dmaengine: PL08x: split DMA signal muxing from channel alloc
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89
90 #define DRIVER_NAME "pl08xdmac"
91
92 static struct amba_driver pl08x_amba_driver;
93 struct pl08x_driver_data;
94
95 /**
96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97 * @channels: the number of channels available in this variant
98 * @dualmaster: whether this version supports dual AHB masters or not.
99 * @nomadik: whether the channels have Nomadik security extension bits
100 * that need to be checked for permission before use and some registers are
101 * missing
102 */
103 struct vendor_data {
104 u8 channels;
105 bool dualmaster;
106 bool nomadik;
107 };
108
109 /*
110 * PL08X private data structures
111 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
112 * start & end do not - their bus bit info is in cctl. Also note that these
113 * are fixed 32-bit quantities.
114 */
115 struct pl08x_lli {
116 u32 src;
117 u32 dst;
118 u32 lli;
119 u32 cctl;
120 };
121
122 /**
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 */
129 struct pl08x_bus_data {
130 dma_addr_t addr;
131 u8 maxwidth;
132 u8 buswidth;
133 };
134
135 /**
136 * struct pl08x_phy_chan - holder for the physical channels
137 * @id: physical index to this channel
138 * @lock: a lock to use when altering an instance of this struct
139 * @signal: the physical signal (aka channel) serving this physical channel
140 * right now
141 * @serving: the virtual channel currently being served by this physical
142 * channel
143 */
144 struct pl08x_phy_chan {
145 unsigned int id;
146 void __iomem *base;
147 spinlock_t lock;
148 int signal;
149 struct pl08x_dma_chan *serving;
150 };
151
152 /**
153 * struct pl08x_sg - structure containing data per sg
154 * @src_addr: src address of sg
155 * @dst_addr: dst address of sg
156 * @len: transfer len in bytes
157 * @node: node for txd's dsg_list
158 */
159 struct pl08x_sg {
160 dma_addr_t src_addr;
161 dma_addr_t dst_addr;
162 size_t len;
163 struct list_head node;
164 };
165
166 /**
167 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
168 * @tx: async tx descriptor
169 * @node: node for txd list for channels
170 * @dsg_list: list of children sg's
171 * @direction: direction of transfer
172 * @llis_bus: DMA memory address (physical) start for the LLIs
173 * @llis_va: virtual memory address start for the LLIs
174 * @cctl: control reg values for current txd
175 * @ccfg: config reg values for current txd
176 */
177 struct pl08x_txd {
178 struct dma_async_tx_descriptor tx;
179 struct list_head node;
180 struct list_head dsg_list;
181 enum dma_transfer_direction direction;
182 dma_addr_t llis_bus;
183 struct pl08x_lli *llis_va;
184 /* Default cctl value for LLIs */
185 u32 cctl;
186 /*
187 * Settings to be put into the physical channel when we
188 * trigger this txd. Other registers are in llis_va[0].
189 */
190 u32 ccfg;
191 };
192
193 /**
194 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
195 * states
196 * @PL08X_CHAN_IDLE: the channel is idle
197 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
198 * channel and is running a transfer on it
199 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
200 * channel, but the transfer is currently paused
201 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
202 * channel to become available (only pertains to memcpy channels)
203 */
204 enum pl08x_dma_chan_state {
205 PL08X_CHAN_IDLE,
206 PL08X_CHAN_RUNNING,
207 PL08X_CHAN_PAUSED,
208 PL08X_CHAN_WAITING,
209 };
210
211 /**
212 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
213 * @chan: wrappped abstract channel
214 * @phychan: the physical channel utilized by this channel, if there is one
215 * @phychan_hold: if non-zero, hold on to the physical channel even if we
216 * have no pending entries
217 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
218 * @name: name of channel
219 * @cd: channel platform data
220 * @runtime_addr: address for RX/TX according to the runtime config
221 * @pend_list: queued transactions pending on this channel
222 * @at: active transaction on this channel
223 * @lock: a lock for this channel data
224 * @host: a pointer to the host (internal use)
225 * @state: whether the channel is idle, paused, running etc
226 * @slave: whether this channel is a device (slave) or for memcpy
227 * @waiting: a TX descriptor on this channel which is waiting for a physical
228 * channel to become available
229 */
230 struct pl08x_dma_chan {
231 struct dma_chan chan;
232 struct pl08x_phy_chan *phychan;
233 int phychan_hold;
234 struct tasklet_struct tasklet;
235 const char *name;
236 const struct pl08x_channel_data *cd;
237 struct dma_slave_config cfg;
238 struct list_head pend_list;
239 struct pl08x_txd *at;
240 spinlock_t lock;
241 struct pl08x_driver_data *host;
242 enum pl08x_dma_chan_state state;
243 bool slave;
244 struct pl08x_txd *waiting;
245 };
246
247 /**
248 * struct pl08x_driver_data - the local state holder for the PL08x
249 * @slave: slave engine for this instance
250 * @memcpy: memcpy engine for this instance
251 * @base: virtual memory base (remapped) for the PL08x
252 * @adev: the corresponding AMBA (PrimeCell) bus entry
253 * @vd: vendor data for this PL08x variant
254 * @pd: platform data passed in from the platform/machine
255 * @phy_chans: array of data for the physical channels
256 * @pool: a pool for the LLI descriptors
257 * @pool_ctr: counter of LLIs in the pool
258 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
259 * fetches
260 * @mem_buses: set to indicate memory transfers on AHB2.
261 * @lock: a spinlock for this struct
262 */
263 struct pl08x_driver_data {
264 struct dma_device slave;
265 struct dma_device memcpy;
266 void __iomem *base;
267 struct amba_device *adev;
268 const struct vendor_data *vd;
269 struct pl08x_platform_data *pd;
270 struct pl08x_phy_chan *phy_chans;
271 struct dma_pool *pool;
272 int pool_ctr;
273 u8 lli_buses;
274 u8 mem_buses;
275 };
276
277 /*
278 * PL08X specific defines
279 */
280
281 /* Size (bytes) of each LLI buffer allocated for one transfer */
282 # define PL08X_LLI_TSFR_SIZE 0x2000
283
284 /* Maximum times we call dma_pool_alloc on this pool without freeing */
285 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
286 #define PL08X_ALIGN 8
287
288 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
289 {
290 return container_of(chan, struct pl08x_dma_chan, chan);
291 }
292
293 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
294 {
295 return container_of(tx, struct pl08x_txd, tx);
296 }
297
298 /*
299 * Mux handling.
300 *
301 * This gives us the DMA request input to the PL08x primecell which the
302 * peripheral described by the channel data will be routed to, possibly
303 * via a board/SoC specific external MUX. One important point to note
304 * here is that this does not depend on the physical channel.
305 */
306 static int pl08x_request_mux(struct pl08x_dma_chan *plchan, struct pl08x_phy_chan *ch)
307 {
308 const struct pl08x_platform_data *pd = plchan->host->pd;
309 int ret;
310
311 if (pd->get_signal) {
312 ret = pd->get_signal(plchan->cd);
313 if (ret < 0)
314 return ret;
315
316 ch->signal = ret;
317 }
318 return 0;
319 }
320
321 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
322 {
323 const struct pl08x_platform_data *pd = plchan->host->pd;
324
325 if (plchan->phychan->signal >= 0 && pd->put_signal) {
326 pd->put_signal(plchan->cd, plchan->phychan->signal);
327 plchan->phychan->signal = -1;
328 }
329 }
330
331 /*
332 * Physical channel handling
333 */
334
335 /* Whether a certain channel is busy or not */
336 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
337 {
338 unsigned int val;
339
340 val = readl(ch->base + PL080_CH_CONFIG);
341 return val & PL080_CONFIG_ACTIVE;
342 }
343
344 /*
345 * Set the initial DMA register values i.e. those for the first LLI
346 * The next LLI pointer and the configuration interrupt bit have
347 * been set when the LLIs were constructed. Poke them into the hardware
348 * and start the transfer.
349 */
350 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
351 struct pl08x_txd *txd)
352 {
353 struct pl08x_driver_data *pl08x = plchan->host;
354 struct pl08x_phy_chan *phychan = plchan->phychan;
355 struct pl08x_lli *lli = &txd->llis_va[0];
356 u32 val;
357
358 plchan->at = txd;
359
360 /* Wait for channel inactive */
361 while (pl08x_phy_channel_busy(phychan))
362 cpu_relax();
363
364 dev_vdbg(&pl08x->adev->dev,
365 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
366 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
367 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
368 txd->ccfg);
369
370 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
371 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
372 writel(lli->lli, phychan->base + PL080_CH_LLI);
373 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
374 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
375
376 /* Enable the DMA channel */
377 /* Do not access config register until channel shows as disabled */
378 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
379 cpu_relax();
380
381 /* Do not access config register until channel shows as inactive */
382 val = readl(phychan->base + PL080_CH_CONFIG);
383 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
384 val = readl(phychan->base + PL080_CH_CONFIG);
385
386 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
387 }
388
389 /*
390 * Pause the channel by setting the HALT bit.
391 *
392 * For M->P transfers, pause the DMAC first and then stop the peripheral -
393 * the FIFO can only drain if the peripheral is still requesting data.
394 * (note: this can still timeout if the DMAC FIFO never drains of data.)
395 *
396 * For P->M transfers, disable the peripheral first to stop it filling
397 * the DMAC FIFO, and then pause the DMAC.
398 */
399 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
400 {
401 u32 val;
402 int timeout;
403
404 /* Set the HALT bit and wait for the FIFO to drain */
405 val = readl(ch->base + PL080_CH_CONFIG);
406 val |= PL080_CONFIG_HALT;
407 writel(val, ch->base + PL080_CH_CONFIG);
408
409 /* Wait for channel inactive */
410 for (timeout = 1000; timeout; timeout--) {
411 if (!pl08x_phy_channel_busy(ch))
412 break;
413 udelay(1);
414 }
415 if (pl08x_phy_channel_busy(ch))
416 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
417 }
418
419 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
420 {
421 u32 val;
422
423 /* Clear the HALT bit */
424 val = readl(ch->base + PL080_CH_CONFIG);
425 val &= ~PL080_CONFIG_HALT;
426 writel(val, ch->base + PL080_CH_CONFIG);
427 }
428
429 /*
430 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
431 * clears any pending interrupt status. This should not be used for
432 * an on-going transfer, but as a method of shutting down a channel
433 * (eg, when it's no longer used) or terminating a transfer.
434 */
435 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
436 struct pl08x_phy_chan *ch)
437 {
438 u32 val = readl(ch->base + PL080_CH_CONFIG);
439
440 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
441 PL080_CONFIG_TC_IRQ_MASK);
442
443 writel(val, ch->base + PL080_CH_CONFIG);
444
445 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
446 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
447 }
448
449 static inline u32 get_bytes_in_cctl(u32 cctl)
450 {
451 /* The source width defines the number of bytes */
452 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
453
454 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
455 case PL080_WIDTH_8BIT:
456 break;
457 case PL080_WIDTH_16BIT:
458 bytes *= 2;
459 break;
460 case PL080_WIDTH_32BIT:
461 bytes *= 4;
462 break;
463 }
464 return bytes;
465 }
466
467 /* The channel should be paused when calling this */
468 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
469 {
470 struct pl08x_phy_chan *ch;
471 struct pl08x_txd *txd;
472 unsigned long flags;
473 size_t bytes = 0;
474
475 spin_lock_irqsave(&plchan->lock, flags);
476 ch = plchan->phychan;
477 txd = plchan->at;
478
479 /*
480 * Follow the LLIs to get the number of remaining
481 * bytes in the currently active transaction.
482 */
483 if (ch && txd) {
484 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
485
486 /* First get the remaining bytes in the active transfer */
487 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
488
489 if (clli) {
490 struct pl08x_lli *llis_va = txd->llis_va;
491 dma_addr_t llis_bus = txd->llis_bus;
492 int index;
493
494 BUG_ON(clli < llis_bus || clli >= llis_bus +
495 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
496
497 /*
498 * Locate the next LLI - as this is an array,
499 * it's simple maths to find.
500 */
501 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
502
503 for (; index < MAX_NUM_TSFR_LLIS; index++) {
504 bytes += get_bytes_in_cctl(llis_va[index].cctl);
505
506 /*
507 * A LLI pointer of 0 terminates the LLI list
508 */
509 if (!llis_va[index].lli)
510 break;
511 }
512 }
513 }
514
515 /* Sum up all queued transactions */
516 if (!list_empty(&plchan->pend_list)) {
517 struct pl08x_txd *txdi;
518 list_for_each_entry(txdi, &plchan->pend_list, node) {
519 struct pl08x_sg *dsg;
520 list_for_each_entry(dsg, &txd->dsg_list, node)
521 bytes += dsg->len;
522 }
523 }
524
525 spin_unlock_irqrestore(&plchan->lock, flags);
526
527 return bytes;
528 }
529
530 /*
531 * Allocate a physical channel for a virtual channel
532 *
533 * Try to locate a physical channel to be used for this transfer. If all
534 * are taken return NULL and the requester will have to cope by using
535 * some fallback PIO mode or retrying later.
536 */
537 static struct pl08x_phy_chan *
538 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
539 struct pl08x_dma_chan *virt_chan)
540 {
541 struct pl08x_phy_chan *ch = NULL;
542 unsigned long flags;
543 int i;
544
545 for (i = 0; i < pl08x->vd->channels; i++) {
546 ch = &pl08x->phy_chans[i];
547
548 spin_lock_irqsave(&ch->lock, flags);
549
550 if (!ch->locked && !ch->serving) {
551 ch->serving = virt_chan;
552 ch->signal = -1;
553 spin_unlock_irqrestore(&ch->lock, flags);
554 break;
555 }
556
557 spin_unlock_irqrestore(&ch->lock, flags);
558 }
559
560 if (i == pl08x->vd->channels) {
561 /* No physical channel available, cope with it */
562 return NULL;
563 }
564
565 return ch;
566 }
567
568 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
569 struct pl08x_phy_chan *ch)
570 {
571 unsigned long flags;
572
573 spin_lock_irqsave(&ch->lock, flags);
574
575 /* Stop the channel and clear its interrupts */
576 pl08x_terminate_phy_chan(pl08x, ch);
577
578 /* Mark it as free */
579 ch->serving = NULL;
580 spin_unlock_irqrestore(&ch->lock, flags);
581 }
582
583 /*
584 * LLI handling
585 */
586
587 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
588 {
589 switch (coded) {
590 case PL080_WIDTH_8BIT:
591 return 1;
592 case PL080_WIDTH_16BIT:
593 return 2;
594 case PL080_WIDTH_32BIT:
595 return 4;
596 default:
597 break;
598 }
599 BUG();
600 return 0;
601 }
602
603 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
604 size_t tsize)
605 {
606 u32 retbits = cctl;
607
608 /* Remove all src, dst and transfer size bits */
609 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
610 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
611 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
612
613 /* Then set the bits according to the parameters */
614 switch (srcwidth) {
615 case 1:
616 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
617 break;
618 case 2:
619 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
620 break;
621 case 4:
622 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
623 break;
624 default:
625 BUG();
626 break;
627 }
628
629 switch (dstwidth) {
630 case 1:
631 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
632 break;
633 case 2:
634 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
635 break;
636 case 4:
637 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
638 break;
639 default:
640 BUG();
641 break;
642 }
643
644 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
645 return retbits;
646 }
647
648 struct pl08x_lli_build_data {
649 struct pl08x_txd *txd;
650 struct pl08x_bus_data srcbus;
651 struct pl08x_bus_data dstbus;
652 size_t remainder;
653 u32 lli_bus;
654 };
655
656 /*
657 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
658 * victim in case src & dest are not similarly aligned. i.e. If after aligning
659 * masters address with width requirements of transfer (by sending few byte by
660 * byte data), slave is still not aligned, then its width will be reduced to
661 * BYTE.
662 * - prefers the destination bus if both available
663 * - prefers bus with fixed address (i.e. peripheral)
664 */
665 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
666 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
667 {
668 if (!(cctl & PL080_CONTROL_DST_INCR)) {
669 *mbus = &bd->dstbus;
670 *sbus = &bd->srcbus;
671 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
672 *mbus = &bd->srcbus;
673 *sbus = &bd->dstbus;
674 } else {
675 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
676 *mbus = &bd->dstbus;
677 *sbus = &bd->srcbus;
678 } else {
679 *mbus = &bd->srcbus;
680 *sbus = &bd->dstbus;
681 }
682 }
683 }
684
685 /*
686 * Fills in one LLI for a certain transfer descriptor and advance the counter
687 */
688 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
689 int num_llis, int len, u32 cctl)
690 {
691 struct pl08x_lli *llis_va = bd->txd->llis_va;
692 dma_addr_t llis_bus = bd->txd->llis_bus;
693
694 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
695
696 llis_va[num_llis].cctl = cctl;
697 llis_va[num_llis].src = bd->srcbus.addr;
698 llis_va[num_llis].dst = bd->dstbus.addr;
699 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
700 sizeof(struct pl08x_lli);
701 llis_va[num_llis].lli |= bd->lli_bus;
702
703 if (cctl & PL080_CONTROL_SRC_INCR)
704 bd->srcbus.addr += len;
705 if (cctl & PL080_CONTROL_DST_INCR)
706 bd->dstbus.addr += len;
707
708 BUG_ON(bd->remainder < len);
709
710 bd->remainder -= len;
711 }
712
713 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
714 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
715 {
716 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
717 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
718 (*total_bytes) += len;
719 }
720
721 /*
722 * This fills in the table of LLIs for the transfer descriptor
723 * Note that we assume we never have to change the burst sizes
724 * Return 0 for error
725 */
726 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
727 struct pl08x_txd *txd)
728 {
729 struct pl08x_bus_data *mbus, *sbus;
730 struct pl08x_lli_build_data bd;
731 int num_llis = 0;
732 u32 cctl, early_bytes = 0;
733 size_t max_bytes_per_lli, total_bytes;
734 struct pl08x_lli *llis_va;
735 struct pl08x_sg *dsg;
736
737 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
738 if (!txd->llis_va) {
739 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
740 return 0;
741 }
742
743 pl08x->pool_ctr++;
744
745 bd.txd = txd;
746 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
747 cctl = txd->cctl;
748
749 /* Find maximum width of the source bus */
750 bd.srcbus.maxwidth =
751 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
752 PL080_CONTROL_SWIDTH_SHIFT);
753
754 /* Find maximum width of the destination bus */
755 bd.dstbus.maxwidth =
756 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
757 PL080_CONTROL_DWIDTH_SHIFT);
758
759 list_for_each_entry(dsg, &txd->dsg_list, node) {
760 total_bytes = 0;
761 cctl = txd->cctl;
762
763 bd.srcbus.addr = dsg->src_addr;
764 bd.dstbus.addr = dsg->dst_addr;
765 bd.remainder = dsg->len;
766 bd.srcbus.buswidth = bd.srcbus.maxwidth;
767 bd.dstbus.buswidth = bd.dstbus.maxwidth;
768
769 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
770
771 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
772 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
773 bd.srcbus.buswidth,
774 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
775 bd.dstbus.buswidth,
776 bd.remainder);
777 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
778 mbus == &bd.srcbus ? "src" : "dst",
779 sbus == &bd.srcbus ? "src" : "dst");
780
781 /*
782 * Zero length is only allowed if all these requirements are
783 * met:
784 * - flow controller is peripheral.
785 * - src.addr is aligned to src.width
786 * - dst.addr is aligned to dst.width
787 *
788 * sg_len == 1 should be true, as there can be two cases here:
789 *
790 * - Memory addresses are contiguous and are not scattered.
791 * Here, Only one sg will be passed by user driver, with
792 * memory address and zero length. We pass this to controller
793 * and after the transfer it will receive the last burst
794 * request from peripheral and so transfer finishes.
795 *
796 * - Memory addresses are scattered and are not contiguous.
797 * Here, Obviously as DMA controller doesn't know when a lli's
798 * transfer gets over, it can't load next lli. So in this
799 * case, there has to be an assumption that only one lli is
800 * supported. Thus, we can't have scattered addresses.
801 */
802 if (!bd.remainder) {
803 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
804 PL080_CONFIG_FLOW_CONTROL_SHIFT;
805 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
806 (fc <= PL080_FLOW_SRC2DST_SRC))) {
807 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
808 __func__);
809 return 0;
810 }
811
812 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
813 (bd.dstbus.addr % bd.dstbus.buswidth)) {
814 dev_err(&pl08x->adev->dev,
815 "%s src & dst address must be aligned to src"
816 " & dst width if peripheral is flow controller",
817 __func__);
818 return 0;
819 }
820
821 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
822 bd.dstbus.buswidth, 0);
823 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
824 break;
825 }
826
827 /*
828 * Send byte by byte for following cases
829 * - Less than a bus width available
830 * - until master bus is aligned
831 */
832 if (bd.remainder < mbus->buswidth)
833 early_bytes = bd.remainder;
834 else if ((mbus->addr) % (mbus->buswidth)) {
835 early_bytes = mbus->buswidth - (mbus->addr) %
836 (mbus->buswidth);
837 if ((bd.remainder - early_bytes) < mbus->buswidth)
838 early_bytes = bd.remainder;
839 }
840
841 if (early_bytes) {
842 dev_vdbg(&pl08x->adev->dev,
843 "%s byte width LLIs (remain 0x%08x)\n",
844 __func__, bd.remainder);
845 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
846 &total_bytes);
847 }
848
849 if (bd.remainder) {
850 /*
851 * Master now aligned
852 * - if slave is not then we must set its width down
853 */
854 if (sbus->addr % sbus->buswidth) {
855 dev_dbg(&pl08x->adev->dev,
856 "%s set down bus width to one byte\n",
857 __func__);
858
859 sbus->buswidth = 1;
860 }
861
862 /*
863 * Bytes transferred = tsize * src width, not
864 * MIN(buswidths)
865 */
866 max_bytes_per_lli = bd.srcbus.buswidth *
867 PL080_CONTROL_TRANSFER_SIZE_MASK;
868 dev_vdbg(&pl08x->adev->dev,
869 "%s max bytes per lli = %zu\n",
870 __func__, max_bytes_per_lli);
871
872 /*
873 * Make largest possible LLIs until less than one bus
874 * width left
875 */
876 while (bd.remainder > (mbus->buswidth - 1)) {
877 size_t lli_len, tsize, width;
878
879 /*
880 * If enough left try to send max possible,
881 * otherwise try to send the remainder
882 */
883 lli_len = min(bd.remainder, max_bytes_per_lli);
884
885 /*
886 * Check against maximum bus alignment:
887 * Calculate actual transfer size in relation to
888 * bus width an get a maximum remainder of the
889 * highest bus width - 1
890 */
891 width = max(mbus->buswidth, sbus->buswidth);
892 lli_len = (lli_len / width) * width;
893 tsize = lli_len / bd.srcbus.buswidth;
894
895 dev_vdbg(&pl08x->adev->dev,
896 "%s fill lli with single lli chunk of "
897 "size 0x%08zx (remainder 0x%08zx)\n",
898 __func__, lli_len, bd.remainder);
899
900 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
901 bd.dstbus.buswidth, tsize);
902 pl08x_fill_lli_for_desc(&bd, num_llis++,
903 lli_len, cctl);
904 total_bytes += lli_len;
905 }
906
907 /*
908 * Send any odd bytes
909 */
910 if (bd.remainder) {
911 dev_vdbg(&pl08x->adev->dev,
912 "%s align with boundary, send odd bytes (remain %zu)\n",
913 __func__, bd.remainder);
914 prep_byte_width_lli(&bd, &cctl, bd.remainder,
915 num_llis++, &total_bytes);
916 }
917 }
918
919 if (total_bytes != dsg->len) {
920 dev_err(&pl08x->adev->dev,
921 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
922 __func__, total_bytes, dsg->len);
923 return 0;
924 }
925
926 if (num_llis >= MAX_NUM_TSFR_LLIS) {
927 dev_err(&pl08x->adev->dev,
928 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
929 __func__, (u32) MAX_NUM_TSFR_LLIS);
930 return 0;
931 }
932 }
933
934 llis_va = txd->llis_va;
935 /* The final LLI terminates the LLI. */
936 llis_va[num_llis - 1].lli = 0;
937 /* The final LLI element shall also fire an interrupt. */
938 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
939
940 #ifdef VERBOSE_DEBUG
941 {
942 int i;
943
944 dev_vdbg(&pl08x->adev->dev,
945 "%-3s %-9s %-10s %-10s %-10s %s\n",
946 "lli", "", "csrc", "cdst", "clli", "cctl");
947 for (i = 0; i < num_llis; i++) {
948 dev_vdbg(&pl08x->adev->dev,
949 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
950 i, &llis_va[i], llis_va[i].src,
951 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
952 );
953 }
954 }
955 #endif
956
957 return num_llis;
958 }
959
960 /* You should call this with the struct pl08x lock held */
961 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
962 struct pl08x_txd *txd)
963 {
964 struct pl08x_sg *dsg, *_dsg;
965
966 /* Free the LLI */
967 if (txd->llis_va)
968 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
969
970 pl08x->pool_ctr--;
971
972 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
973 list_del(&dsg->node);
974 kfree(dsg);
975 }
976
977 kfree(txd);
978 }
979
980 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
981 struct pl08x_dma_chan *plchan)
982 {
983 struct pl08x_txd *txdi = NULL;
984 struct pl08x_txd *next;
985
986 if (!list_empty(&plchan->pend_list)) {
987 list_for_each_entry_safe(txdi,
988 next, &plchan->pend_list, node) {
989 list_del(&txdi->node);
990 pl08x_free_txd(pl08x, txdi);
991 }
992 }
993 }
994
995 /*
996 * The DMA ENGINE API
997 */
998 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
999 {
1000 return 0;
1001 }
1002
1003 static void pl08x_free_chan_resources(struct dma_chan *chan)
1004 {
1005 }
1006
1007 /*
1008 * This should be called with the channel plchan->lock held
1009 */
1010 static int prep_phy_channel(struct pl08x_dma_chan *plchan,
1011 struct pl08x_txd *txd)
1012 {
1013 struct pl08x_driver_data *pl08x = plchan->host;
1014 struct pl08x_phy_chan *ch;
1015 int ret;
1016
1017 /* Check if we already have a channel */
1018 if (plchan->phychan) {
1019 ch = plchan->phychan;
1020 goto got_channel;
1021 }
1022
1023 ch = pl08x_get_phy_channel(pl08x, plchan);
1024 if (!ch) {
1025 /* No physical channel available, cope with it */
1026 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
1027 return -EBUSY;
1028 }
1029
1030 /*
1031 * OK we have a physical channel: for memcpy() this is all we
1032 * need, but for slaves the physical signals may be muxed!
1033 * Can the platform allow us to use this channel?
1034 */
1035 if (plchan->slave) {
1036 ret = pl08x_request_mux(plchan, ch);
1037 if (ret < 0) {
1038 dev_dbg(&pl08x->adev->dev,
1039 "unable to use physical channel %d for transfer on %s due to platform restrictions\n",
1040 ch->id, plchan->name);
1041 /* Release physical channel & return */
1042 pl08x_put_phy_channel(pl08x, ch);
1043 return -EBUSY;
1044 }
1045 }
1046
1047 plchan->phychan = ch;
1048 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d and signal %d for xfer on %s\n",
1049 ch->id,
1050 ch->signal,
1051 plchan->name);
1052
1053 got_channel:
1054 /* Assign the flow control signal to this channel */
1055 if (txd->direction == DMA_MEM_TO_DEV)
1056 txd->ccfg |= ch->signal << PL080_CONFIG_DST_SEL_SHIFT;
1057 else if (txd->direction == DMA_DEV_TO_MEM)
1058 txd->ccfg |= ch->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1059
1060 plchan->phychan_hold++;
1061
1062 return 0;
1063 }
1064
1065 static void release_phy_channel(struct pl08x_dma_chan *plchan)
1066 {
1067 struct pl08x_driver_data *pl08x = plchan->host;
1068
1069 pl08x_release_mux(plchan);
1070 pl08x_put_phy_channel(pl08x, plchan->phychan);
1071 plchan->phychan = NULL;
1072 }
1073
1074 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1075 {
1076 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1077 struct pl08x_txd *txd = to_pl08x_txd(tx);
1078 unsigned long flags;
1079 dma_cookie_t cookie;
1080
1081 spin_lock_irqsave(&plchan->lock, flags);
1082 cookie = dma_cookie_assign(tx);
1083
1084 /* Put this onto the pending list */
1085 list_add_tail(&txd->node, &plchan->pend_list);
1086
1087 /*
1088 * If there was no physical channel available for this memcpy,
1089 * stack the request up and indicate that the channel is waiting
1090 * for a free physical channel.
1091 */
1092 if (!plchan->slave && !plchan->phychan) {
1093 /* Do this memcpy whenever there is a channel ready */
1094 plchan->state = PL08X_CHAN_WAITING;
1095 plchan->waiting = txd;
1096 } else {
1097 plchan->phychan_hold--;
1098 }
1099
1100 spin_unlock_irqrestore(&plchan->lock, flags);
1101
1102 return cookie;
1103 }
1104
1105 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1106 struct dma_chan *chan, unsigned long flags)
1107 {
1108 struct dma_async_tx_descriptor *retval = NULL;
1109
1110 return retval;
1111 }
1112
1113 /*
1114 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1115 * If slaves are relying on interrupts to signal completion this function
1116 * must not be called with interrupts disabled.
1117 */
1118 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1119 dma_cookie_t cookie, struct dma_tx_state *txstate)
1120 {
1121 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1122 enum dma_status ret;
1123
1124 ret = dma_cookie_status(chan, cookie, txstate);
1125 if (ret == DMA_SUCCESS)
1126 return ret;
1127
1128 /*
1129 * This cookie not complete yet
1130 * Get number of bytes left in the active transactions and queue
1131 */
1132 dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1133
1134 if (plchan->state == PL08X_CHAN_PAUSED)
1135 return DMA_PAUSED;
1136
1137 /* Whether waiting or running, we're in progress */
1138 return DMA_IN_PROGRESS;
1139 }
1140
1141 /* PrimeCell DMA extension */
1142 struct burst_table {
1143 u32 burstwords;
1144 u32 reg;
1145 };
1146
1147 static const struct burst_table burst_sizes[] = {
1148 {
1149 .burstwords = 256,
1150 .reg = PL080_BSIZE_256,
1151 },
1152 {
1153 .burstwords = 128,
1154 .reg = PL080_BSIZE_128,
1155 },
1156 {
1157 .burstwords = 64,
1158 .reg = PL080_BSIZE_64,
1159 },
1160 {
1161 .burstwords = 32,
1162 .reg = PL080_BSIZE_32,
1163 },
1164 {
1165 .burstwords = 16,
1166 .reg = PL080_BSIZE_16,
1167 },
1168 {
1169 .burstwords = 8,
1170 .reg = PL080_BSIZE_8,
1171 },
1172 {
1173 .burstwords = 4,
1174 .reg = PL080_BSIZE_4,
1175 },
1176 {
1177 .burstwords = 0,
1178 .reg = PL080_BSIZE_1,
1179 },
1180 };
1181
1182 /*
1183 * Given the source and destination available bus masks, select which
1184 * will be routed to each port. We try to have source and destination
1185 * on separate ports, but always respect the allowable settings.
1186 */
1187 static u32 pl08x_select_bus(u8 src, u8 dst)
1188 {
1189 u32 cctl = 0;
1190
1191 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1192 cctl |= PL080_CONTROL_DST_AHB2;
1193 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1194 cctl |= PL080_CONTROL_SRC_AHB2;
1195
1196 return cctl;
1197 }
1198
1199 static u32 pl08x_cctl(u32 cctl)
1200 {
1201 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1202 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1203 PL080_CONTROL_PROT_MASK);
1204
1205 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1206 return cctl | PL080_CONTROL_PROT_SYS;
1207 }
1208
1209 static u32 pl08x_width(enum dma_slave_buswidth width)
1210 {
1211 switch (width) {
1212 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1213 return PL080_WIDTH_8BIT;
1214 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1215 return PL080_WIDTH_16BIT;
1216 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1217 return PL080_WIDTH_32BIT;
1218 default:
1219 return ~0;
1220 }
1221 }
1222
1223 static u32 pl08x_burst(u32 maxburst)
1224 {
1225 int i;
1226
1227 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1228 if (burst_sizes[i].burstwords <= maxburst)
1229 break;
1230
1231 return burst_sizes[i].reg;
1232 }
1233
1234 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1235 enum dma_slave_buswidth addr_width, u32 maxburst)
1236 {
1237 u32 width, burst, cctl = 0;
1238
1239 width = pl08x_width(addr_width);
1240 if (width == ~0)
1241 return ~0;
1242
1243 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1244 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1245
1246 /*
1247 * If this channel will only request single transfers, set this
1248 * down to ONE element. Also select one element if no maxburst
1249 * is specified.
1250 */
1251 if (plchan->cd->single)
1252 maxburst = 1;
1253
1254 burst = pl08x_burst(maxburst);
1255 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1256 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1257
1258 return pl08x_cctl(cctl);
1259 }
1260
1261 static int dma_set_runtime_config(struct dma_chan *chan,
1262 struct dma_slave_config *config)
1263 {
1264 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1265
1266 if (!plchan->slave)
1267 return -EINVAL;
1268
1269 /* Reject definitely invalid configurations */
1270 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1271 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1272 return -EINVAL;
1273
1274 plchan->cfg = *config;
1275
1276 return 0;
1277 }
1278
1279 /*
1280 * Slave transactions callback to the slave device to allow
1281 * synchronization of slave DMA signals with the DMAC enable
1282 */
1283 static void pl08x_issue_pending(struct dma_chan *chan)
1284 {
1285 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1286 unsigned long flags;
1287
1288 spin_lock_irqsave(&plchan->lock, flags);
1289 /* Something is already active, or we're waiting for a channel... */
1290 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1291 spin_unlock_irqrestore(&plchan->lock, flags);
1292 return;
1293 }
1294
1295 /* Take the first element in the queue and execute it */
1296 if (!list_empty(&plchan->pend_list)) {
1297 struct pl08x_txd *next;
1298
1299 next = list_first_entry(&plchan->pend_list,
1300 struct pl08x_txd,
1301 node);
1302 list_del(&next->node);
1303 plchan->state = PL08X_CHAN_RUNNING;
1304
1305 pl08x_start_txd(plchan, next);
1306 }
1307
1308 spin_unlock_irqrestore(&plchan->lock, flags);
1309 }
1310
1311 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1312 struct pl08x_txd *txd)
1313 {
1314 struct pl08x_driver_data *pl08x = plchan->host;
1315 unsigned long flags;
1316 int num_llis, ret;
1317
1318 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1319 if (!num_llis) {
1320 spin_lock_irqsave(&plchan->lock, flags);
1321 pl08x_free_txd(pl08x, txd);
1322 spin_unlock_irqrestore(&plchan->lock, flags);
1323 return -EINVAL;
1324 }
1325
1326 spin_lock_irqsave(&plchan->lock, flags);
1327
1328 /*
1329 * See if we already have a physical channel allocated,
1330 * else this is the time to try to get one.
1331 */
1332 ret = prep_phy_channel(plchan, txd);
1333 if (ret) {
1334 /*
1335 * No physical channel was available.
1336 *
1337 * memcpy transfers can be sorted out at submission time.
1338 *
1339 * Slave transfers may have been denied due to platform
1340 * channel muxing restrictions. Since there is no guarantee
1341 * that this will ever be resolved, and the signal must be
1342 * acquired AFTER acquiring the physical channel, we will let
1343 * them be NACK:ed with -EBUSY here. The drivers can retry
1344 * the prep() call if they are eager on doing this using DMA.
1345 */
1346 if (plchan->slave) {
1347 pl08x_free_txd_list(pl08x, plchan);
1348 pl08x_free_txd(pl08x, txd);
1349 spin_unlock_irqrestore(&plchan->lock, flags);
1350 return -EBUSY;
1351 }
1352 } else
1353 /*
1354 * Else we're all set, paused and ready to roll, status
1355 * will switch to PL08X_CHAN_RUNNING when we call
1356 * issue_pending(). If there is something running on the
1357 * channel already we don't change its state.
1358 */
1359 if (plchan->state == PL08X_CHAN_IDLE)
1360 plchan->state = PL08X_CHAN_PAUSED;
1361
1362 spin_unlock_irqrestore(&plchan->lock, flags);
1363
1364 return 0;
1365 }
1366
1367 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1368 unsigned long flags)
1369 {
1370 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1371
1372 if (txd) {
1373 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1374 txd->tx.flags = flags;
1375 txd->tx.tx_submit = pl08x_tx_submit;
1376 INIT_LIST_HEAD(&txd->node);
1377 INIT_LIST_HEAD(&txd->dsg_list);
1378
1379 /* Always enable error and terminal interrupts */
1380 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1381 PL080_CONFIG_TC_IRQ_MASK;
1382 }
1383 return txd;
1384 }
1385
1386 /*
1387 * Initialize a descriptor to be used by memcpy submit
1388 */
1389 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1390 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1391 size_t len, unsigned long flags)
1392 {
1393 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1394 struct pl08x_driver_data *pl08x = plchan->host;
1395 struct pl08x_txd *txd;
1396 struct pl08x_sg *dsg;
1397 int ret;
1398
1399 txd = pl08x_get_txd(plchan, flags);
1400 if (!txd) {
1401 dev_err(&pl08x->adev->dev,
1402 "%s no memory for descriptor\n", __func__);
1403 return NULL;
1404 }
1405
1406 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1407 if (!dsg) {
1408 pl08x_free_txd(pl08x, txd);
1409 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1410 __func__);
1411 return NULL;
1412 }
1413 list_add_tail(&dsg->node, &txd->dsg_list);
1414
1415 txd->direction = DMA_MEM_TO_MEM;
1416 dsg->src_addr = src;
1417 dsg->dst_addr = dest;
1418 dsg->len = len;
1419
1420 /* Set platform data for m2m */
1421 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1422 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1423 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1424
1425 /* Both to be incremented or the code will break */
1426 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1427
1428 if (pl08x->vd->dualmaster)
1429 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1430 pl08x->mem_buses);
1431
1432 ret = pl08x_prep_channel_resources(plchan, txd);
1433 if (ret)
1434 return NULL;
1435
1436 return &txd->tx;
1437 }
1438
1439 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1440 struct dma_chan *chan, struct scatterlist *sgl,
1441 unsigned int sg_len, enum dma_transfer_direction direction,
1442 unsigned long flags, void *context)
1443 {
1444 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1445 struct pl08x_driver_data *pl08x = plchan->host;
1446 struct pl08x_txd *txd;
1447 struct pl08x_sg *dsg;
1448 struct scatterlist *sg;
1449 enum dma_slave_buswidth addr_width;
1450 dma_addr_t slave_addr;
1451 int ret, tmp;
1452 u8 src_buses, dst_buses;
1453 u32 maxburst, cctl;
1454
1455 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1456 __func__, sg_dma_len(sgl), plchan->name);
1457
1458 txd = pl08x_get_txd(plchan, flags);
1459 if (!txd) {
1460 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1461 return NULL;
1462 }
1463
1464 /*
1465 * Set up addresses, the PrimeCell configured address
1466 * will take precedence since this may configure the
1467 * channel target address dynamically at runtime.
1468 */
1469 txd->direction = direction;
1470
1471 if (direction == DMA_MEM_TO_DEV) {
1472 cctl = PL080_CONTROL_SRC_INCR;
1473 slave_addr = plchan->cfg.dst_addr;
1474 addr_width = plchan->cfg.dst_addr_width;
1475 maxburst = plchan->cfg.dst_maxburst;
1476 src_buses = pl08x->mem_buses;
1477 dst_buses = plchan->cd->periph_buses;
1478 } else if (direction == DMA_DEV_TO_MEM) {
1479 cctl = PL080_CONTROL_DST_INCR;
1480 slave_addr = plchan->cfg.src_addr;
1481 addr_width = plchan->cfg.src_addr_width;
1482 maxburst = plchan->cfg.src_maxburst;
1483 src_buses = plchan->cd->periph_buses;
1484 dst_buses = pl08x->mem_buses;
1485 } else {
1486 pl08x_free_txd(pl08x, txd);
1487 dev_err(&pl08x->adev->dev,
1488 "%s direction unsupported\n", __func__);
1489 return NULL;
1490 }
1491
1492 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1493 if (cctl == ~0) {
1494 pl08x_free_txd(pl08x, txd);
1495 dev_err(&pl08x->adev->dev,
1496 "DMA slave configuration botched?\n");
1497 return NULL;
1498 }
1499
1500 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1501
1502 if (plchan->cfg.device_fc)
1503 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1504 PL080_FLOW_PER2MEM_PER;
1505 else
1506 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1507 PL080_FLOW_PER2MEM;
1508
1509 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1510
1511 for_each_sg(sgl, sg, sg_len, tmp) {
1512 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1513 if (!dsg) {
1514 pl08x_free_txd(pl08x, txd);
1515 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1516 __func__);
1517 return NULL;
1518 }
1519 list_add_tail(&dsg->node, &txd->dsg_list);
1520
1521 dsg->len = sg_dma_len(sg);
1522 if (direction == DMA_MEM_TO_DEV) {
1523 dsg->src_addr = sg_dma_address(sg);
1524 dsg->dst_addr = slave_addr;
1525 } else {
1526 dsg->src_addr = slave_addr;
1527 dsg->dst_addr = sg_dma_address(sg);
1528 }
1529 }
1530
1531 ret = pl08x_prep_channel_resources(plchan, txd);
1532 if (ret)
1533 return NULL;
1534
1535 return &txd->tx;
1536 }
1537
1538 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1539 unsigned long arg)
1540 {
1541 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1542 struct pl08x_driver_data *pl08x = plchan->host;
1543 unsigned long flags;
1544 int ret = 0;
1545
1546 /* Controls applicable to inactive channels */
1547 if (cmd == DMA_SLAVE_CONFIG) {
1548 return dma_set_runtime_config(chan,
1549 (struct dma_slave_config *)arg);
1550 }
1551
1552 /*
1553 * Anything succeeds on channels with no physical allocation and
1554 * no queued transfers.
1555 */
1556 spin_lock_irqsave(&plchan->lock, flags);
1557 if (!plchan->phychan && !plchan->at) {
1558 spin_unlock_irqrestore(&plchan->lock, flags);
1559 return 0;
1560 }
1561
1562 switch (cmd) {
1563 case DMA_TERMINATE_ALL:
1564 plchan->state = PL08X_CHAN_IDLE;
1565
1566 if (plchan->phychan) {
1567 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1568
1569 /*
1570 * Mark physical channel as free and free any slave
1571 * signal
1572 */
1573 release_phy_channel(plchan);
1574 plchan->phychan_hold = 0;
1575 }
1576 /* Dequeue jobs and free LLIs */
1577 if (plchan->at) {
1578 pl08x_free_txd(pl08x, plchan->at);
1579 plchan->at = NULL;
1580 }
1581 /* Dequeue jobs not yet fired as well */
1582 pl08x_free_txd_list(pl08x, plchan);
1583 break;
1584 case DMA_PAUSE:
1585 pl08x_pause_phy_chan(plchan->phychan);
1586 plchan->state = PL08X_CHAN_PAUSED;
1587 break;
1588 case DMA_RESUME:
1589 pl08x_resume_phy_chan(plchan->phychan);
1590 plchan->state = PL08X_CHAN_RUNNING;
1591 break;
1592 default:
1593 /* Unknown command */
1594 ret = -ENXIO;
1595 break;
1596 }
1597
1598 spin_unlock_irqrestore(&plchan->lock, flags);
1599
1600 return ret;
1601 }
1602
1603 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1604 {
1605 struct pl08x_dma_chan *plchan;
1606 char *name = chan_id;
1607
1608 /* Reject channels for devices not bound to this driver */
1609 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1610 return false;
1611
1612 plchan = to_pl08x_chan(chan);
1613
1614 /* Check that the channel is not taken! */
1615 if (!strcmp(plchan->name, name))
1616 return true;
1617
1618 return false;
1619 }
1620
1621 /*
1622 * Just check that the device is there and active
1623 * TODO: turn this bit on/off depending on the number of physical channels
1624 * actually used, if it is zero... well shut it off. That will save some
1625 * power. Cut the clock at the same time.
1626 */
1627 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1628 {
1629 /* The Nomadik variant does not have the config register */
1630 if (pl08x->vd->nomadik)
1631 return;
1632 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1633 }
1634
1635 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1636 {
1637 struct device *dev = txd->tx.chan->device->dev;
1638 struct pl08x_sg *dsg;
1639
1640 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1641 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1642 list_for_each_entry(dsg, &txd->dsg_list, node)
1643 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1644 DMA_TO_DEVICE);
1645 else {
1646 list_for_each_entry(dsg, &txd->dsg_list, node)
1647 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1648 DMA_TO_DEVICE);
1649 }
1650 }
1651 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1652 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1653 list_for_each_entry(dsg, &txd->dsg_list, node)
1654 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1655 DMA_FROM_DEVICE);
1656 else
1657 list_for_each_entry(dsg, &txd->dsg_list, node)
1658 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1659 DMA_FROM_DEVICE);
1660 }
1661 }
1662
1663 static void pl08x_tasklet(unsigned long data)
1664 {
1665 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1666 struct pl08x_driver_data *pl08x = plchan->host;
1667 struct pl08x_txd *txd;
1668 unsigned long flags;
1669
1670 spin_lock_irqsave(&plchan->lock, flags);
1671
1672 txd = plchan->at;
1673 plchan->at = NULL;
1674
1675 if (txd) {
1676 /* Update last completed */
1677 dma_cookie_complete(&txd->tx);
1678 }
1679
1680 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1681 if (!list_empty(&plchan->pend_list)) {
1682 struct pl08x_txd *next;
1683
1684 next = list_first_entry(&plchan->pend_list,
1685 struct pl08x_txd,
1686 node);
1687 list_del(&next->node);
1688
1689 pl08x_start_txd(plchan, next);
1690 } else if (plchan->phychan_hold) {
1691 /*
1692 * This channel is still in use - we have a new txd being
1693 * prepared and will soon be queued. Don't give up the
1694 * physical channel.
1695 */
1696 } else {
1697 struct pl08x_dma_chan *waiting = NULL;
1698
1699 /*
1700 * No more jobs, so free up the physical channel
1701 * Free any allocated signal on slave transfers too
1702 */
1703 release_phy_channel(plchan);
1704 plchan->state = PL08X_CHAN_IDLE;
1705
1706 /*
1707 * And NOW before anyone else can grab that free:d up
1708 * physical channel, see if there is some memcpy pending
1709 * that seriously needs to start because of being stacked
1710 * up while we were choking the physical channels with data.
1711 */
1712 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1713 chan.device_node) {
1714 if (waiting->state == PL08X_CHAN_WAITING &&
1715 waiting->waiting != NULL) {
1716 int ret;
1717
1718 /* This should REALLY not fail now */
1719 ret = prep_phy_channel(waiting,
1720 waiting->waiting);
1721 BUG_ON(ret);
1722 waiting->phychan_hold--;
1723 waiting->state = PL08X_CHAN_RUNNING;
1724 waiting->waiting = NULL;
1725 pl08x_issue_pending(&waiting->chan);
1726 break;
1727 }
1728 }
1729 }
1730
1731 spin_unlock_irqrestore(&plchan->lock, flags);
1732
1733 if (txd) {
1734 dma_async_tx_callback callback = txd->tx.callback;
1735 void *callback_param = txd->tx.callback_param;
1736
1737 /* Don't try to unmap buffers on slave channels */
1738 if (!plchan->slave)
1739 pl08x_unmap_buffers(txd);
1740
1741 /* Free the descriptor */
1742 spin_lock_irqsave(&plchan->lock, flags);
1743 pl08x_free_txd(pl08x, txd);
1744 spin_unlock_irqrestore(&plchan->lock, flags);
1745
1746 /* Callback to signal completion */
1747 if (callback)
1748 callback(callback_param);
1749 }
1750 }
1751
1752 static irqreturn_t pl08x_irq(int irq, void *dev)
1753 {
1754 struct pl08x_driver_data *pl08x = dev;
1755 u32 mask = 0, err, tc, i;
1756
1757 /* check & clear - ERR & TC interrupts */
1758 err = readl(pl08x->base + PL080_ERR_STATUS);
1759 if (err) {
1760 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1761 __func__, err);
1762 writel(err, pl08x->base + PL080_ERR_CLEAR);
1763 }
1764 tc = readl(pl08x->base + PL080_TC_STATUS);
1765 if (tc)
1766 writel(tc, pl08x->base + PL080_TC_CLEAR);
1767
1768 if (!err && !tc)
1769 return IRQ_NONE;
1770
1771 for (i = 0; i < pl08x->vd->channels; i++) {
1772 if (((1 << i) & err) || ((1 << i) & tc)) {
1773 /* Locate physical channel */
1774 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1775 struct pl08x_dma_chan *plchan = phychan->serving;
1776
1777 if (!plchan) {
1778 dev_err(&pl08x->adev->dev,
1779 "%s Error TC interrupt on unused channel: 0x%08x\n",
1780 __func__, i);
1781 continue;
1782 }
1783
1784 /* Schedule tasklet on this channel */
1785 tasklet_schedule(&plchan->tasklet);
1786 mask |= (1 << i);
1787 }
1788 }
1789
1790 return mask ? IRQ_HANDLED : IRQ_NONE;
1791 }
1792
1793 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1794 {
1795 chan->slave = true;
1796 chan->name = chan->cd->bus_id;
1797 chan->cfg.src_addr = chan->cd->addr;
1798 chan->cfg.dst_addr = chan->cd->addr;
1799 }
1800
1801 /*
1802 * Initialise the DMAC memcpy/slave channels.
1803 * Make a local wrapper to hold required data
1804 */
1805 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1806 struct dma_device *dmadev, unsigned int channels, bool slave)
1807 {
1808 struct pl08x_dma_chan *chan;
1809 int i;
1810
1811 INIT_LIST_HEAD(&dmadev->channels);
1812
1813 /*
1814 * Register as many many memcpy as we have physical channels,
1815 * we won't always be able to use all but the code will have
1816 * to cope with that situation.
1817 */
1818 for (i = 0; i < channels; i++) {
1819 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1820 if (!chan) {
1821 dev_err(&pl08x->adev->dev,
1822 "%s no memory for channel\n", __func__);
1823 return -ENOMEM;
1824 }
1825
1826 chan->host = pl08x;
1827 chan->state = PL08X_CHAN_IDLE;
1828
1829 if (slave) {
1830 chan->cd = &pl08x->pd->slave_channels[i];
1831 pl08x_dma_slave_init(chan);
1832 } else {
1833 chan->cd = &pl08x->pd->memcpy_channel;
1834 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1835 if (!chan->name) {
1836 kfree(chan);
1837 return -ENOMEM;
1838 }
1839 }
1840 dev_dbg(&pl08x->adev->dev,
1841 "initialize virtual channel \"%s\"\n",
1842 chan->name);
1843
1844 chan->chan.device = dmadev;
1845 dma_cookie_init(&chan->chan);
1846
1847 spin_lock_init(&chan->lock);
1848 INIT_LIST_HEAD(&chan->pend_list);
1849 tasklet_init(&chan->tasklet, pl08x_tasklet,
1850 (unsigned long) chan);
1851
1852 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1853 }
1854 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1855 i, slave ? "slave" : "memcpy");
1856 return i;
1857 }
1858
1859 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1860 {
1861 struct pl08x_dma_chan *chan = NULL;
1862 struct pl08x_dma_chan *next;
1863
1864 list_for_each_entry_safe(chan,
1865 next, &dmadev->channels, chan.device_node) {
1866 list_del(&chan->chan.device_node);
1867 kfree(chan);
1868 }
1869 }
1870
1871 #ifdef CONFIG_DEBUG_FS
1872 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1873 {
1874 switch (state) {
1875 case PL08X_CHAN_IDLE:
1876 return "idle";
1877 case PL08X_CHAN_RUNNING:
1878 return "running";
1879 case PL08X_CHAN_PAUSED:
1880 return "paused";
1881 case PL08X_CHAN_WAITING:
1882 return "waiting";
1883 default:
1884 break;
1885 }
1886 return "UNKNOWN STATE";
1887 }
1888
1889 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1890 {
1891 struct pl08x_driver_data *pl08x = s->private;
1892 struct pl08x_dma_chan *chan;
1893 struct pl08x_phy_chan *ch;
1894 unsigned long flags;
1895 int i;
1896
1897 seq_printf(s, "PL08x physical channels:\n");
1898 seq_printf(s, "CHANNEL:\tUSER:\n");
1899 seq_printf(s, "--------\t-----\n");
1900 for (i = 0; i < pl08x->vd->channels; i++) {
1901 struct pl08x_dma_chan *virt_chan;
1902
1903 ch = &pl08x->phy_chans[i];
1904
1905 spin_lock_irqsave(&ch->lock, flags);
1906 virt_chan = ch->serving;
1907
1908 seq_printf(s, "%d\t\t%s%s\n",
1909 ch->id,
1910 virt_chan ? virt_chan->name : "(none)",
1911 ch->locked ? " LOCKED" : "");
1912
1913 spin_unlock_irqrestore(&ch->lock, flags);
1914 }
1915
1916 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1917 seq_printf(s, "CHANNEL:\tSTATE:\n");
1918 seq_printf(s, "--------\t------\n");
1919 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1920 seq_printf(s, "%s\t\t%s\n", chan->name,
1921 pl08x_state_str(chan->state));
1922 }
1923
1924 seq_printf(s, "\nPL08x virtual slave channels:\n");
1925 seq_printf(s, "CHANNEL:\tSTATE:\n");
1926 seq_printf(s, "--------\t------\n");
1927 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1928 seq_printf(s, "%s\t\t%s\n", chan->name,
1929 pl08x_state_str(chan->state));
1930 }
1931
1932 return 0;
1933 }
1934
1935 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1936 {
1937 return single_open(file, pl08x_debugfs_show, inode->i_private);
1938 }
1939
1940 static const struct file_operations pl08x_debugfs_operations = {
1941 .open = pl08x_debugfs_open,
1942 .read = seq_read,
1943 .llseek = seq_lseek,
1944 .release = single_release,
1945 };
1946
1947 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1948 {
1949 /* Expose a simple debugfs interface to view all clocks */
1950 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1951 S_IFREG | S_IRUGO, NULL, pl08x,
1952 &pl08x_debugfs_operations);
1953 }
1954
1955 #else
1956 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1957 {
1958 }
1959 #endif
1960
1961 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1962 {
1963 struct pl08x_driver_data *pl08x;
1964 const struct vendor_data *vd = id->data;
1965 int ret = 0;
1966 int i;
1967
1968 ret = amba_request_regions(adev, NULL);
1969 if (ret)
1970 return ret;
1971
1972 /* Create the driver state holder */
1973 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1974 if (!pl08x) {
1975 ret = -ENOMEM;
1976 goto out_no_pl08x;
1977 }
1978
1979 /* Initialize memcpy engine */
1980 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1981 pl08x->memcpy.dev = &adev->dev;
1982 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1983 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1984 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1985 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1986 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1987 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1988 pl08x->memcpy.device_control = pl08x_control;
1989
1990 /* Initialize slave engine */
1991 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1992 pl08x->slave.dev = &adev->dev;
1993 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1994 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1995 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1996 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1997 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1998 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1999 pl08x->slave.device_control = pl08x_control;
2000
2001 /* Get the platform data */
2002 pl08x->pd = dev_get_platdata(&adev->dev);
2003 if (!pl08x->pd) {
2004 dev_err(&adev->dev, "no platform data supplied\n");
2005 goto out_no_platdata;
2006 }
2007
2008 /* Assign useful pointers to the driver state */
2009 pl08x->adev = adev;
2010 pl08x->vd = vd;
2011
2012 /* By default, AHB1 only. If dualmaster, from platform */
2013 pl08x->lli_buses = PL08X_AHB1;
2014 pl08x->mem_buses = PL08X_AHB1;
2015 if (pl08x->vd->dualmaster) {
2016 pl08x->lli_buses = pl08x->pd->lli_buses;
2017 pl08x->mem_buses = pl08x->pd->mem_buses;
2018 }
2019
2020 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2021 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2022 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
2023 if (!pl08x->pool) {
2024 ret = -ENOMEM;
2025 goto out_no_lli_pool;
2026 }
2027
2028 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2029 if (!pl08x->base) {
2030 ret = -ENOMEM;
2031 goto out_no_ioremap;
2032 }
2033
2034 /* Turn on the PL08x */
2035 pl08x_ensure_on(pl08x);
2036
2037 /* Attach the interrupt handler */
2038 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2039 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2040
2041 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2042 DRIVER_NAME, pl08x);
2043 if (ret) {
2044 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2045 __func__, adev->irq[0]);
2046 goto out_no_irq;
2047 }
2048
2049 /* Initialize physical channels */
2050 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2051 GFP_KERNEL);
2052 if (!pl08x->phy_chans) {
2053 dev_err(&adev->dev, "%s failed to allocate "
2054 "physical channel holders\n",
2055 __func__);
2056 goto out_no_phychans;
2057 }
2058
2059 for (i = 0; i < vd->channels; i++) {
2060 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2061
2062 ch->id = i;
2063 ch->base = pl08x->base + PL080_Cx_BASE(i);
2064 spin_lock_init(&ch->lock);
2065 ch->signal = -1;
2066
2067 /*
2068 * Nomadik variants can have channels that are locked
2069 * down for the secure world only. Lock up these channels
2070 * by perpetually serving a dummy virtual channel.
2071 */
2072 if (vd->nomadik) {
2073 u32 val;
2074
2075 val = readl(ch->base + PL080_CH_CONFIG);
2076 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2077 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2078 ch->locked = true;
2079 }
2080 }
2081
2082 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2083 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2084 }
2085
2086 /* Register as many memcpy channels as there are physical channels */
2087 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2088 pl08x->vd->channels, false);
2089 if (ret <= 0) {
2090 dev_warn(&pl08x->adev->dev,
2091 "%s failed to enumerate memcpy channels - %d\n",
2092 __func__, ret);
2093 goto out_no_memcpy;
2094 }
2095 pl08x->memcpy.chancnt = ret;
2096
2097 /* Register slave channels */
2098 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2099 pl08x->pd->num_slave_channels, true);
2100 if (ret <= 0) {
2101 dev_warn(&pl08x->adev->dev,
2102 "%s failed to enumerate slave channels - %d\n",
2103 __func__, ret);
2104 goto out_no_slave;
2105 }
2106 pl08x->slave.chancnt = ret;
2107
2108 ret = dma_async_device_register(&pl08x->memcpy);
2109 if (ret) {
2110 dev_warn(&pl08x->adev->dev,
2111 "%s failed to register memcpy as an async device - %d\n",
2112 __func__, ret);
2113 goto out_no_memcpy_reg;
2114 }
2115
2116 ret = dma_async_device_register(&pl08x->slave);
2117 if (ret) {
2118 dev_warn(&pl08x->adev->dev,
2119 "%s failed to register slave as an async device - %d\n",
2120 __func__, ret);
2121 goto out_no_slave_reg;
2122 }
2123
2124 amba_set_drvdata(adev, pl08x);
2125 init_pl08x_debugfs(pl08x);
2126 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2127 amba_part(adev), amba_rev(adev),
2128 (unsigned long long)adev->res.start, adev->irq[0]);
2129
2130 return 0;
2131
2132 out_no_slave_reg:
2133 dma_async_device_unregister(&pl08x->memcpy);
2134 out_no_memcpy_reg:
2135 pl08x_free_virtual_channels(&pl08x->slave);
2136 out_no_slave:
2137 pl08x_free_virtual_channels(&pl08x->memcpy);
2138 out_no_memcpy:
2139 kfree(pl08x->phy_chans);
2140 out_no_phychans:
2141 free_irq(adev->irq[0], pl08x);
2142 out_no_irq:
2143 iounmap(pl08x->base);
2144 out_no_ioremap:
2145 dma_pool_destroy(pl08x->pool);
2146 out_no_lli_pool:
2147 out_no_platdata:
2148 kfree(pl08x);
2149 out_no_pl08x:
2150 amba_release_regions(adev);
2151 return ret;
2152 }
2153
2154 /* PL080 has 8 channels and the PL080 have just 2 */
2155 static struct vendor_data vendor_pl080 = {
2156 .channels = 8,
2157 .dualmaster = true,
2158 };
2159
2160 static struct vendor_data vendor_nomadik = {
2161 .channels = 8,
2162 .dualmaster = true,
2163 .nomadik = true,
2164 };
2165
2166 static struct vendor_data vendor_pl081 = {
2167 .channels = 2,
2168 .dualmaster = false,
2169 };
2170
2171 static struct amba_id pl08x_ids[] = {
2172 /* PL080 */
2173 {
2174 .id = 0x00041080,
2175 .mask = 0x000fffff,
2176 .data = &vendor_pl080,
2177 },
2178 /* PL081 */
2179 {
2180 .id = 0x00041081,
2181 .mask = 0x000fffff,
2182 .data = &vendor_pl081,
2183 },
2184 /* Nomadik 8815 PL080 variant */
2185 {
2186 .id = 0x00280080,
2187 .mask = 0x00ffffff,
2188 .data = &vendor_nomadik,
2189 },
2190 { 0, 0 },
2191 };
2192
2193 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2194
2195 static struct amba_driver pl08x_amba_driver = {
2196 .drv.name = DRIVER_NAME,
2197 .id_table = pl08x_ids,
2198 .probe = pl08x_probe,
2199 };
2200
2201 static int __init pl08x_init(void)
2202 {
2203 int retval;
2204 retval = amba_driver_register(&pl08x_amba_driver);
2205 if (retval)
2206 printk(KERN_WARNING DRIVER_NAME
2207 "failed to register as an AMBA device (%d)\n",
2208 retval);
2209 return retval;
2210 }
2211 subsys_initcall(pl08x_init);
This page took 0.1008 seconds and 6 git commands to generate.