver_data *pl08x = plchan->host;
1390 struct pl08x_txd *txd;
1391 struct pl08x_sg *dsg;
1392 int ret;
1393
1394 txd = pl08x_get_txd(plchan);
1395 if (!txd) {
1396 dev_err(&pl08x->adev->dev,
1397 "%s no memory for descriptor\n", __func__);
1398 return NULL;
1399 }
1400
1401 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1402 if (!dsg) {
1403 pl08x_free_txd(pl08x, txd);
1404 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1405 __func__);
1406 return NULL;
1407 }
1408 list_add_tail(&dsg->node, &txd->dsg_list);
1409
1410 dsg->src_addr = src;
1411 dsg->dst_addr = dest;
1412 dsg->len = len;
1413
1414 /* Set platform data for m2m */
1415 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1416 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1417 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1418
1419 /* Both to be incremented or the code will break */
1420 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1421
1422 if (pl08x->vd->dualmaster)
1423 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1424 pl08x->mem_buses);
1425
1426 ret = pl08x_prep_channel_resources(plchan, txd);
1427 if (ret)
1428 return NULL;
1429
1430 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1431 }
1432
1433 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1434 struct dma_chan *chan, struct scatterlist *sgl,
1435 unsigned int sg_len, enum dma_transfer_direction direction,
1436 unsigned long flags, void *context)
1437 {
1438 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1439 struct pl08x_driver_data *pl08x = plchan->host;
1440 struct pl08x_txd *txd;
1441 struct pl08x_sg *dsg;
1442 struct scatterlist *sg;
1443 enum dma_slave_buswidth addr_width;
1444 dma_addr_t slave_addr;
1445 int ret, tmp;
1446 u8 src_buses, dst_buses;
1447 u32 maxburst, cctl;
1448
1449 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1450 __func__, sg_dma_len(sgl), plchan->name);
1451
1452 txd = pl08x_get_txd(plchan);
1453 if (!txd) {
1454 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1455 return NULL;
1456 }
1457
1458 /*
1459 * Set up addresses, the PrimeCell configured address
1460 * will take precedence since this may configure the
1461 * channel target address dynamically at runtime.
1462 */
1463 if (direction == DMA_MEM_TO_DEV) {
1464 cctl = PL080_CONTROL_SRC_INCR;
1465 slave_addr = plchan->cfg.dst_addr;
1466 addr_width = plchan->cfg.dst_addr_width;
1467 maxburst = plchan->cfg.dst_maxburst;
1468 src_buses = pl08x->mem_buses;
1469 dst_buses = plchan->cd->periph_buses;
1470 } else if (direction == DMA_DEV_TO_MEM) {
1471 cctl = PL080_CONTROL_DST_INCR;
1472 slave_addr = plchan->cfg.src_addr;
1473 addr_width = plchan->cfg.src_addr_width;
1474 maxburst = plchan->cfg.src_maxburst;
1475 src_buses = plchan->cd->periph_buses;
1476 dst_buses = pl08x->mem_buses;
1477 } else {
1478 pl08x_free_txd(pl08x, txd);
1479 dev_err(&pl08x->adev->dev,
1480 "%s direction unsupported\n", __func__);
1481 return NULL;
1482 }
1483
1484 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1485 if (cctl == ~0) {
1486 pl08x_free_txd(pl08x, txd);
1487 dev_err(&pl08x->adev->dev,
1488 "DMA slave configuration botched?\n");
1489 return NULL;
1490 }
1491
1492 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1493
1494 if (plchan->cfg.device_fc)
1495 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1496 PL080_FLOW_PER2MEM_PER;
1497 else
1498 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1499 PL080_FLOW_PER2MEM;
1500
1501 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1502
1503 ret = pl08x_request_mux(plchan);
1504 if (ret < 0) {
1505 pl08x_free_txd(pl08x, txd);
1506 dev_dbg(&pl08x->adev->dev,
1507 "unable to mux for transfer on %s due to platform restrictions\n",
1508 plchan->name);
1509 return NULL;
1510 }
1511
1512 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1513 plchan->signal, plchan->name);
1514
1515 /* Assign the flow control signal to this channel */
1516 if (direction == DMA_MEM_TO_DEV)
1517 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1518 else
1519 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1520
1521 for_each_sg(sgl, sg, sg_len, tmp) {
1522 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1523 if (!dsg) {
1524 pl08x_release_mux(plchan);
1525 pl08x_free_txd(pl08x, txd);
1526 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1527 __func__);
1528 return NULL;
1529 }
1530 list_add_tail(&dsg->node, &txd->dsg_list);
1531
1532 dsg->len = sg_dma_len(sg);
1533 if (direction == DMA_MEM_TO_DEV) {
1534 dsg->src_addr = sg_dma_address(sg);
1535 dsg->dst_addr = slave_addr;
1536 } else {
1537 dsg->src_addr = slave_addr;
1538 dsg->dst_addr = sg_dma_address(sg);
1539 }
1540 }
1541
1542 ret = pl08x_prep_channel_resources(plchan, txd);
1543 if (ret)
1544 return NULL;
1545
1546 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1547 }
1548
1549 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1550 unsigned long arg)
1551 {
1552 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1553 struct pl08x_driver_data *pl08x = plchan->host;
1554 unsigned long flags;
1555 int ret = 0;
1556
1557 /* Controls applicable to inactive channels */
1558 if (cmd == DMA_SLAVE_CONFIG) {
1559 return dma_set_runtime_config(chan,
1560 (struct dma_slave_config *)arg);
1561 }
1562
1563 /*
1564 * Anything succeeds on channels with no physical allocation and
1565 * no queued transfers.
1566 */
1567 spin_lock_irqsave(&plchan->vc.lock, flags);
1568 if (!plchan->phychan && !plchan->at) {
1569 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1570 return 0;
1571 }
1572
1573 switch (cmd) {
1574 case DMA_TERMINATE_ALL:
1575 plchan->state = PL08X_CHAN_IDLE;
1576
1577 if (plchan->phychan) {
1578 /*
1579 * Mark physical channel as free and free any slave
1580 * signal
1581 */
1582 pl08x_phy_free(plchan);
1583 }
1584 /* Dequeue jobs and free LLIs */
1585 if (plchan->at) {
1586 pl08x_desc_free(&plchan->at->vd);
1587 plchan->at = NULL;
1588 }
1589 /* Dequeue jobs not yet fired as well */
1590 pl08x_free_txd_list(pl08x, plchan);
1591 break;
1592 case DMA_PAUSE:
1593 pl08x_pause_phy_chan(plchan->phychan);
1594 plchan->state = PL08X_CHAN_PAUSED;
1595 break;
1596 case DMA_RESUME:
1597 pl08x_resume_phy_chan(plchan->phychan);
1598 plchan->state = PL08X_CHAN_RUNNING;
1599 break;
1600 default:
1601 /* Unknown command */
1602 ret = -ENXIO;
1603 break;
1604 }
1605
1606 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1607
1608 return ret;
1609 }
1610
1611 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1612 {
1613 struct pl08x_dma_chan *plchan;
1614 char *name = chan_id;
1615
1616 /* Reject channels for devices not bound to this driver */
1617 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1618 return false;
1619
1620 plchan = to_pl08x_chan(chan);
1621
1622 /* Check that the channel is not taken! */
1623 if (!strcmp(plchan->name, name))
1624 return true;
1625
1626 return false;
1627 }
1628
1629 /*
1630 * Just check that the device is there and active
1631 * TODO: turn this bit on/off depending on the number of physical channels
1632 * actually used, if it is zero... well shut it off. That will save some
1633 * power. Cut the clock at the same time.
1634 */
1635 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1636 {
1637 /* The Nomadik variant does not have the config register */
1638 if (pl08x->vd->nomadik)
1639 return;
1640 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1641 }
1642
1643 static irqreturn_t pl08x_irq(int irq, void *dev)
1644 {
1645 struct pl08x_driver_data *pl08x = dev;
1646 u32 mask = 0, err, tc, i;
1647
1648 /* check & clear - ERR & TC interrupts */
1649 err = readl(pl08x->base + PL080_ERR_STATUS);
1650 if (err) {
1651 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1652 __func__, err);
1653 writel(err, pl08x->base + PL080_ERR_CLEAR);
1654 }
1655 tc = readl(pl08x->base + PL080_TC_STATUS);
1656 if (tc)
1657 writel(tc, pl08x->base + PL080_TC_CLEAR);
1658
1659 if (!err && !tc)
1660 return IRQ_NONE;
1661
1662 for (i = 0; i < pl08x->vd->channels; i++) {
1663 if (((1 << i) & err) || ((1 << i) & tc)) {
1664 /* Locate physical channel */
1665 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1666 struct pl08x_dma_chan *plchan = phychan->serving;
1667 struct pl08x_txd *tx;
1668
1669 if (!plchan) {
1670 dev_err(&pl08x->adev->dev,
1671 "%s Error TC interrupt on unused channel: 0x%08x\n",
1672 __func__, i);
1673 continue;
1674 }
1675
1676 spin_lock(&plchan->vc.lock);
1677 tx = plchan->at;
1678 if (tx) {
1679 plchan->at = NULL;
1680 /*
1681 * This descriptor is done, release its mux
1682 * reservation.
1683 */
1684 pl08x_release_mux(plchan);
1685 tx->done = true;
1686 vchan_cookie_complete(&tx->vd);
1687
1688 /*
1689 * And start the next descriptor (if any),
1690 * otherwise free this channel.
1691 */
1692 if (vchan_next_desc(&plchan->vc))
1693 pl08x_start_next_txd(plchan);
1694 else
1695 pl08x_phy_free(plchan);
1696 }
1697 spin_unlock(&plchan->vc.lock);
1698
1699 mask |= (1 << i);
1700 }
1701 }
1702
1703 return mask ? IRQ_HANDLED : IRQ_NONE;
1704 }
1705
1706 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1707 {
1708 chan->slave = true;
1709 chan->name = chan->cd->bus_id;
1710 chan->cfg.src_addr = chan->cd->addr;
1711 chan->cfg.dst_addr = chan->cd->addr;
1712 }
1713
1714 /*
1715 * Initialise the DMAC memcpy/slave channels.
1716 * Make a local wrapper to hold required data
1717 */
1718 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1719 struct dma_device *dmadev, unsigned int channels, bool slave)
1720 {
1721 struct pl08x_dma_chan *chan;
1722 int i;
1723
1724 INIT_LIST_HEAD(&dmadev->channels);
1725
1726 /*
1727 * Register as many many memcpy as we have physical channels,
1728 * we won't always be able to use all but the code will have
1729 * to cope with that situation.
1730 */
1731 for (i = 0; i < channels; i++) {
1732 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1733 if (!chan) {
1734 dev_err(&pl08x->adev->dev,
1735 "%s no memory for channel\n", __func__);
1736 return -ENOMEM;
1737 }
1738
1739 chan->host = pl08x;
1740 chan->state = PL08X_CHAN_IDLE;
1741 chan->signal = -1;
1742
1743 if (slave) {
1744 chan->cd = &pl08x->pd->slave_channels[i];
1745 pl08x_dma_slave_init(chan);
1746 } else {
1747 chan->cd = &pl08x->pd->memcpy_channel;
1748 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1749 if (!chan->name) {
1750 kfree(chan);
1751 return -ENOMEM;
1752 }
1753 }
1754 dev_dbg(&pl08x->adev->dev,
1755 "initialize virtual channel \"%s\"\n",
1756 chan->name);
1757
1758 chan->vc.desc_free = pl08x_desc_free;
1759 vchan_init(&chan->vc, dmadev);
1760 }
1761 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1762 i, slave ? "slave" : "memcpy");
1763 return i;
1764 }
1765
1766 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1767 {
1768 struct pl08x_dma_chan *chan = NULL;
1769 struct pl08x_dma_chan *next;
1770
1771 list_for_each_entry_safe(chan,
1772 next, &dmadev->channels, vc.chan.device_node) {
1773 list_del(&chan->vc.chan.device_node);
1774 kfree(chan);
1775 }
1776 }
1777
1778 #ifdef CONFIG_DEBUG_FS
1779 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1780 {
1781 switch (state) {
1782 case PL08X_CHAN_IDLE:
1783 return "idle";
1784 case PL08X_CHAN_RUNNING:
1785 return "running";
1786 case PL08X_CHAN_PAUSED:
1787 return "paused";
1788 case PL08X_CHAN_WAITING:
1789 return "waiting";
1790 default:
1791 break;
1792 }
1793 return "UNKNOWN STATE";
1794 }
1795
1796 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1797 {
1798 struct pl08x_driver_data *pl08x = s->private;
1799 struct pl08x_dma_chan *chan;
1800 struct pl08x_phy_chan *ch;
1801 unsigned long flags;
1802 int i;
1803
1804 seq_printf(s, "PL08x physical channels:\n");
1805 seq_printf(s, "CHANNEL:\tUSER:\n");
1806 seq_printf(s, "--------\t-----\n");
1807 for (i = 0; i < pl08x->vd->channels; i++) {
1808 struct pl08x_dma_chan *virt_chan;
1809
1810 ch = &pl08x->phy_chans[i];
1811
1812 spin_lock_irqsave(&ch->lock, flags);
1813 virt_chan = ch->serving;
1814
1815 seq_printf(s, "%d\t\t%s%s\n",
1816 ch->id,
1817 virt_chan ? virt_chan->name : "(none)",
1818 ch->locked ? " LOCKED" : "");
1819
1820 spin_unlock_irqrestore(&ch->lock, flags);
1821 }
1822
1823 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1824 seq_printf(s, "CHANNEL:\tSTATE:\n");
1825 seq_printf(s, "--------\t------\n");
1826 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1827 seq_printf(s, "%s\t\t%s\n", chan->name,
1828 pl08x_state_str(chan->state));
1829 }
1830
1831 seq_printf(s, "\nPL08x virtual slave channels:\n");
1832 seq_printf(s, "CHANNEL:\tSTATE:\n");
1833 seq_printf(s, "--------\t------\n");
1834 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1835 seq_printf(s, "%s\t\t%s\n", chan->name,
1836 pl08x_state_str(chan->state));
1837 }
1838
1839 return 0;
1840 }
1841
1842 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1843 {
1844 return single_open(file, pl08x_debugfs_show, inode->i_private);
1845 }
1846
1847 static const struct file_operations pl08x_debugfs_operations = {
1848 .open = pl08x_debugfs_open,
1849 .read = seq_read,
1850 .llseek = seq_lseek,
1851 .release = single_release,
1852 };
1853
1854 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1855 {
1856 /* Expose a simple debugfs interface to view all clocks */
1857 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1858 S_IFREG | S_IRUGO, NULL, pl08x,
1859 &pl08x_debugfs_operations);
1860 }
1861
1862 #else
1863 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1864 {
1865 }
1866 #endif
1867
1868 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1869 {
1870 struct pl08x_driver_data *pl08x;
1871 const struct vendor_data *vd = id->data;
1872 int ret = 0;
1873 int i;
1874
1875 ret = amba_request_regions(adev, NULL);
1876 if (ret)
1877 return ret;
1878
1879 /* Create the driver state holder */
1880 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1881 if (!pl08x) {
1882 ret = -ENOMEM;
1883 goto out_no_pl08x;
1884 }
1885
1886 /* Initialize memcpy engine */
1887 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1888 pl08x->memcpy.dev = &adev->dev;
1889 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1890 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1891 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1892 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1893 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1894 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1895 pl08x->memcpy.device_control = pl08x_control;
1896
1897 /* Initialize slave engine */
1898 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1899 pl08x->slave.dev = &adev->dev;
1900 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1901 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1902 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1903 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1904 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1905 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1906 pl08x->slave.device_control = pl08x_control;
1907
1908 /* Get the platform data */
1909 pl08x->pd = dev_get_platdata(&adev->dev);
1910 if (!pl08x->pd) {
1911 dev_err(&adev->dev, "no platform data supplied\n");
1912 goto out_no_platdata;
1913 }
1914
1915 /* Assign useful pointers to the driver state */
1916 pl08x->adev = adev;
1917 pl08x->vd = vd;
1918
1919 /* By default, AHB1 only. If dualmaster, from platform */
1920 pl08x->lli_buses = PL08X_AHB1;
1921 pl08x->mem_buses = PL08X_AHB1;
1922 if (pl08x->vd->dualmaster) {
1923 pl08x->lli_buses = pl08x->pd->lli_buses;
1924 pl08x->mem_buses = pl08x->pd->mem_buses;
1925 }
1926
1927 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1928 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1929 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1930 if (!pl08x->pool) {
1931 ret = -ENOMEM;
1932 goto out_no_lli_pool;
1933 }
1934
1935 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1936 if (!pl08x->base) {
1937 ret = -ENOMEM;
1938 goto out_no_ioremap;
1939 }
1940
1941 /* Turn on the PL08x */
1942 pl08x_ensure_on(pl08x);
1943
1944 /* Attach the interrupt handler */
1945 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1946 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1947
1948 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1949 DRIVER_NAME, pl08x);
1950 if (ret) {
1951 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1952 __func__, adev->irq[0]);
1953 goto out_no_irq;
1954 }
1955
1956 /* Initialize physical channels */
1957 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1958 GFP_KERNEL);
1959 if (!pl08x->phy_chans) {
1960 dev_err(&adev->dev, "%s failed to allocate "
1961 "physical channel holders\n",
1962 __func__);
1963 goto out_no_phychans;
1964 }
1965
1966 for (i = 0; i < vd->channels; i++) {
1967 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1968
1969 ch->id = i;
1970 ch->base = pl08x->base + PL080_Cx_BASE(i);
1971 spin_lock_init(&ch->lock);
1972
1973 /*
1974 * Nomadik variants can have channels that are locked
1975 * down for the secure world only. Lock up these channels
1976 * by perpetually serving a dummy virtual channel.
1977 */
1978 if (vd->nomadik) {
1979 u32 val;
1980
1981 val = readl(ch->base + PL080_CH_CONFIG);
1982 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
1983 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
1984 ch->locked = true;
1985 }
1986 }
1987
1988 dev_dbg(&adev->dev, "physical channel %d is %s\n",
1989 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
1990 }
1991
1992 /* Register as many memcpy channels as there are physical channels */
1993 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
1994 pl08x->vd->channels, false);
1995 if (ret <= 0) {
1996 dev_warn(&pl08x->adev->dev,
1997 "%s failed to enumerate memcpy channels - %d\n",
1998 __func__, ret);
1999 goto out_no_memcpy;
2000 }
2001 pl08x->memcpy.chancnt = ret;
2002
2003 /* Register slave channels */
2004 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2005 pl08x->pd->num_slave_channels, true);
2006 if (ret <= 0) {
2007 dev_warn(&pl08x->adev->dev,
2008 "%s failed to enumerate slave channels - %d\n",
2009 __func__, ret);
2010 goto out_no_slave;
2011 }
2012 pl08x->slave.chancnt = ret;
2013
2014 ret = dma_async_device_register(&pl08x->memcpy);
2015 if (ret) {
2016 dev_warn(&pl08x->adev->dev,
2017 "%s failed to register memcpy as an async device - %d\n",
2018 __func__, ret);
2019 goto out_no_memcpy_reg;
2020 }
2021
2022 ret = dma_async_device_register(&pl08x->slave);
2023 if (ret) {
2024 dev_warn(&pl08x->adev->dev,
2025 "%s failed to register slave as an async device - %d\n",
2026 __func__, ret);
2027 goto out_no_slave_reg;
2028 }
2029
2030 amba_set_drvdata(adev, pl08x);
2031 init_pl08x_debugfs(pl08x);
2032 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2033 amba_part(adev), amba_rev(adev),
2034 (unsigned long long)adev->res.start, adev->irq[0]);
2035
2036 return 0;
2037
2038 out_no_slave_reg:
2039 dma_async_device_unregister(&pl08x->memcpy);
2040 out_no_memcpy_reg:
2041 pl08x_free_virtual_channels(&pl08x->slave);
2042 out_no_slave:
2043 pl08x_free_virtual_channels(&pl08x->memcpy);
2044 out_no_memcpy:
2045 kfree(pl08x->phy_chans);
2046 out_no_phychans:
2047 free_irq(adev->irq[0], pl08x);
2048 out_no_irq:
2049 iounmap(pl08x->base);
2050 out_no_ioremap:
2051 dma_pool_destroy(pl08x->pool);
2052 out_no_lli_pool:
2053 out_no_platdata:
2054 kfree(pl08x);
2055 out_no_pl08x:
2056 amba_release_regions(adev);
2057 return ret;
2058 }
2059
2060 /* PL080 has 8 channels and the PL080 have just 2 */
2061 static struct vendor_data vendor_pl080 = {
2062 .channels = 8,
2063 .dualmaster = true,
2064 };
2065
2066 static struct vendor_data vendor_nomadik = {
2067 .channels = 8,
2068 .dualmaster = true,
2069 .nomadik = true,
2070 };
2071
2072 static struct vendor_data vendor_pl081 = {
2073 .channels = 2,
2074 .dualmaster = false,
2075 };
2076
2077 static struct amba_id pl08x_ids[] = {
2078 /* PL080 */
2079 {
2080 .id = 0x00041080,
2081 .mask = 0x000fffff,
2082 .data = &vendor_pl080,
2083 },
2084 /* PL081 */
2085 {
2086 .id = 0x00041081,
2087 .mask = 0x000fffff,
2088 .data = &vendor_pl081,
2089 },
2090 /* Nomadik 8815 PL080 variant */
2091 {
2092 .id = 0x00280080,
2093 .mask = 0x00ffffff,
2094 .data = &vendor_nomadik,
2095 },
2096 { 0, 0 },
2097 };
2098
2099 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2100
2101 static struct amba_driver pl08x_amba_driver = {
2102 .drv.name = DRIVER_NAME,
2103 .id_table = pl08x_ids,
2104 .probe = pl08x_probe,
2105 };
2106
2107 static int __init pl08x_init(void)
2108 {
2109 int retval;
2110 retval = amba_driver_register(&pl08x_amba_driver);
2111 if (retval)
2112 printk(KERN_WARNING DRIVER_NAME
2113 "failed to register as an AMBA device (%d)\n",
2114 retval);
2115 return retval;
2116 }
2117 subsys_initcall(pl08x_init);
This page took 0.079663 seconds and 6 git commands to generate.