dmaengine: PL08x: convert to use vchan submitted/issued lists
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89 #include "virt-dma.h"
90
91 #define DRIVER_NAME "pl08xdmac"
92
93 static struct amba_driver pl08x_amba_driver;
94 struct pl08x_driver_data;
95
96 /**
97 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
98 * @channels: the number of channels available in this variant
99 * @dualmaster: whether this version supports dual AHB masters or not.
100 * @nomadik: whether the channels have Nomadik security extension bits
101 * that need to be checked for permission before use and some registers are
102 * missing
103 */
104 struct vendor_data {
105 u8 channels;
106 bool dualmaster;
107 bool nomadik;
108 };
109
110 /*
111 * PL08X private data structures
112 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
113 * start & end do not - their bus bit info is in cctl. Also note that these
114 * are fixed 32-bit quantities.
115 */
116 struct pl08x_lli {
117 u32 src;
118 u32 dst;
119 u32 lli;
120 u32 cctl;
121 };
122
123 /**
124 * struct pl08x_bus_data - information of source or destination
125 * busses for a transfer
126 * @addr: current address
127 * @maxwidth: the maximum width of a transfer on this bus
128 * @buswidth: the width of this bus in bytes: 1, 2 or 4
129 */
130 struct pl08x_bus_data {
131 dma_addr_t addr;
132 u8 maxwidth;
133 u8 buswidth;
134 };
135
136 /**
137 * struct pl08x_phy_chan - holder for the physical channels
138 * @id: physical index to this channel
139 * @lock: a lock to use when altering an instance of this struct
140 * @serving: the virtual channel currently being served by this physical
141 * channel
142 * @locked: channel unavailable for the system, e.g. dedicated to secure
143 * world
144 */
145 struct pl08x_phy_chan {
146 unsigned int id;
147 void __iomem *base;
148 spinlock_t lock;
149 struct pl08x_dma_chan *serving;
150 bool locked;
151 };
152
153 /**
154 * struct pl08x_sg - structure containing data per sg
155 * @src_addr: src address of sg
156 * @dst_addr: dst address of sg
157 * @len: transfer len in bytes
158 * @node: node for txd's dsg_list
159 */
160 struct pl08x_sg {
161 dma_addr_t src_addr;
162 dma_addr_t dst_addr;
163 size_t len;
164 struct list_head node;
165 };
166
167 /**
168 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
169 * @vd: virtual DMA descriptor
170 * @node: node for txd list for channels
171 * @dsg_list: list of children sg's
172 * @llis_bus: DMA memory address (physical) start for the LLIs
173 * @llis_va: virtual memory address start for the LLIs
174 * @cctl: control reg values for current txd
175 * @ccfg: config reg values for current txd
176 */
177 struct pl08x_txd {
178 struct virt_dma_desc vd;
179 struct list_head node;
180 struct list_head dsg_list;
181 dma_addr_t llis_bus;
182 struct pl08x_lli *llis_va;
183 /* Default cctl value for LLIs */
184 u32 cctl;
185 /*
186 * Settings to be put into the physical channel when we
187 * trigger this txd. Other registers are in llis_va[0].
188 */
189 u32 ccfg;
190 };
191
192 /**
193 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
194 * states
195 * @PL08X_CHAN_IDLE: the channel is idle
196 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
197 * channel and is running a transfer on it
198 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
199 * channel, but the transfer is currently paused
200 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
201 * channel to become available (only pertains to memcpy channels)
202 */
203 enum pl08x_dma_chan_state {
204 PL08X_CHAN_IDLE,
205 PL08X_CHAN_RUNNING,
206 PL08X_CHAN_PAUSED,
207 PL08X_CHAN_WAITING,
208 };
209
210 /**
211 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
212 * @vc: wrappped virtual channel
213 * @phychan: the physical channel utilized by this channel, if there is one
214 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
215 * @name: name of channel
216 * @cd: channel platform data
217 * @runtime_addr: address for RX/TX according to the runtime config
218 * @done_list: list of completed transactions
219 * @at: active transaction on this channel
220 * @lock: a lock for this channel data
221 * @host: a pointer to the host (internal use)
222 * @state: whether the channel is idle, paused, running etc
223 * @slave: whether this channel is a device (slave) or for memcpy
224 * @signal: the physical DMA request signal which this channel is using
225 * @mux_use: count of descriptors using this DMA request signal setting
226 */
227 struct pl08x_dma_chan {
228 struct virt_dma_chan vc;
229 struct pl08x_phy_chan *phychan;
230 struct tasklet_struct tasklet;
231 const char *name;
232 const struct pl08x_channel_data *cd;
233 struct dma_slave_config cfg;
234 struct list_head done_list;
235 struct pl08x_txd *at;
236 struct pl08x_driver_data *host;
237 enum pl08x_dma_chan_state state;
238 bool slave;
239 int signal;
240 unsigned mux_use;
241 };
242
243 /**
244 * struct pl08x_driver_data - the local state holder for the PL08x
245 * @slave: slave engine for this instance
246 * @memcpy: memcpy engine for this instance
247 * @base: virtual memory base (remapped) for the PL08x
248 * @adev: the corresponding AMBA (PrimeCell) bus entry
249 * @vd: vendor data for this PL08x variant
250 * @pd: platform data passed in from the platform/machine
251 * @phy_chans: array of data for the physical channels
252 * @pool: a pool for the LLI descriptors
253 * @pool_ctr: counter of LLIs in the pool
254 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
255 * fetches
256 * @mem_buses: set to indicate memory transfers on AHB2.
257 * @lock: a spinlock for this struct
258 */
259 struct pl08x_driver_data {
260 struct dma_device slave;
261 struct dma_device memcpy;
262 void __iomem *base;
263 struct amba_device *adev;
264 const struct vendor_data *vd;
265 struct pl08x_platform_data *pd;
266 struct pl08x_phy_chan *phy_chans;
267 struct dma_pool *pool;
268 int pool_ctr;
269 u8 lli_buses;
270 u8 mem_buses;
271 };
272
273 /*
274 * PL08X specific defines
275 */
276
277 /* Size (bytes) of each LLI buffer allocated for one transfer */
278 # define PL08X_LLI_TSFR_SIZE 0x2000
279
280 /* Maximum times we call dma_pool_alloc on this pool without freeing */
281 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
282 #define PL08X_ALIGN 8
283
284 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
285 {
286 return container_of(chan, struct pl08x_dma_chan, vc.chan);
287 }
288
289 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
290 {
291 return container_of(tx, struct pl08x_txd, vd.tx);
292 }
293
294 /*
295 * Mux handling.
296 *
297 * This gives us the DMA request input to the PL08x primecell which the
298 * peripheral described by the channel data will be routed to, possibly
299 * via a board/SoC specific external MUX. One important point to note
300 * here is that this does not depend on the physical channel.
301 */
302 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
303 {
304 const struct pl08x_platform_data *pd = plchan->host->pd;
305 int ret;
306
307 if (plchan->mux_use++ == 0 && pd->get_signal) {
308 ret = pd->get_signal(plchan->cd);
309 if (ret < 0) {
310 plchan->mux_use = 0;
311 return ret;
312 }
313
314 plchan->signal = ret;
315 }
316 return 0;
317 }
318
319 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
320 {
321 const struct pl08x_platform_data *pd = plchan->host->pd;
322
323 if (plchan->signal >= 0) {
324 WARN_ON(plchan->mux_use == 0);
325
326 if (--plchan->mux_use == 0 && pd->put_signal) {
327 pd->put_signal(plchan->cd, plchan->signal);
328 plchan->signal = -1;
329 }
330 }
331 }
332
333 /*
334 * Physical channel handling
335 */
336
337 /* Whether a certain channel is busy or not */
338 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
339 {
340 unsigned int val;
341
342 val = readl(ch->base + PL080_CH_CONFIG);
343 return val & PL080_CONFIG_ACTIVE;
344 }
345
346 /*
347 * Set the initial DMA register values i.e. those for the first LLI
348 * The next LLI pointer and the configuration interrupt bit have
349 * been set when the LLIs were constructed. Poke them into the hardware
350 * and start the transfer.
351 */
352 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
353 {
354 struct pl08x_driver_data *pl08x = plchan->host;
355 struct pl08x_phy_chan *phychan = plchan->phychan;
356 struct virt_dma_desc *vd = vchan_next_desc(&plchan->vc);
357 struct pl08x_txd *txd = to_pl08x_txd(&vd->tx);
358 struct pl08x_lli *lli;
359 u32 val;
360
361 list_del(&txd->vd.node);
362
363 plchan->at = txd;
364
365 /* Wait for channel inactive */
366 while (pl08x_phy_channel_busy(phychan))
367 cpu_relax();
368
369 lli = &txd->llis_va[0];
370
371 dev_vdbg(&pl08x->adev->dev,
372 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
373 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
374 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
375 txd->ccfg);
376
377 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
378 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
379 writel(lli->lli, phychan->base + PL080_CH_LLI);
380 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
381 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
382
383 /* Enable the DMA channel */
384 /* Do not access config register until channel shows as disabled */
385 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
386 cpu_relax();
387
388 /* Do not access config register until channel shows as inactive */
389 val = readl(phychan->base + PL080_CH_CONFIG);
390 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
391 val = readl(phychan->base + PL080_CH_CONFIG);
392
393 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
394 }
395
396 /*
397 * Pause the channel by setting the HALT bit.
398 *
399 * For M->P transfers, pause the DMAC first and then stop the peripheral -
400 * the FIFO can only drain if the peripheral is still requesting data.
401 * (note: this can still timeout if the DMAC FIFO never drains of data.)
402 *
403 * For P->M transfers, disable the peripheral first to stop it filling
404 * the DMAC FIFO, and then pause the DMAC.
405 */
406 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
407 {
408 u32 val;
409 int timeout;
410
411 /* Set the HALT bit and wait for the FIFO to drain */
412 val = readl(ch->base + PL080_CH_CONFIG);
413 val |= PL080_CONFIG_HALT;
414 writel(val, ch->base + PL080_CH_CONFIG);
415
416 /* Wait for channel inactive */
417 for (timeout = 1000; timeout; timeout--) {
418 if (!pl08x_phy_channel_busy(ch))
419 break;
420 udelay(1);
421 }
422 if (pl08x_phy_channel_busy(ch))
423 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
424 }
425
426 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
427 {
428 u32 val;
429
430 /* Clear the HALT bit */
431 val = readl(ch->base + PL080_CH_CONFIG);
432 val &= ~PL080_CONFIG_HALT;
433 writel(val, ch->base + PL080_CH_CONFIG);
434 }
435
436 /*
437 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
438 * clears any pending interrupt status. This should not be used for
439 * an on-going transfer, but as a method of shutting down a channel
440 * (eg, when it's no longer used) or terminating a transfer.
441 */
442 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
443 struct pl08x_phy_chan *ch)
444 {
445 u32 val = readl(ch->base + PL080_CH_CONFIG);
446
447 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
448 PL080_CONFIG_TC_IRQ_MASK);
449
450 writel(val, ch->base + PL080_CH_CONFIG);
451
452 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
453 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
454 }
455
456 static inline u32 get_bytes_in_cctl(u32 cctl)
457 {
458 /* The source width defines the number of bytes */
459 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
460
461 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
462 case PL080_WIDTH_8BIT:
463 break;
464 case PL080_WIDTH_16BIT:
465 bytes *= 2;
466 break;
467 case PL080_WIDTH_32BIT:
468 bytes *= 4;
469 break;
470 }
471 return bytes;
472 }
473
474 /* The channel should be paused when calling this */
475 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
476 {
477 struct pl08x_phy_chan *ch;
478 struct pl08x_txd *txd;
479 unsigned long flags;
480 size_t bytes = 0;
481
482 spin_lock_irqsave(&plchan->vc.lock, flags);
483 ch = plchan->phychan;
484 txd = plchan->at;
485
486 /*
487 * Follow the LLIs to get the number of remaining
488 * bytes in the currently active transaction.
489 */
490 if (ch && txd) {
491 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
492
493 /* First get the remaining bytes in the active transfer */
494 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
495
496 if (clli) {
497 struct pl08x_lli *llis_va = txd->llis_va;
498 dma_addr_t llis_bus = txd->llis_bus;
499 int index;
500
501 BUG_ON(clli < llis_bus || clli >= llis_bus +
502 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
503
504 /*
505 * Locate the next LLI - as this is an array,
506 * it's simple maths to find.
507 */
508 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
509
510 for (; index < MAX_NUM_TSFR_LLIS; index++) {
511 bytes += get_bytes_in_cctl(llis_va[index].cctl);
512
513 /*
514 * A LLI pointer of 0 terminates the LLI list
515 */
516 if (!llis_va[index].lli)
517 break;
518 }
519 }
520 }
521
522 /* Sum up all queued transactions */
523 if (!list_empty(&plchan->vc.desc_issued)) {
524 struct pl08x_txd *txdi;
525 list_for_each_entry(txdi, &plchan->vc.desc_issued, vd.node) {
526 struct pl08x_sg *dsg;
527 list_for_each_entry(dsg, &txd->dsg_list, node)
528 bytes += dsg->len;
529 }
530 }
531
532 if (!list_empty(&plchan->vc.desc_submitted)) {
533 struct pl08x_txd *txdi;
534 list_for_each_entry(txdi, &plchan->vc.desc_submitted, vd.node) {
535 struct pl08x_sg *dsg;
536 list_for_each_entry(dsg, &txd->dsg_list, node)
537 bytes += dsg->len;
538 }
539 }
540
541 spin_unlock_irqrestore(&plchan->vc.lock, flags);
542
543 return bytes;
544 }
545
546 /*
547 * Allocate a physical channel for a virtual channel
548 *
549 * Try to locate a physical channel to be used for this transfer. If all
550 * are taken return NULL and the requester will have to cope by using
551 * some fallback PIO mode or retrying later.
552 */
553 static struct pl08x_phy_chan *
554 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
555 struct pl08x_dma_chan *virt_chan)
556 {
557 struct pl08x_phy_chan *ch = NULL;
558 unsigned long flags;
559 int i;
560
561 for (i = 0; i < pl08x->vd->channels; i++) {
562 ch = &pl08x->phy_chans[i];
563
564 spin_lock_irqsave(&ch->lock, flags);
565
566 if (!ch->locked && !ch->serving) {
567 ch->serving = virt_chan;
568 spin_unlock_irqrestore(&ch->lock, flags);
569 break;
570 }
571
572 spin_unlock_irqrestore(&ch->lock, flags);
573 }
574
575 if (i == pl08x->vd->channels) {
576 /* No physical channel available, cope with it */
577 return NULL;
578 }
579
580 return ch;
581 }
582
583 /* Mark the physical channel as free. Note, this write is atomic. */
584 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
585 struct pl08x_phy_chan *ch)
586 {
587 ch->serving = NULL;
588 }
589
590 /*
591 * Try to allocate a physical channel. When successful, assign it to
592 * this virtual channel, and initiate the next descriptor. The
593 * virtual channel lock must be held at this point.
594 */
595 static void pl08x_phy_alloc_and_start(struct pl08x_dma_chan *plchan)
596 {
597 struct pl08x_driver_data *pl08x = plchan->host;
598 struct pl08x_phy_chan *ch;
599
600 ch = pl08x_get_phy_channel(pl08x, plchan);
601 if (!ch) {
602 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
603 plchan->state = PL08X_CHAN_WAITING;
604 return;
605 }
606
607 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
608 ch->id, plchan->name);
609
610 plchan->phychan = ch;
611 plchan->state = PL08X_CHAN_RUNNING;
612 pl08x_start_next_txd(plchan);
613 }
614
615 static void pl08x_phy_reassign_start(struct pl08x_phy_chan *ch,
616 struct pl08x_dma_chan *plchan)
617 {
618 struct pl08x_driver_data *pl08x = plchan->host;
619
620 dev_dbg(&pl08x->adev->dev, "reassigned physical channel %d for xfer on %s\n",
621 ch->id, plchan->name);
622
623 /*
624 * We do this without taking the lock; we're really only concerned
625 * about whether this pointer is NULL or not, and we're guaranteed
626 * that this will only be called when it _already_ is non-NULL.
627 */
628 ch->serving = plchan;
629 plchan->phychan = ch;
630 plchan->state = PL08X_CHAN_RUNNING;
631 pl08x_start_next_txd(plchan);
632 }
633
634 /*
635 * Free a physical DMA channel, potentially reallocating it to another
636 * virtual channel if we have any pending.
637 */
638 static void pl08x_phy_free(struct pl08x_dma_chan *plchan)
639 {
640 struct pl08x_driver_data *pl08x = plchan->host;
641 struct pl08x_dma_chan *p, *next;
642
643 retry:
644 next = NULL;
645
646 /* Find a waiting virtual channel for the next transfer. */
647 list_for_each_entry(p, &pl08x->memcpy.channels, vc.chan.device_node)
648 if (p->state == PL08X_CHAN_WAITING) {
649 next = p;
650 break;
651 }
652
653 if (!next) {
654 list_for_each_entry(p, &pl08x->slave.channels, vc.chan.device_node)
655 if (p->state == PL08X_CHAN_WAITING) {
656 next = p;
657 break;
658 }
659 }
660
661 /* Ensure that the physical channel is stopped */
662 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
663
664 if (next) {
665 bool success;
666
667 /*
668 * Eww. We know this isn't going to deadlock
669 * but lockdep probably doesn't.
670 */
671 spin_lock(&next->vc.lock);
672 /* Re-check the state now that we have the lock */
673 success = next->state == PL08X_CHAN_WAITING;
674 if (success)
675 pl08x_phy_reassign_start(plchan->phychan, next);
676 spin_unlock(&next->vc.lock);
677
678 /* If the state changed, try to find another channel */
679 if (!success)
680 goto retry;
681 } else {
682 /* No more jobs, so free up the physical channel */
683 pl08x_put_phy_channel(pl08x, plchan->phychan);
684 }
685
686 plchan->phychan = NULL;
687 plchan->state = PL08X_CHAN_IDLE;
688 }
689
690 /*
691 * LLI handling
692 */
693
694 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
695 {
696 switch (coded) {
697 case PL080_WIDTH_8BIT:
698 return 1;
699 case PL080_WIDTH_16BIT:
700 return 2;
701 case PL080_WIDTH_32BIT:
702 return 4;
703 default:
704 break;
705 }
706 BUG();
707 return 0;
708 }
709
710 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
711 size_t tsize)
712 {
713 u32 retbits = cctl;
714
715 /* Remove all src, dst and transfer size bits */
716 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
717 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
718 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
719
720 /* Then set the bits according to the parameters */
721 switch (srcwidth) {
722 case 1:
723 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
724 break;
725 case 2:
726 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
727 break;
728 case 4:
729 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
730 break;
731 default:
732 BUG();
733 break;
734 }
735
736 switch (dstwidth) {
737 case 1:
738 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
739 break;
740 case 2:
741 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
742 break;
743 case 4:
744 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
745 break;
746 default:
747 BUG();
748 break;
749 }
750
751 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
752 return retbits;
753 }
754
755 struct pl08x_lli_build_data {
756 struct pl08x_txd *txd;
757 struct pl08x_bus_data srcbus;
758 struct pl08x_bus_data dstbus;
759 size_t remainder;
760 u32 lli_bus;
761 };
762
763 /*
764 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
765 * victim in case src & dest are not similarly aligned. i.e. If after aligning
766 * masters address with width requirements of transfer (by sending few byte by
767 * byte data), slave is still not aligned, then its width will be reduced to
768 * BYTE.
769 * - prefers the destination bus if both available
770 * - prefers bus with fixed address (i.e. peripheral)
771 */
772 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
773 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
774 {
775 if (!(cctl & PL080_CONTROL_DST_INCR)) {
776 *mbus = &bd->dstbus;
777 *sbus = &bd->srcbus;
778 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
779 *mbus = &bd->srcbus;
780 *sbus = &bd->dstbus;
781 } else {
782 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
783 *mbus = &bd->dstbus;
784 *sbus = &bd->srcbus;
785 } else {
786 *mbus = &bd->srcbus;
787 *sbus = &bd->dstbus;
788 }
789 }
790 }
791
792 /*
793 * Fills in one LLI for a certain transfer descriptor and advance the counter
794 */
795 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
796 int num_llis, int len, u32 cctl)
797 {
798 struct pl08x_lli *llis_va = bd->txd->llis_va;
799 dma_addr_t llis_bus = bd->txd->llis_bus;
800
801 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
802
803 llis_va[num_llis].cctl = cctl;
804 llis_va[num_llis].src = bd->srcbus.addr;
805 llis_va[num_llis].dst = bd->dstbus.addr;
806 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
807 sizeof(struct pl08x_lli);
808 llis_va[num_llis].lli |= bd->lli_bus;
809
810 if (cctl & PL080_CONTROL_SRC_INCR)
811 bd->srcbus.addr += len;
812 if (cctl & PL080_CONTROL_DST_INCR)
813 bd->dstbus.addr += len;
814
815 BUG_ON(bd->remainder < len);
816
817 bd->remainder -= len;
818 }
819
820 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
821 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
822 {
823 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
824 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
825 (*total_bytes) += len;
826 }
827
828 /*
829 * This fills in the table of LLIs for the transfer descriptor
830 * Note that we assume we never have to change the burst sizes
831 * Return 0 for error
832 */
833 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
834 struct pl08x_txd *txd)
835 {
836 struct pl08x_bus_data *mbus, *sbus;
837 struct pl08x_lli_build_data bd;
838 int num_llis = 0;
839 u32 cctl, early_bytes = 0;
840 size_t max_bytes_per_lli, total_bytes;
841 struct pl08x_lli *llis_va;
842 struct pl08x_sg *dsg;
843
844 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
845 if (!txd->llis_va) {
846 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
847 return 0;
848 }
849
850 pl08x->pool_ctr++;
851
852 bd.txd = txd;
853 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
854 cctl = txd->cctl;
855
856 /* Find maximum width of the source bus */
857 bd.srcbus.maxwidth =
858 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
859 PL080_CONTROL_SWIDTH_SHIFT);
860
861 /* Find maximum width of the destination bus */
862 bd.dstbus.maxwidth =
863 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
864 PL080_CONTROL_DWIDTH_SHIFT);
865
866 list_for_each_entry(dsg, &txd->dsg_list, node) {
867 total_bytes = 0;
868 cctl = txd->cctl;
869
870 bd.srcbus.addr = dsg->src_addr;
871 bd.dstbus.addr = dsg->dst_addr;
872 bd.remainder = dsg->len;
873 bd.srcbus.buswidth = bd.srcbus.maxwidth;
874 bd.dstbus.buswidth = bd.dstbus.maxwidth;
875
876 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
877
878 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
879 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
880 bd.srcbus.buswidth,
881 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
882 bd.dstbus.buswidth,
883 bd.remainder);
884 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
885 mbus == &bd.srcbus ? "src" : "dst",
886 sbus == &bd.srcbus ? "src" : "dst");
887
888 /*
889 * Zero length is only allowed if all these requirements are
890 * met:
891 * - flow controller is peripheral.
892 * - src.addr is aligned to src.width
893 * - dst.addr is aligned to dst.width
894 *
895 * sg_len == 1 should be true, as there can be two cases here:
896 *
897 * - Memory addresses are contiguous and are not scattered.
898 * Here, Only one sg will be passed by user driver, with
899 * memory address and zero length. We pass this to controller
900 * and after the transfer it will receive the last burst
901 * request from peripheral and so transfer finishes.
902 *
903 * - Memory addresses are scattered and are not contiguous.
904 * Here, Obviously as DMA controller doesn't know when a lli's
905 * transfer gets over, it can't load next lli. So in this
906 * case, there has to be an assumption that only one lli is
907 * supported. Thus, we can't have scattered addresses.
908 */
909 if (!bd.remainder) {
910 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
911 PL080_CONFIG_FLOW_CONTROL_SHIFT;
912 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
913 (fc <= PL080_FLOW_SRC2DST_SRC))) {
914 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
915 __func__);
916 return 0;
917 }
918
919 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
920 (bd.dstbus.addr % bd.dstbus.buswidth)) {
921 dev_err(&pl08x->adev->dev,
922 "%s src & dst address must be aligned to src"
923 " & dst width if peripheral is flow controller",
924 __func__);
925 return 0;
926 }
927
928 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
929 bd.dstbus.buswidth, 0);
930 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
931 break;
932 }
933
934 /*
935 * Send byte by byte for following cases
936 * - Less than a bus width available
937 * - until master bus is aligned
938 */
939 if (bd.remainder < mbus->buswidth)
940 early_bytes = bd.remainder;
941 else if ((mbus->addr) % (mbus->buswidth)) {
942 early_bytes = mbus->buswidth - (mbus->addr) %
943 (mbus->buswidth);
944 if ((bd.remainder - early_bytes) < mbus->buswidth)
945 early_bytes = bd.remainder;
946 }
947
948 if (early_bytes) {
949 dev_vdbg(&pl08x->adev->dev,
950 "%s byte width LLIs (remain 0x%08x)\n",
951 __func__, bd.remainder);
952 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
953 &total_bytes);
954 }
955
956 if (bd.remainder) {
957 /*
958 * Master now aligned
959 * - if slave is not then we must set its width down
960 */
961 if (sbus->addr % sbus->buswidth) {
962 dev_dbg(&pl08x->adev->dev,
963 "%s set down bus width to one byte\n",
964 __func__);
965
966 sbus->buswidth = 1;
967 }
968
969 /*
970 * Bytes transferred = tsize * src width, not
971 * MIN(buswidths)
972 */
973 max_bytes_per_lli = bd.srcbus.buswidth *
974 PL080_CONTROL_TRANSFER_SIZE_MASK;
975 dev_vdbg(&pl08x->adev->dev,
976 "%s max bytes per lli = %zu\n",
977 __func__, max_bytes_per_lli);
978
979 /*
980 * Make largest possible LLIs until less than one bus
981 * width left
982 */
983 while (bd.remainder > (mbus->buswidth - 1)) {
984 size_t lli_len, tsize, width;
985
986 /*
987 * If enough left try to send max possible,
988 * otherwise try to send the remainder
989 */
990 lli_len = min(bd.remainder, max_bytes_per_lli);
991
992 /*
993 * Check against maximum bus alignment:
994 * Calculate actual transfer size in relation to
995 * bus width an get a maximum remainder of the
996 * highest bus width - 1
997 */
998 width = max(mbus->buswidth, sbus->buswidth);
999 lli_len = (lli_len / width) * width;
1000 tsize = lli_len / bd.srcbus.buswidth;
1001
1002 dev_vdbg(&pl08x->adev->dev,
1003 "%s fill lli with single lli chunk of "
1004 "size 0x%08zx (remainder 0x%08zx)\n",
1005 __func__, lli_len, bd.remainder);
1006
1007 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
1008 bd.dstbus.buswidth, tsize);
1009 pl08x_fill_lli_for_desc(&bd, num_llis++,
1010 lli_len, cctl);
1011 total_bytes += lli_len;
1012 }
1013
1014 /*
1015 * Send any odd bytes
1016 */
1017 if (bd.remainder) {
1018 dev_vdbg(&pl08x->adev->dev,
1019 "%s align with boundary, send odd bytes (remain %zu)\n",
1020 __func__, bd.remainder);
1021 prep_byte_width_lli(&bd, &cctl, bd.remainder,
1022 num_llis++, &total_bytes);
1023 }
1024 }
1025
1026 if (total_bytes != dsg->len) {
1027 dev_err(&pl08x->adev->dev,
1028 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
1029 __func__, total_bytes, dsg->len);
1030 return 0;
1031 }
1032
1033 if (num_llis >= MAX_NUM_TSFR_LLIS) {
1034 dev_err(&pl08x->adev->dev,
1035 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
1036 __func__, (u32) MAX_NUM_TSFR_LLIS);
1037 return 0;
1038 }
1039 }
1040
1041 llis_va = txd->llis_va;
1042 /* The final LLI terminates the LLI. */
1043 llis_va[num_llis - 1].lli = 0;
1044 /* The final LLI element shall also fire an interrupt. */
1045 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
1046
1047 #ifdef VERBOSE_DEBUG
1048 {
1049 int i;
1050
1051 dev_vdbg(&pl08x->adev->dev,
1052 "%-3s %-9s %-10s %-10s %-10s %s\n",
1053 "lli", "", "csrc", "cdst", "clli", "cctl");
1054 for (i = 0; i < num_llis; i++) {
1055 dev_vdbg(&pl08x->adev->dev,
1056 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
1057 i, &llis_va[i], llis_va[i].src,
1058 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
1059 );
1060 }
1061 }
1062 #endif
1063
1064 return num_llis;
1065 }
1066
1067 /* You should call this with the struct pl08x lock held */
1068 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
1069 struct pl08x_txd *txd)
1070 {
1071 struct pl08x_sg *dsg, *_dsg;
1072
1073 /* Free the LLI */
1074 if (txd->llis_va)
1075 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
1076
1077 pl08x->pool_ctr--;
1078
1079 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
1080 list_del(&dsg->node);
1081 kfree(dsg);
1082 }
1083
1084 kfree(txd);
1085 }
1086
1087 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
1088 struct pl08x_dma_chan *plchan)
1089 {
1090 LIST_HEAD(head);
1091 struct pl08x_txd *txd;
1092
1093 vchan_get_all_descriptors(&plchan->vc, &head);
1094
1095 while (!list_empty(&head)) {
1096 txd = list_first_entry(&head, struct pl08x_txd, vd.node);
1097 pl08x_release_mux(plchan);
1098 list_del(&txd->vd.node);
1099 pl08x_free_txd(pl08x, txd);
1100 }
1101 }
1102
1103 /*
1104 * The DMA ENGINE API
1105 */
1106 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1107 {
1108 return 0;
1109 }
1110
1111 static void pl08x_free_chan_resources(struct dma_chan *chan)
1112 {
1113 }
1114
1115 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1116 struct dma_chan *chan, unsigned long flags)
1117 {
1118 struct dma_async_tx_descriptor *retval = NULL;
1119
1120 return retval;
1121 }
1122
1123 /*
1124 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1125 * If slaves are relying on interrupts to signal completion this function
1126 * must not be called with interrupts disabled.
1127 */
1128 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1129 dma_cookie_t cookie, struct dma_tx_state *txstate)
1130 {
1131 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1132 enum dma_status ret;
1133
1134 ret = dma_cookie_status(chan, cookie, txstate);
1135 if (ret == DMA_SUCCESS)
1136 return ret;
1137
1138 /*
1139 * This cookie not complete yet
1140 * Get number of bytes left in the active transactions and queue
1141 */
1142 dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1143
1144 if (plchan->state == PL08X_CHAN_PAUSED)
1145 return DMA_PAUSED;
1146
1147 /* Whether waiting or running, we're in progress */
1148 return DMA_IN_PROGRESS;
1149 }
1150
1151 /* PrimeCell DMA extension */
1152 struct burst_table {
1153 u32 burstwords;
1154 u32 reg;
1155 };
1156
1157 static const struct burst_table burst_sizes[] = {
1158 {
1159 .burstwords = 256,
1160 .reg = PL080_BSIZE_256,
1161 },
1162 {
1163 .burstwords = 128,
1164 .reg = PL080_BSIZE_128,
1165 },
1166 {
1167 .burstwords = 64,
1168 .reg = PL080_BSIZE_64,
1169 },
1170 {
1171 .burstwords = 32,
1172 .reg = PL080_BSIZE_32,
1173 },
1174 {
1175 .burstwords = 16,
1176 .reg = PL080_BSIZE_16,
1177 },
1178 {
1179 .burstwords = 8,
1180 .reg = PL080_BSIZE_8,
1181 },
1182 {
1183 .burstwords = 4,
1184 .reg = PL080_BSIZE_4,
1185 },
1186 {
1187 .burstwords = 0,
1188 .reg = PL080_BSIZE_1,
1189 },
1190 };
1191
1192 /*
1193 * Given the source and destination available bus masks, select which
1194 * will be routed to each port. We try to have source and destination
1195 * on separate ports, but always respect the allowable settings.
1196 */
1197 static u32 pl08x_select_bus(u8 src, u8 dst)
1198 {
1199 u32 cctl = 0;
1200
1201 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1202 cctl |= PL080_CONTROL_DST_AHB2;
1203 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1204 cctl |= PL080_CONTROL_SRC_AHB2;
1205
1206 return cctl;
1207 }
1208
1209 static u32 pl08x_cctl(u32 cctl)
1210 {
1211 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1212 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1213 PL080_CONTROL_PROT_MASK);
1214
1215 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1216 return cctl | PL080_CONTROL_PROT_SYS;
1217 }
1218
1219 static u32 pl08x_width(enum dma_slave_buswidth width)
1220 {
1221 switch (width) {
1222 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1223 return PL080_WIDTH_8BIT;
1224 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1225 return PL080_WIDTH_16BIT;
1226 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1227 return PL080_WIDTH_32BIT;
1228 default:
1229 return ~0;
1230 }
1231 }
1232
1233 static u32 pl08x_burst(u32 maxburst)
1234 {
1235 int i;
1236
1237 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1238 if (burst_sizes[i].burstwords <= maxburst)
1239 break;
1240
1241 return burst_sizes[i].reg;
1242 }
1243
1244 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1245 enum dma_slave_buswidth addr_width, u32 maxburst)
1246 {
1247 u32 width, burst, cctl = 0;
1248
1249 width = pl08x_width(addr_width);
1250 if (width == ~0)
1251 return ~0;
1252
1253 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1254 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1255
1256 /*
1257 * If this channel will only request single transfers, set this
1258 * down to ONE element. Also select one element if no maxburst
1259 * is specified.
1260 */
1261 if (plchan->cd->single)
1262 maxburst = 1;
1263
1264 burst = pl08x_burst(maxburst);
1265 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1266 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1267
1268 return pl08x_cctl(cctl);
1269 }
1270
1271 static int dma_set_runtime_config(struct dma_chan *chan,
1272 struct dma_slave_config *config)
1273 {
1274 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1275
1276 if (!plchan->slave)
1277 return -EINVAL;
1278
1279 /* Reject definitely invalid configurations */
1280 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1281 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1282 return -EINVAL;
1283
1284 plchan->cfg = *config;
1285
1286 return 0;
1287 }
1288
1289 /*
1290 * Slave transactions callback to the slave device to allow
1291 * synchronization of slave DMA signals with the DMAC enable
1292 */
1293 static void pl08x_issue_pending(struct dma_chan *chan)
1294 {
1295 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1296 unsigned long flags;
1297
1298 spin_lock_irqsave(&plchan->vc.lock, flags);
1299 if (vchan_issue_pending(&plchan->vc)) {
1300 if (!plchan->phychan && plchan->state != PL08X_CHAN_WAITING)
1301 pl08x_phy_alloc_and_start(plchan);
1302 }
1303 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1304 }
1305
1306 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1307 struct pl08x_txd *txd)
1308 {
1309 struct pl08x_driver_data *pl08x = plchan->host;
1310 int num_llis;
1311
1312 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1313 if (!num_llis) {
1314 unsigned long flags;
1315
1316 spin_lock_irqsave(&plchan->vc.lock, flags);
1317 pl08x_free_txd(pl08x, txd);
1318 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1319
1320 return -EINVAL;
1321 }
1322 return 0;
1323 }
1324
1325 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan)
1326 {
1327 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1328
1329 if (txd) {
1330 INIT_LIST_HEAD(&txd->dsg_list);
1331
1332 /* Always enable error and terminal interrupts */
1333 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1334 PL080_CONFIG_TC_IRQ_MASK;
1335 }
1336 return txd;
1337 }
1338
1339 /*
1340 * Initialize a descriptor to be used by memcpy submit
1341 */
1342 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1343 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1344 size_t len, unsigned long flags)
1345 {
1346 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1347 struct pl08x_driver_data *pl08x = plchan->host;
1348 struct pl08x_txd *txd;
1349 struct pl08x_sg *dsg;
1350 int ret;
1351
1352 txd = pl08x_get_txd(plchan);
1353 if (!txd) {
1354 dev_err(&pl08x->adev->dev,
1355 "%s no memory for descriptor\n", __func__);
1356 return NULL;
1357 }
1358
1359 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1360 if (!dsg) {
1361 pl08x_free_txd(pl08x, txd);
1362 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1363 __func__);
1364 return NULL;
1365 }
1366 list_add_tail(&dsg->node, &txd->dsg_list);
1367
1368 dsg->src_addr = src;
1369 dsg->dst_addr = dest;
1370 dsg->len = len;
1371
1372 /* Set platform data for m2m */
1373 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1374 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1375 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1376
1377 /* Both to be incremented or the code will break */
1378 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1379
1380 if (pl08x->vd->dualmaster)
1381 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1382 pl08x->mem_buses);
1383
1384 ret = pl08x_prep_channel_resources(plchan, txd);
1385 if (ret)
1386 return NULL;
1387
1388 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1389 }
1390
1391 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1392 struct dma_chan *chan, struct scatterlist *sgl,
1393 unsigned int sg_len, enum dma_transfer_direction direction,
1394 unsigned long flags, void *context)
1395 {
1396 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1397 struct pl08x_driver_data *pl08x = plchan->host;
1398 struct pl08x_txd *txd;
1399 struct pl08x_sg *dsg;
1400 struct scatterlist *sg;
1401 enum dma_slave_buswidth addr_width;
1402 dma_addr_t slave_addr;
1403 int ret, tmp;
1404 u8 src_buses, dst_buses;
1405 u32 maxburst, cctl;
1406
1407 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1408 __func__, sg_dma_len(sgl), plchan->name);
1409
1410 txd = pl08x_get_txd(plchan);
1411 if (!txd) {
1412 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1413 return NULL;
1414 }
1415
1416 /*
1417 * Set up addresses, the PrimeCell configured address
1418 * will take precedence since this may configure the
1419 * channel target address dynamically at runtime.
1420 */
1421 if (direction == DMA_MEM_TO_DEV) {
1422 cctl = PL080_CONTROL_SRC_INCR;
1423 slave_addr = plchan->cfg.dst_addr;
1424 addr_width = plchan->cfg.dst_addr_width;
1425 maxburst = plchan->cfg.dst_maxburst;
1426 src_buses = pl08x->mem_buses;
1427 dst_buses = plchan->cd->periph_buses;
1428 } else if (direction == DMA_DEV_TO_MEM) {
1429 cctl = PL080_CONTROL_DST_INCR;
1430 slave_addr = plchan->cfg.src_addr;
1431 addr_width = plchan->cfg.src_addr_width;
1432 maxburst = plchan->cfg.src_maxburst;
1433 src_buses = plchan->cd->periph_buses;
1434 dst_buses = pl08x->mem_buses;
1435 } else {
1436 pl08x_free_txd(pl08x, txd);
1437 dev_err(&pl08x->adev->dev,
1438 "%s direction unsupported\n", __func__);
1439 return NULL;
1440 }
1441
1442 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1443 if (cctl == ~0) {
1444 pl08x_free_txd(pl08x, txd);
1445 dev_err(&pl08x->adev->dev,
1446 "DMA slave configuration botched?\n");
1447 return NULL;
1448 }
1449
1450 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1451
1452 if (plchan->cfg.device_fc)
1453 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1454 PL080_FLOW_PER2MEM_PER;
1455 else
1456 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1457 PL080_FLOW_PER2MEM;
1458
1459 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1460
1461 ret = pl08x_request_mux(plchan);
1462 if (ret < 0) {
1463 pl08x_free_txd(pl08x, txd);
1464 dev_dbg(&pl08x->adev->dev,
1465 "unable to mux for transfer on %s due to platform restrictions\n",
1466 plchan->name);
1467 return NULL;
1468 }
1469
1470 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1471 plchan->signal, plchan->name);
1472
1473 /* Assign the flow control signal to this channel */
1474 if (direction == DMA_MEM_TO_DEV)
1475 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1476 else
1477 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1478
1479 for_each_sg(sgl, sg, sg_len, tmp) {
1480 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1481 if (!dsg) {
1482 pl08x_release_mux(plchan);
1483 pl08x_free_txd(pl08x, txd);
1484 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1485 __func__);
1486 return NULL;
1487 }
1488 list_add_tail(&dsg->node, &txd->dsg_list);
1489
1490 dsg->len = sg_dma_len(sg);
1491 if (direction == DMA_MEM_TO_DEV) {
1492 dsg->src_addr = sg_dma_address(sg);
1493 dsg->dst_addr = slave_addr;
1494 } else {
1495 dsg->src_addr = slave_addr;
1496 dsg->dst_addr = sg_dma_address(sg);
1497 }
1498 }
1499
1500 ret = pl08x_prep_channel_resources(plchan, txd);
1501 if (ret)
1502 return NULL;
1503
1504 return vchan_tx_prep(&plchan->vc, &txd->vd, flags);
1505 }
1506
1507 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1508 unsigned long arg)
1509 {
1510 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1511 struct pl08x_driver_data *pl08x = plchan->host;
1512 unsigned long flags;
1513 int ret = 0;
1514
1515 /* Controls applicable to inactive channels */
1516 if (cmd == DMA_SLAVE_CONFIG) {
1517 return dma_set_runtime_config(chan,
1518 (struct dma_slave_config *)arg);
1519 }
1520
1521 /*
1522 * Anything succeeds on channels with no physical allocation and
1523 * no queued transfers.
1524 */
1525 spin_lock_irqsave(&plchan->vc.lock, flags);
1526 if (!plchan->phychan && !plchan->at) {
1527 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1528 return 0;
1529 }
1530
1531 switch (cmd) {
1532 case DMA_TERMINATE_ALL:
1533 plchan->state = PL08X_CHAN_IDLE;
1534
1535 if (plchan->phychan) {
1536 /*
1537 * Mark physical channel as free and free any slave
1538 * signal
1539 */
1540 pl08x_phy_free(plchan);
1541 }
1542 /* Dequeue jobs and free LLIs */
1543 if (plchan->at) {
1544 /* Killing this one off, release its mux */
1545 pl08x_release_mux(plchan);
1546 pl08x_free_txd(pl08x, plchan->at);
1547 plchan->at = NULL;
1548 }
1549 /* Dequeue jobs not yet fired as well */
1550 pl08x_free_txd_list(pl08x, plchan);
1551 break;
1552 case DMA_PAUSE:
1553 pl08x_pause_phy_chan(plchan->phychan);
1554 plchan->state = PL08X_CHAN_PAUSED;
1555 break;
1556 case DMA_RESUME:
1557 pl08x_resume_phy_chan(plchan->phychan);
1558 plchan->state = PL08X_CHAN_RUNNING;
1559 break;
1560 default:
1561 /* Unknown command */
1562 ret = -ENXIO;
1563 break;
1564 }
1565
1566 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1567
1568 return ret;
1569 }
1570
1571 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1572 {
1573 struct pl08x_dma_chan *plchan;
1574 char *name = chan_id;
1575
1576 /* Reject channels for devices not bound to this driver */
1577 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1578 return false;
1579
1580 plchan = to_pl08x_chan(chan);
1581
1582 /* Check that the channel is not taken! */
1583 if (!strcmp(plchan->name, name))
1584 return true;
1585
1586 return false;
1587 }
1588
1589 /*
1590 * Just check that the device is there and active
1591 * TODO: turn this bit on/off depending on the number of physical channels
1592 * actually used, if it is zero... well shut it off. That will save some
1593 * power. Cut the clock at the same time.
1594 */
1595 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1596 {
1597 /* The Nomadik variant does not have the config register */
1598 if (pl08x->vd->nomadik)
1599 return;
1600 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1601 }
1602
1603 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1604 {
1605 struct device *dev = txd->vd.tx.chan->device->dev;
1606 struct pl08x_sg *dsg;
1607
1608 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1609 if (txd->vd.tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1610 list_for_each_entry(dsg, &txd->dsg_list, node)
1611 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1612 DMA_TO_DEVICE);
1613 else {
1614 list_for_each_entry(dsg, &txd->dsg_list, node)
1615 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1616 DMA_TO_DEVICE);
1617 }
1618 }
1619 if (!(txd->vd.tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1620 if (txd->vd.tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1621 list_for_each_entry(dsg, &txd->dsg_list, node)
1622 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1623 DMA_FROM_DEVICE);
1624 else
1625 list_for_each_entry(dsg, &txd->dsg_list, node)
1626 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1627 DMA_FROM_DEVICE);
1628 }
1629 }
1630
1631 static void pl08x_tasklet(unsigned long data)
1632 {
1633 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1634 struct pl08x_driver_data *pl08x = plchan->host;
1635 unsigned long flags;
1636 LIST_HEAD(head);
1637
1638 spin_lock_irqsave(&plchan->vc.lock, flags);
1639 list_splice_tail_init(&plchan->done_list, &head);
1640 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1641
1642 while (!list_empty(&head)) {
1643 struct pl08x_txd *txd = list_first_entry(&head,
1644 struct pl08x_txd, node);
1645 dma_async_tx_callback callback = txd->vd.tx.callback;
1646 void *callback_param = txd->vd.tx.callback_param;
1647
1648 list_del(&txd->node);
1649
1650 /* Don't try to unmap buffers on slave channels */
1651 if (!plchan->slave)
1652 pl08x_unmap_buffers(txd);
1653
1654 /* Free the descriptor */
1655 spin_lock_irqsave(&plchan->vc.lock, flags);
1656 pl08x_free_txd(pl08x, txd);
1657 spin_unlock_irqrestore(&plchan->vc.lock, flags);
1658
1659 /* Callback to signal completion */
1660 if (callback)
1661 callback(callback_param);
1662 }
1663 }
1664
1665 static irqreturn_t pl08x_irq(int irq, void *dev)
1666 {
1667 struct pl08x_driver_data *pl08x = dev;
1668 u32 mask = 0, err, tc, i;
1669
1670 /* check & clear - ERR & TC interrupts */
1671 err = readl(pl08x->base + PL080_ERR_STATUS);
1672 if (err) {
1673 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1674 __func__, err);
1675 writel(err, pl08x->base + PL080_ERR_CLEAR);
1676 }
1677 tc = readl(pl08x->base + PL080_TC_STATUS);
1678 if (tc)
1679 writel(tc, pl08x->base + PL080_TC_CLEAR);
1680
1681 if (!err && !tc)
1682 return IRQ_NONE;
1683
1684 for (i = 0; i < pl08x->vd->channels; i++) {
1685 if (((1 << i) & err) || ((1 << i) & tc)) {
1686 /* Locate physical channel */
1687 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1688 struct pl08x_dma_chan *plchan = phychan->serving;
1689 struct pl08x_txd *tx;
1690
1691 if (!plchan) {
1692 dev_err(&pl08x->adev->dev,
1693 "%s Error TC interrupt on unused channel: 0x%08x\n",
1694 __func__, i);
1695 continue;
1696 }
1697
1698 spin_lock(&plchan->vc.lock);
1699 tx = plchan->at;
1700 if (tx) {
1701 plchan->at = NULL;
1702 /*
1703 * This descriptor is done, release its mux
1704 * reservation.
1705 */
1706 pl08x_release_mux(plchan);
1707 dma_cookie_complete(&tx->vd.tx);
1708 list_add_tail(&tx->node, &plchan->done_list);
1709
1710 /*
1711 * And start the next descriptor (if any),
1712 * otherwise free this channel.
1713 */
1714 if (vchan_next_desc(&plchan->vc))
1715 pl08x_start_next_txd(plchan);
1716 else
1717 pl08x_phy_free(plchan);
1718 }
1719 spin_unlock(&plchan->vc.lock);
1720
1721 /* Schedule tasklet on this channel */
1722 tasklet_schedule(&plchan->tasklet);
1723 mask |= (1 << i);
1724 }
1725 }
1726
1727 return mask ? IRQ_HANDLED : IRQ_NONE;
1728 }
1729
1730 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1731 {
1732 chan->slave = true;
1733 chan->name = chan->cd->bus_id;
1734 chan->cfg.src_addr = chan->cd->addr;
1735 chan->cfg.dst_addr = chan->cd->addr;
1736 }
1737
1738 /*
1739 * Initialise the DMAC memcpy/slave channels.
1740 * Make a local wrapper to hold required data
1741 */
1742 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1743 struct dma_device *dmadev, unsigned int channels, bool slave)
1744 {
1745 struct pl08x_dma_chan *chan;
1746 int i;
1747
1748 INIT_LIST_HEAD(&dmadev->channels);
1749
1750 /*
1751 * Register as many many memcpy as we have physical channels,
1752 * we won't always be able to use all but the code will have
1753 * to cope with that situation.
1754 */
1755 for (i = 0; i < channels; i++) {
1756 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1757 if (!chan) {
1758 dev_err(&pl08x->adev->dev,
1759 "%s no memory for channel\n", __func__);
1760 return -ENOMEM;
1761 }
1762
1763 chan->host = pl08x;
1764 chan->state = PL08X_CHAN_IDLE;
1765 chan->signal = -1;
1766
1767 if (slave) {
1768 chan->cd = &pl08x->pd->slave_channels[i];
1769 pl08x_dma_slave_init(chan);
1770 } else {
1771 chan->cd = &pl08x->pd->memcpy_channel;
1772 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1773 if (!chan->name) {
1774 kfree(chan);
1775 return -ENOMEM;
1776 }
1777 }
1778 dev_dbg(&pl08x->adev->dev,
1779 "initialize virtual channel \"%s\"\n",
1780 chan->name);
1781
1782 INIT_LIST_HEAD(&chan->done_list);
1783 tasklet_init(&chan->tasklet, pl08x_tasklet,
1784 (unsigned long) chan);
1785
1786 vchan_init(&chan->vc, dmadev);
1787 }
1788 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1789 i, slave ? "slave" : "memcpy");
1790 return i;
1791 }
1792
1793 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1794 {
1795 struct pl08x_dma_chan *chan = NULL;
1796 struct pl08x_dma_chan *next;
1797
1798 list_for_each_entry_safe(chan,
1799 next, &dmadev->channels, vc.chan.device_node) {
1800 list_del(&chan->vc.chan.device_node);
1801 kfree(chan);
1802 }
1803 }
1804
1805 #ifdef CONFIG_DEBUG_FS
1806 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1807 {
1808 switch (state) {
1809 case PL08X_CHAN_IDLE:
1810 return "idle";
1811 case PL08X_CHAN_RUNNING:
1812 return "running";
1813 case PL08X_CHAN_PAUSED:
1814 return "paused";
1815 case PL08X_CHAN_WAITING:
1816 return "waiting";
1817 default:
1818 break;
1819 }
1820 return "UNKNOWN STATE";
1821 }
1822
1823 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1824 {
1825 struct pl08x_driver_data *pl08x = s->private;
1826 struct pl08x_dma_chan *chan;
1827 struct pl08x_phy_chan *ch;
1828 unsigned long flags;
1829 int i;
1830
1831 seq_printf(s, "PL08x physical channels:\n");
1832 seq_printf(s, "CHANNEL:\tUSER:\n");
1833 seq_printf(s, "--------\t-----\n");
1834 for (i = 0; i < pl08x->vd->channels; i++) {
1835 struct pl08x_dma_chan *virt_chan;
1836
1837 ch = &pl08x->phy_chans[i];
1838
1839 spin_lock_irqsave(&ch->lock, flags);
1840 virt_chan = ch->serving;
1841
1842 seq_printf(s, "%d\t\t%s%s\n",
1843 ch->id,
1844 virt_chan ? virt_chan->name : "(none)",
1845 ch->locked ? " LOCKED" : "");
1846
1847 spin_unlock_irqrestore(&ch->lock, flags);
1848 }
1849
1850 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1851 seq_printf(s, "CHANNEL:\tSTATE:\n");
1852 seq_printf(s, "--------\t------\n");
1853 list_for_each_entry(chan, &pl08x->memcpy.channels, vc.chan.device_node) {
1854 seq_printf(s, "%s\t\t%s\n", chan->name,
1855 pl08x_state_str(chan->state));
1856 }
1857
1858 seq_printf(s, "\nPL08x virtual slave channels:\n");
1859 seq_printf(s, "CHANNEL:\tSTATE:\n");
1860 seq_printf(s, "--------\t------\n");
1861 list_for_each_entry(chan, &pl08x->slave.channels, vc.chan.device_node) {
1862 seq_printf(s, "%s\t\t%s\n", chan->name,
1863 pl08x_state_str(chan->state));
1864 }
1865
1866 return 0;
1867 }
1868
1869 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1870 {
1871 return single_open(file, pl08x_debugfs_show, inode->i_private);
1872 }
1873
1874 static const struct file_operations pl08x_debugfs_operations = {
1875 .open = pl08x_debugfs_open,
1876 .read = seq_read,
1877 .llseek = seq_lseek,
1878 .release = single_release,
1879 };
1880
1881 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1882 {
1883 /* Expose a simple debugfs interface to view all clocks */
1884 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1885 S_IFREG | S_IRUGO, NULL, pl08x,
1886 &pl08x_debugfs_operations);
1887 }
1888
1889 #else
1890 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1891 {
1892 }
1893 #endif
1894
1895 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1896 {
1897 struct pl08x_driver_data *pl08x;
1898 const struct vendor_data *vd = id->data;
1899 int ret = 0;
1900 int i;
1901
1902 ret = amba_request_regions(adev, NULL);
1903 if (ret)
1904 return ret;
1905
1906 /* Create the driver state holder */
1907 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1908 if (!pl08x) {
1909 ret = -ENOMEM;
1910 goto out_no_pl08x;
1911 }
1912
1913 /* Initialize memcpy engine */
1914 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1915 pl08x->memcpy.dev = &adev->dev;
1916 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1917 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1918 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1919 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1920 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1921 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1922 pl08x->memcpy.device_control = pl08x_control;
1923
1924 /* Initialize slave engine */
1925 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1926 pl08x->slave.dev = &adev->dev;
1927 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1928 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1929 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1930 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1931 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1932 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1933 pl08x->slave.device_control = pl08x_control;
1934
1935 /* Get the platform data */
1936 pl08x->pd = dev_get_platdata(&adev->dev);
1937 if (!pl08x->pd) {
1938 dev_err(&adev->dev, "no platform data supplied\n");
1939 goto out_no_platdata;
1940 }
1941
1942 /* Assign useful pointers to the driver state */
1943 pl08x->adev = adev;
1944 pl08x->vd = vd;
1945
1946 /* By default, AHB1 only. If dualmaster, from platform */
1947 pl08x->lli_buses = PL08X_AHB1;
1948 pl08x->mem_buses = PL08X_AHB1;
1949 if (pl08x->vd->dualmaster) {
1950 pl08x->lli_buses = pl08x->pd->lli_buses;
1951 pl08x->mem_buses = pl08x->pd->mem_buses;
1952 }
1953
1954 /* A DMA memory pool for LLIs, align on 1-byte boundary */
1955 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
1956 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
1957 if (!pl08x->pool) {
1958 ret = -ENOMEM;
1959 goto out_no_lli_pool;
1960 }
1961
1962 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
1963 if (!pl08x->base) {
1964 ret = -ENOMEM;
1965 goto out_no_ioremap;
1966 }
1967
1968 /* Turn on the PL08x */
1969 pl08x_ensure_on(pl08x);
1970
1971 /* Attach the interrupt handler */
1972 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
1973 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
1974
1975 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
1976 DRIVER_NAME, pl08x);
1977 if (ret) {
1978 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
1979 __func__, adev->irq[0]);
1980 goto out_no_irq;
1981 }
1982
1983 /* Initialize physical channels */
1984 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
1985 GFP_KERNEL);
1986 if (!pl08x->phy_chans) {
1987 dev_err(&adev->dev, "%s failed to allocate "
1988 "physical channel holders\n",
1989 __func__);
1990 goto out_no_phychans;
1991 }
1992
1993 for (i = 0; i < vd->channels; i++) {
1994 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
1995
1996 ch->id = i;
1997 ch->base = pl08x->base + PL080_Cx_BASE(i);
1998 spin_lock_init(&ch->lock);
1999
2000 /*
2001 * Nomadik variants can have channels that are locked
2002 * down for the secure world only. Lock up these channels
2003 * by perpetually serving a dummy virtual channel.
2004 */
2005 if (vd->nomadik) {
2006 u32 val;
2007
2008 val = readl(ch->base + PL080_CH_CONFIG);
2009 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2010 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2011 ch->locked = true;
2012 }
2013 }
2014
2015 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2016 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2017 }
2018
2019 /* Register as many memcpy channels as there are physical channels */
2020 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2021 pl08x->vd->channels, false);
2022 if (ret <= 0) {
2023 dev_warn(&pl08x->adev->dev,
2024 "%s failed to enumerate memcpy channels - %d\n",
2025 __func__, ret);
2026 goto out_no_memcpy;
2027 }
2028 pl08x->memcpy.chancnt = ret;
2029
2030 /* Register slave channels */
2031 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2032 pl08x->pd->num_slave_channels, true);
2033 if (ret <= 0) {
2034 dev_warn(&pl08x->adev->dev,
2035 "%s failed to enumerate slave channels - %d\n",
2036 __func__, ret);
2037 goto out_no_slave;
2038 }
2039 pl08x->slave.chancnt = ret;
2040
2041 ret = dma_async_device_register(&pl08x->memcpy);
2042 if (ret) {
2043 dev_warn(&pl08x->adev->dev,
2044 "%s failed to register memcpy as an async device - %d\n",
2045 __func__, ret);
2046 goto out_no_memcpy_reg;
2047 }
2048
2049 ret = dma_async_device_register(&pl08x->slave);
2050 if (ret) {
2051 dev_warn(&pl08x->adev->dev,
2052 "%s failed to register slave as an async device - %d\n",
2053 __func__, ret);
2054 goto out_no_slave_reg;
2055 }
2056
2057 amba_set_drvdata(adev, pl08x);
2058 init_pl08x_debugfs(pl08x);
2059 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2060 amba_part(adev), amba_rev(adev),
2061 (unsigned long long)adev->res.start, adev->irq[0]);
2062
2063 return 0;
2064
2065 out_no_slave_reg:
2066 dma_async_device_unregister(&pl08x->memcpy);
2067 out_no_memcpy_reg:
2068 pl08x_free_virtual_channels(&pl08x->slave);
2069 out_no_slave:
2070 pl08x_free_virtual_channels(&pl08x->memcpy);
2071 out_no_memcpy:
2072 kfree(pl08x->phy_chans);
2073 out_no_phychans:
2074 free_irq(adev->irq[0], pl08x);
2075 out_no_irq:
2076 iounmap(pl08x->base);
2077 out_no_ioremap:
2078 dma_pool_destroy(pl08x->pool);
2079 out_no_lli_pool:
2080 out_no_platdata:
2081 kfree(pl08x);
2082 out_no_pl08x:
2083 amba_release_regions(adev);
2084 return ret;
2085 }
2086
2087 /* PL080 has 8 channels and the PL080 have just 2 */
2088 static struct vendor_data vendor_pl080 = {
2089 .channels = 8,
2090 .dualmaster = true,
2091 };
2092
2093 static struct vendor_data vendor_nomadik = {
2094 .channels = 8,
2095 .dualmaster = true,
2096 .nomadik = true,
2097 };
2098
2099 static struct vendor_data vendor_pl081 = {
2100 .channels = 2,
2101 .dualmaster = false,
2102 };
2103
2104 static struct amba_id pl08x_ids[] = {
2105 /* PL080 */
2106 {
2107 .id = 0x00041080,
2108 .mask = 0x000fffff,
2109 .data = &vendor_pl080,
2110 },
2111 /* PL081 */
2112 {
2113 .id = 0x00041081,
2114 .mask = 0x000fffff,
2115 .data = &vendor_pl081,
2116 },
2117 /* Nomadik 8815 PL080 variant */
2118 {
2119 .id = 0x00280080,
2120 .mask = 0x00ffffff,
2121 .data = &vendor_nomadik,
2122 },
2123 { 0, 0 },
2124 };
2125
2126 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2127
2128 static struct amba_driver pl08x_amba_driver = {
2129 .drv.name = DRIVER_NAME,
2130 .id_table = pl08x_ids,
2131 .probe = pl08x_probe,
2132 };
2133
2134 static int __init pl08x_init(void)
2135 {
2136 int retval;
2137 retval = amba_driver_register(&pl08x_amba_driver);
2138 if (retval)
2139 printk(KERN_WARNING DRIVER_NAME
2140 "failed to register as an AMBA device (%d)\n",
2141 retval);
2142 return retval;
2143 }
2144 subsys_initcall(pl08x_init);
This page took 0.075669 seconds and 6 git commands to generate.