dmaengine: PL08x: move DMA signal muxing into slave prepare code
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89
90 #define DRIVER_NAME "pl08xdmac"
91
92 static struct amba_driver pl08x_amba_driver;
93 struct pl08x_driver_data;
94
95 /**
96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97 * @channels: the number of channels available in this variant
98 * @dualmaster: whether this version supports dual AHB masters or not.
99 * @nomadik: whether the channels have Nomadik security extension bits
100 * that need to be checked for permission before use and some registers are
101 * missing
102 */
103 struct vendor_data {
104 u8 channels;
105 bool dualmaster;
106 bool nomadik;
107 };
108
109 /*
110 * PL08X private data structures
111 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
112 * start & end do not - their bus bit info is in cctl. Also note that these
113 * are fixed 32-bit quantities.
114 */
115 struct pl08x_lli {
116 u32 src;
117 u32 dst;
118 u32 lli;
119 u32 cctl;
120 };
121
122 /**
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 */
129 struct pl08x_bus_data {
130 dma_addr_t addr;
131 u8 maxwidth;
132 u8 buswidth;
133 };
134
135 /**
136 * struct pl08x_phy_chan - holder for the physical channels
137 * @id: physical index to this channel
138 * @lock: a lock to use when altering an instance of this struct
139 * @serving: the virtual channel currently being served by this physical
140 * channel
141 * @locked: channel unavailable for the system, e.g. dedicated to secure
142 * world
143 */
144 struct pl08x_phy_chan {
145 unsigned int id;
146 void __iomem *base;
147 spinlock_t lock;
148 struct pl08x_dma_chan *serving;
149 bool locked;
150 };
151
152 /**
153 * struct pl08x_sg - structure containing data per sg
154 * @src_addr: src address of sg
155 * @dst_addr: dst address of sg
156 * @len: transfer len in bytes
157 * @node: node for txd's dsg_list
158 */
159 struct pl08x_sg {
160 dma_addr_t src_addr;
161 dma_addr_t dst_addr;
162 size_t len;
163 struct list_head node;
164 };
165
166 /**
167 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
168 * @tx: async tx descriptor
169 * @node: node for txd list for channels
170 * @dsg_list: list of children sg's
171 * @llis_bus: DMA memory address (physical) start for the LLIs
172 * @llis_va: virtual memory address start for the LLIs
173 * @cctl: control reg values for current txd
174 * @ccfg: config reg values for current txd
175 */
176 struct pl08x_txd {
177 struct dma_async_tx_descriptor tx;
178 struct list_head node;
179 struct list_head dsg_list;
180 dma_addr_t llis_bus;
181 struct pl08x_lli *llis_va;
182 /* Default cctl value for LLIs */
183 u32 cctl;
184 /*
185 * Settings to be put into the physical channel when we
186 * trigger this txd. Other registers are in llis_va[0].
187 */
188 u32 ccfg;
189 };
190
191 /**
192 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
193 * states
194 * @PL08X_CHAN_IDLE: the channel is idle
195 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
196 * channel and is running a transfer on it
197 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
198 * channel, but the transfer is currently paused
199 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
200 * channel to become available (only pertains to memcpy channels)
201 */
202 enum pl08x_dma_chan_state {
203 PL08X_CHAN_IDLE,
204 PL08X_CHAN_RUNNING,
205 PL08X_CHAN_PAUSED,
206 PL08X_CHAN_WAITING,
207 };
208
209 /**
210 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
211 * @chan: wrappped abstract channel
212 * @phychan: the physical channel utilized by this channel, if there is one
213 * @phychan_hold: if non-zero, hold on to the physical channel even if we
214 * have no pending entries
215 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
216 * @name: name of channel
217 * @cd: channel platform data
218 * @runtime_addr: address for RX/TX according to the runtime config
219 * @pend_list: queued transactions pending on this channel
220 * @done_list: list of completed transactions
221 * @at: active transaction on this channel
222 * @lock: a lock for this channel data
223 * @host: a pointer to the host (internal use)
224 * @state: whether the channel is idle, paused, running etc
225 * @slave: whether this channel is a device (slave) or for memcpy
226 * @waiting: a TX descriptor on this channel which is waiting for a physical
227 * channel to become available
228 * @signal: the physical DMA request signal which this channel is using
229 * @mux_use: count of descriptors using this DMA request signal setting
230 */
231 struct pl08x_dma_chan {
232 struct dma_chan chan;
233 struct pl08x_phy_chan *phychan;
234 int phychan_hold;
235 struct tasklet_struct tasklet;
236 const char *name;
237 const struct pl08x_channel_data *cd;
238 struct dma_slave_config cfg;
239 struct list_head pend_list;
240 struct list_head done_list;
241 struct pl08x_txd *at;
242 spinlock_t lock;
243 struct pl08x_driver_data *host;
244 enum pl08x_dma_chan_state state;
245 bool slave;
246 struct pl08x_txd *waiting;
247 int signal;
248 unsigned mux_use;
249 };
250
251 /**
252 * struct pl08x_driver_data - the local state holder for the PL08x
253 * @slave: slave engine for this instance
254 * @memcpy: memcpy engine for this instance
255 * @base: virtual memory base (remapped) for the PL08x
256 * @adev: the corresponding AMBA (PrimeCell) bus entry
257 * @vd: vendor data for this PL08x variant
258 * @pd: platform data passed in from the platform/machine
259 * @phy_chans: array of data for the physical channels
260 * @pool: a pool for the LLI descriptors
261 * @pool_ctr: counter of LLIs in the pool
262 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
263 * fetches
264 * @mem_buses: set to indicate memory transfers on AHB2.
265 * @lock: a spinlock for this struct
266 */
267 struct pl08x_driver_data {
268 struct dma_device slave;
269 struct dma_device memcpy;
270 void __iomem *base;
271 struct amba_device *adev;
272 const struct vendor_data *vd;
273 struct pl08x_platform_data *pd;
274 struct pl08x_phy_chan *phy_chans;
275 struct dma_pool *pool;
276 int pool_ctr;
277 u8 lli_buses;
278 u8 mem_buses;
279 };
280
281 /*
282 * PL08X specific defines
283 */
284
285 /* Size (bytes) of each LLI buffer allocated for one transfer */
286 # define PL08X_LLI_TSFR_SIZE 0x2000
287
288 /* Maximum times we call dma_pool_alloc on this pool without freeing */
289 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
290 #define PL08X_ALIGN 8
291
292 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
293 {
294 return container_of(chan, struct pl08x_dma_chan, chan);
295 }
296
297 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
298 {
299 return container_of(tx, struct pl08x_txd, tx);
300 }
301
302 /*
303 * Mux handling.
304 *
305 * This gives us the DMA request input to the PL08x primecell which the
306 * peripheral described by the channel data will be routed to, possibly
307 * via a board/SoC specific external MUX. One important point to note
308 * here is that this does not depend on the physical channel.
309 */
310 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
311 {
312 const struct pl08x_platform_data *pd = plchan->host->pd;
313 int ret;
314
315 if (plchan->mux_use++ == 0 && pd->get_signal) {
316 ret = pd->get_signal(plchan->cd);
317 if (ret < 0) {
318 plchan->mux_use = 0;
319 return ret;
320 }
321
322 plchan->signal = ret;
323 }
324 return 0;
325 }
326
327 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
328 {
329 const struct pl08x_platform_data *pd = plchan->host->pd;
330
331 if (plchan->signal >= 0) {
332 WARN_ON(plchan->mux_use == 0);
333
334 if (--plchan->mux_use == 0 && pd->put_signal) {
335 pd->put_signal(plchan->cd, plchan->signal);
336 plchan->signal = -1;
337 }
338 }
339 }
340
341 /*
342 * Physical channel handling
343 */
344
345 /* Whether a certain channel is busy or not */
346 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
347 {
348 unsigned int val;
349
350 val = readl(ch->base + PL080_CH_CONFIG);
351 return val & PL080_CONFIG_ACTIVE;
352 }
353
354 /*
355 * Set the initial DMA register values i.e. those for the first LLI
356 * The next LLI pointer and the configuration interrupt bit have
357 * been set when the LLIs were constructed. Poke them into the hardware
358 * and start the transfer.
359 */
360 static void pl08x_start_txd(struct pl08x_dma_chan *plchan,
361 struct pl08x_txd *txd)
362 {
363 struct pl08x_driver_data *pl08x = plchan->host;
364 struct pl08x_phy_chan *phychan = plchan->phychan;
365 struct pl08x_lli *lli = &txd->llis_va[0];
366 u32 val;
367
368 plchan->at = txd;
369
370 /* Wait for channel inactive */
371 while (pl08x_phy_channel_busy(phychan))
372 cpu_relax();
373
374 dev_vdbg(&pl08x->adev->dev,
375 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
376 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
377 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
378 txd->ccfg);
379
380 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
381 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
382 writel(lli->lli, phychan->base + PL080_CH_LLI);
383 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
384 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
385
386 /* Enable the DMA channel */
387 /* Do not access config register until channel shows as disabled */
388 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
389 cpu_relax();
390
391 /* Do not access config register until channel shows as inactive */
392 val = readl(phychan->base + PL080_CH_CONFIG);
393 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
394 val = readl(phychan->base + PL080_CH_CONFIG);
395
396 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
397 }
398
399 /*
400 * Pause the channel by setting the HALT bit.
401 *
402 * For M->P transfers, pause the DMAC first and then stop the peripheral -
403 * the FIFO can only drain if the peripheral is still requesting data.
404 * (note: this can still timeout if the DMAC FIFO never drains of data.)
405 *
406 * For P->M transfers, disable the peripheral first to stop it filling
407 * the DMAC FIFO, and then pause the DMAC.
408 */
409 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
410 {
411 u32 val;
412 int timeout;
413
414 /* Set the HALT bit and wait for the FIFO to drain */
415 val = readl(ch->base + PL080_CH_CONFIG);
416 val |= PL080_CONFIG_HALT;
417 writel(val, ch->base + PL080_CH_CONFIG);
418
419 /* Wait for channel inactive */
420 for (timeout = 1000; timeout; timeout--) {
421 if (!pl08x_phy_channel_busy(ch))
422 break;
423 udelay(1);
424 }
425 if (pl08x_phy_channel_busy(ch))
426 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
427 }
428
429 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
430 {
431 u32 val;
432
433 /* Clear the HALT bit */
434 val = readl(ch->base + PL080_CH_CONFIG);
435 val &= ~PL080_CONFIG_HALT;
436 writel(val, ch->base + PL080_CH_CONFIG);
437 }
438
439 /*
440 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
441 * clears any pending interrupt status. This should not be used for
442 * an on-going transfer, but as a method of shutting down a channel
443 * (eg, when it's no longer used) or terminating a transfer.
444 */
445 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
446 struct pl08x_phy_chan *ch)
447 {
448 u32 val = readl(ch->base + PL080_CH_CONFIG);
449
450 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
451 PL080_CONFIG_TC_IRQ_MASK);
452
453 writel(val, ch->base + PL080_CH_CONFIG);
454
455 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
456 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
457 }
458
459 static inline u32 get_bytes_in_cctl(u32 cctl)
460 {
461 /* The source width defines the number of bytes */
462 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
463
464 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
465 case PL080_WIDTH_8BIT:
466 break;
467 case PL080_WIDTH_16BIT:
468 bytes *= 2;
469 break;
470 case PL080_WIDTH_32BIT:
471 bytes *= 4;
472 break;
473 }
474 return bytes;
475 }
476
477 /* The channel should be paused when calling this */
478 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
479 {
480 struct pl08x_phy_chan *ch;
481 struct pl08x_txd *txd;
482 unsigned long flags;
483 size_t bytes = 0;
484
485 spin_lock_irqsave(&plchan->lock, flags);
486 ch = plchan->phychan;
487 txd = plchan->at;
488
489 /*
490 * Follow the LLIs to get the number of remaining
491 * bytes in the currently active transaction.
492 */
493 if (ch && txd) {
494 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
495
496 /* First get the remaining bytes in the active transfer */
497 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
498
499 if (clli) {
500 struct pl08x_lli *llis_va = txd->llis_va;
501 dma_addr_t llis_bus = txd->llis_bus;
502 int index;
503
504 BUG_ON(clli < llis_bus || clli >= llis_bus +
505 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
506
507 /*
508 * Locate the next LLI - as this is an array,
509 * it's simple maths to find.
510 */
511 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
512
513 for (; index < MAX_NUM_TSFR_LLIS; index++) {
514 bytes += get_bytes_in_cctl(llis_va[index].cctl);
515
516 /*
517 * A LLI pointer of 0 terminates the LLI list
518 */
519 if (!llis_va[index].lli)
520 break;
521 }
522 }
523 }
524
525 /* Sum up all queued transactions */
526 if (!list_empty(&plchan->pend_list)) {
527 struct pl08x_txd *txdi;
528 list_for_each_entry(txdi, &plchan->pend_list, node) {
529 struct pl08x_sg *dsg;
530 list_for_each_entry(dsg, &txd->dsg_list, node)
531 bytes += dsg->len;
532 }
533 }
534
535 spin_unlock_irqrestore(&plchan->lock, flags);
536
537 return bytes;
538 }
539
540 /*
541 * Allocate a physical channel for a virtual channel
542 *
543 * Try to locate a physical channel to be used for this transfer. If all
544 * are taken return NULL and the requester will have to cope by using
545 * some fallback PIO mode or retrying later.
546 */
547 static struct pl08x_phy_chan *
548 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
549 struct pl08x_dma_chan *virt_chan)
550 {
551 struct pl08x_phy_chan *ch = NULL;
552 unsigned long flags;
553 int i;
554
555 for (i = 0; i < pl08x->vd->channels; i++) {
556 ch = &pl08x->phy_chans[i];
557
558 spin_lock_irqsave(&ch->lock, flags);
559
560 if (!ch->locked && !ch->serving) {
561 ch->serving = virt_chan;
562 spin_unlock_irqrestore(&ch->lock, flags);
563 break;
564 }
565
566 spin_unlock_irqrestore(&ch->lock, flags);
567 }
568
569 if (i == pl08x->vd->channels) {
570 /* No physical channel available, cope with it */
571 return NULL;
572 }
573
574 return ch;
575 }
576
577 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
578 struct pl08x_phy_chan *ch)
579 {
580 unsigned long flags;
581
582 spin_lock_irqsave(&ch->lock, flags);
583
584 /* Stop the channel and clear its interrupts */
585 pl08x_terminate_phy_chan(pl08x, ch);
586
587 /* Mark it as free */
588 ch->serving = NULL;
589 spin_unlock_irqrestore(&ch->lock, flags);
590 }
591
592 /*
593 * LLI handling
594 */
595
596 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
597 {
598 switch (coded) {
599 case PL080_WIDTH_8BIT:
600 return 1;
601 case PL080_WIDTH_16BIT:
602 return 2;
603 case PL080_WIDTH_32BIT:
604 return 4;
605 default:
606 break;
607 }
608 BUG();
609 return 0;
610 }
611
612 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
613 size_t tsize)
614 {
615 u32 retbits = cctl;
616
617 /* Remove all src, dst and transfer size bits */
618 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
619 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
620 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
621
622 /* Then set the bits according to the parameters */
623 switch (srcwidth) {
624 case 1:
625 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
626 break;
627 case 2:
628 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
629 break;
630 case 4:
631 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
632 break;
633 default:
634 BUG();
635 break;
636 }
637
638 switch (dstwidth) {
639 case 1:
640 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
641 break;
642 case 2:
643 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
644 break;
645 case 4:
646 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
647 break;
648 default:
649 BUG();
650 break;
651 }
652
653 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
654 return retbits;
655 }
656
657 struct pl08x_lli_build_data {
658 struct pl08x_txd *txd;
659 struct pl08x_bus_data srcbus;
660 struct pl08x_bus_data dstbus;
661 size_t remainder;
662 u32 lli_bus;
663 };
664
665 /*
666 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
667 * victim in case src & dest are not similarly aligned. i.e. If after aligning
668 * masters address with width requirements of transfer (by sending few byte by
669 * byte data), slave is still not aligned, then its width will be reduced to
670 * BYTE.
671 * - prefers the destination bus if both available
672 * - prefers bus with fixed address (i.e. peripheral)
673 */
674 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
675 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
676 {
677 if (!(cctl & PL080_CONTROL_DST_INCR)) {
678 *mbus = &bd->dstbus;
679 *sbus = &bd->srcbus;
680 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
681 *mbus = &bd->srcbus;
682 *sbus = &bd->dstbus;
683 } else {
684 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
685 *mbus = &bd->dstbus;
686 *sbus = &bd->srcbus;
687 } else {
688 *mbus = &bd->srcbus;
689 *sbus = &bd->dstbus;
690 }
691 }
692 }
693
694 /*
695 * Fills in one LLI for a certain transfer descriptor and advance the counter
696 */
697 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
698 int num_llis, int len, u32 cctl)
699 {
700 struct pl08x_lli *llis_va = bd->txd->llis_va;
701 dma_addr_t llis_bus = bd->txd->llis_bus;
702
703 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
704
705 llis_va[num_llis].cctl = cctl;
706 llis_va[num_llis].src = bd->srcbus.addr;
707 llis_va[num_llis].dst = bd->dstbus.addr;
708 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
709 sizeof(struct pl08x_lli);
710 llis_va[num_llis].lli |= bd->lli_bus;
711
712 if (cctl & PL080_CONTROL_SRC_INCR)
713 bd->srcbus.addr += len;
714 if (cctl & PL080_CONTROL_DST_INCR)
715 bd->dstbus.addr += len;
716
717 BUG_ON(bd->remainder < len);
718
719 bd->remainder -= len;
720 }
721
722 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
723 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
724 {
725 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
726 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
727 (*total_bytes) += len;
728 }
729
730 /*
731 * This fills in the table of LLIs for the transfer descriptor
732 * Note that we assume we never have to change the burst sizes
733 * Return 0 for error
734 */
735 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
736 struct pl08x_txd *txd)
737 {
738 struct pl08x_bus_data *mbus, *sbus;
739 struct pl08x_lli_build_data bd;
740 int num_llis = 0;
741 u32 cctl, early_bytes = 0;
742 size_t max_bytes_per_lli, total_bytes;
743 struct pl08x_lli *llis_va;
744 struct pl08x_sg *dsg;
745
746 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
747 if (!txd->llis_va) {
748 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
749 return 0;
750 }
751
752 pl08x->pool_ctr++;
753
754 bd.txd = txd;
755 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
756 cctl = txd->cctl;
757
758 /* Find maximum width of the source bus */
759 bd.srcbus.maxwidth =
760 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
761 PL080_CONTROL_SWIDTH_SHIFT);
762
763 /* Find maximum width of the destination bus */
764 bd.dstbus.maxwidth =
765 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
766 PL080_CONTROL_DWIDTH_SHIFT);
767
768 list_for_each_entry(dsg, &txd->dsg_list, node) {
769 total_bytes = 0;
770 cctl = txd->cctl;
771
772 bd.srcbus.addr = dsg->src_addr;
773 bd.dstbus.addr = dsg->dst_addr;
774 bd.remainder = dsg->len;
775 bd.srcbus.buswidth = bd.srcbus.maxwidth;
776 bd.dstbus.buswidth = bd.dstbus.maxwidth;
777
778 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
779
780 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
781 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
782 bd.srcbus.buswidth,
783 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
784 bd.dstbus.buswidth,
785 bd.remainder);
786 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
787 mbus == &bd.srcbus ? "src" : "dst",
788 sbus == &bd.srcbus ? "src" : "dst");
789
790 /*
791 * Zero length is only allowed if all these requirements are
792 * met:
793 * - flow controller is peripheral.
794 * - src.addr is aligned to src.width
795 * - dst.addr is aligned to dst.width
796 *
797 * sg_len == 1 should be true, as there can be two cases here:
798 *
799 * - Memory addresses are contiguous and are not scattered.
800 * Here, Only one sg will be passed by user driver, with
801 * memory address and zero length. We pass this to controller
802 * and after the transfer it will receive the last burst
803 * request from peripheral and so transfer finishes.
804 *
805 * - Memory addresses are scattered and are not contiguous.
806 * Here, Obviously as DMA controller doesn't know when a lli's
807 * transfer gets over, it can't load next lli. So in this
808 * case, there has to be an assumption that only one lli is
809 * supported. Thus, we can't have scattered addresses.
810 */
811 if (!bd.remainder) {
812 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
813 PL080_CONFIG_FLOW_CONTROL_SHIFT;
814 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
815 (fc <= PL080_FLOW_SRC2DST_SRC))) {
816 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
817 __func__);
818 return 0;
819 }
820
821 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
822 (bd.dstbus.addr % bd.dstbus.buswidth)) {
823 dev_err(&pl08x->adev->dev,
824 "%s src & dst address must be aligned to src"
825 " & dst width if peripheral is flow controller",
826 __func__);
827 return 0;
828 }
829
830 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
831 bd.dstbus.buswidth, 0);
832 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
833 break;
834 }
835
836 /*
837 * Send byte by byte for following cases
838 * - Less than a bus width available
839 * - until master bus is aligned
840 */
841 if (bd.remainder < mbus->buswidth)
842 early_bytes = bd.remainder;
843 else if ((mbus->addr) % (mbus->buswidth)) {
844 early_bytes = mbus->buswidth - (mbus->addr) %
845 (mbus->buswidth);
846 if ((bd.remainder - early_bytes) < mbus->buswidth)
847 early_bytes = bd.remainder;
848 }
849
850 if (early_bytes) {
851 dev_vdbg(&pl08x->adev->dev,
852 "%s byte width LLIs (remain 0x%08x)\n",
853 __func__, bd.remainder);
854 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
855 &total_bytes);
856 }
857
858 if (bd.remainder) {
859 /*
860 * Master now aligned
861 * - if slave is not then we must set its width down
862 */
863 if (sbus->addr % sbus->buswidth) {
864 dev_dbg(&pl08x->adev->dev,
865 "%s set down bus width to one byte\n",
866 __func__);
867
868 sbus->buswidth = 1;
869 }
870
871 /*
872 * Bytes transferred = tsize * src width, not
873 * MIN(buswidths)
874 */
875 max_bytes_per_lli = bd.srcbus.buswidth *
876 PL080_CONTROL_TRANSFER_SIZE_MASK;
877 dev_vdbg(&pl08x->adev->dev,
878 "%s max bytes per lli = %zu\n",
879 __func__, max_bytes_per_lli);
880
881 /*
882 * Make largest possible LLIs until less than one bus
883 * width left
884 */
885 while (bd.remainder > (mbus->buswidth - 1)) {
886 size_t lli_len, tsize, width;
887
888 /*
889 * If enough left try to send max possible,
890 * otherwise try to send the remainder
891 */
892 lli_len = min(bd.remainder, max_bytes_per_lli);
893
894 /*
895 * Check against maximum bus alignment:
896 * Calculate actual transfer size in relation to
897 * bus width an get a maximum remainder of the
898 * highest bus width - 1
899 */
900 width = max(mbus->buswidth, sbus->buswidth);
901 lli_len = (lli_len / width) * width;
902 tsize = lli_len / bd.srcbus.buswidth;
903
904 dev_vdbg(&pl08x->adev->dev,
905 "%s fill lli with single lli chunk of "
906 "size 0x%08zx (remainder 0x%08zx)\n",
907 __func__, lli_len, bd.remainder);
908
909 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
910 bd.dstbus.buswidth, tsize);
911 pl08x_fill_lli_for_desc(&bd, num_llis++,
912 lli_len, cctl);
913 total_bytes += lli_len;
914 }
915
916 /*
917 * Send any odd bytes
918 */
919 if (bd.remainder) {
920 dev_vdbg(&pl08x->adev->dev,
921 "%s align with boundary, send odd bytes (remain %zu)\n",
922 __func__, bd.remainder);
923 prep_byte_width_lli(&bd, &cctl, bd.remainder,
924 num_llis++, &total_bytes);
925 }
926 }
927
928 if (total_bytes != dsg->len) {
929 dev_err(&pl08x->adev->dev,
930 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
931 __func__, total_bytes, dsg->len);
932 return 0;
933 }
934
935 if (num_llis >= MAX_NUM_TSFR_LLIS) {
936 dev_err(&pl08x->adev->dev,
937 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
938 __func__, (u32) MAX_NUM_TSFR_LLIS);
939 return 0;
940 }
941 }
942
943 llis_va = txd->llis_va;
944 /* The final LLI terminates the LLI. */
945 llis_va[num_llis - 1].lli = 0;
946 /* The final LLI element shall also fire an interrupt. */
947 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
948
949 #ifdef VERBOSE_DEBUG
950 {
951 int i;
952
953 dev_vdbg(&pl08x->adev->dev,
954 "%-3s %-9s %-10s %-10s %-10s %s\n",
955 "lli", "", "csrc", "cdst", "clli", "cctl");
956 for (i = 0; i < num_llis; i++) {
957 dev_vdbg(&pl08x->adev->dev,
958 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
959 i, &llis_va[i], llis_va[i].src,
960 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
961 );
962 }
963 }
964 #endif
965
966 return num_llis;
967 }
968
969 /* You should call this with the struct pl08x lock held */
970 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
971 struct pl08x_txd *txd)
972 {
973 struct pl08x_sg *dsg, *_dsg;
974
975 /* Free the LLI */
976 if (txd->llis_va)
977 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
978
979 pl08x->pool_ctr--;
980
981 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
982 list_del(&dsg->node);
983 kfree(dsg);
984 }
985
986 kfree(txd);
987 }
988
989 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
990 struct pl08x_dma_chan *plchan)
991 {
992 struct pl08x_txd *txdi = NULL;
993 struct pl08x_txd *next;
994
995 if (!list_empty(&plchan->pend_list)) {
996 list_for_each_entry_safe(txdi,
997 next, &plchan->pend_list, node) {
998 pl08x_release_mux(plchan);
999 list_del(&txdi->node);
1000 pl08x_free_txd(pl08x, txdi);
1001 }
1002 }
1003 }
1004
1005 /*
1006 * The DMA ENGINE API
1007 */
1008 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1009 {
1010 return 0;
1011 }
1012
1013 static void pl08x_free_chan_resources(struct dma_chan *chan)
1014 {
1015 }
1016
1017 /*
1018 * This should be called with the channel plchan->lock held
1019 */
1020 static int prep_phy_channel(struct pl08x_dma_chan *plchan)
1021 {
1022 struct pl08x_driver_data *pl08x = plchan->host;
1023 struct pl08x_phy_chan *ch;
1024
1025 /* Check if we already have a channel */
1026 if (plchan->phychan) {
1027 ch = plchan->phychan;
1028 goto got_channel;
1029 }
1030
1031 ch = pl08x_get_phy_channel(pl08x, plchan);
1032 if (!ch) {
1033 /* No physical channel available, cope with it */
1034 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
1035 return -EBUSY;
1036 }
1037
1038 plchan->phychan = ch;
1039 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
1040 ch->id, plchan->name);
1041
1042 got_channel:
1043 plchan->phychan_hold++;
1044
1045 return 0;
1046 }
1047
1048 static void release_phy_channel(struct pl08x_dma_chan *plchan)
1049 {
1050 struct pl08x_driver_data *pl08x = plchan->host;
1051
1052 pl08x_put_phy_channel(pl08x, plchan->phychan);
1053 plchan->phychan = NULL;
1054 }
1055
1056 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1057 {
1058 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1059 struct pl08x_txd *txd = to_pl08x_txd(tx);
1060 unsigned long flags;
1061 dma_cookie_t cookie;
1062
1063 spin_lock_irqsave(&plchan->lock, flags);
1064 cookie = dma_cookie_assign(tx);
1065
1066 /* Put this onto the pending list */
1067 list_add_tail(&txd->node, &plchan->pend_list);
1068
1069 /*
1070 * If there was no physical channel available for this memcpy,
1071 * stack the request up and indicate that the channel is waiting
1072 * for a free physical channel.
1073 */
1074 if (!plchan->slave && !plchan->phychan) {
1075 /* Do this memcpy whenever there is a channel ready */
1076 plchan->state = PL08X_CHAN_WAITING;
1077 plchan->waiting = txd;
1078 } else {
1079 plchan->phychan_hold--;
1080 }
1081
1082 spin_unlock_irqrestore(&plchan->lock, flags);
1083
1084 return cookie;
1085 }
1086
1087 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1088 struct dma_chan *chan, unsigned long flags)
1089 {
1090 struct dma_async_tx_descriptor *retval = NULL;
1091
1092 return retval;
1093 }
1094
1095 /*
1096 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1097 * If slaves are relying on interrupts to signal completion this function
1098 * must not be called with interrupts disabled.
1099 */
1100 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1101 dma_cookie_t cookie, struct dma_tx_state *txstate)
1102 {
1103 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1104 enum dma_status ret;
1105
1106 ret = dma_cookie_status(chan, cookie, txstate);
1107 if (ret == DMA_SUCCESS)
1108 return ret;
1109
1110 /*
1111 * This cookie not complete yet
1112 * Get number of bytes left in the active transactions and queue
1113 */
1114 dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1115
1116 if (plchan->state == PL08X_CHAN_PAUSED)
1117 return DMA_PAUSED;
1118
1119 /* Whether waiting or running, we're in progress */
1120 return DMA_IN_PROGRESS;
1121 }
1122
1123 /* PrimeCell DMA extension */
1124 struct burst_table {
1125 u32 burstwords;
1126 u32 reg;
1127 };
1128
1129 static const struct burst_table burst_sizes[] = {
1130 {
1131 .burstwords = 256,
1132 .reg = PL080_BSIZE_256,
1133 },
1134 {
1135 .burstwords = 128,
1136 .reg = PL080_BSIZE_128,
1137 },
1138 {
1139 .burstwords = 64,
1140 .reg = PL080_BSIZE_64,
1141 },
1142 {
1143 .burstwords = 32,
1144 .reg = PL080_BSIZE_32,
1145 },
1146 {
1147 .burstwords = 16,
1148 .reg = PL080_BSIZE_16,
1149 },
1150 {
1151 .burstwords = 8,
1152 .reg = PL080_BSIZE_8,
1153 },
1154 {
1155 .burstwords = 4,
1156 .reg = PL080_BSIZE_4,
1157 },
1158 {
1159 .burstwords = 0,
1160 .reg = PL080_BSIZE_1,
1161 },
1162 };
1163
1164 /*
1165 * Given the source and destination available bus masks, select which
1166 * will be routed to each port. We try to have source and destination
1167 * on separate ports, but always respect the allowable settings.
1168 */
1169 static u32 pl08x_select_bus(u8 src, u8 dst)
1170 {
1171 u32 cctl = 0;
1172
1173 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1174 cctl |= PL080_CONTROL_DST_AHB2;
1175 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1176 cctl |= PL080_CONTROL_SRC_AHB2;
1177
1178 return cctl;
1179 }
1180
1181 static u32 pl08x_cctl(u32 cctl)
1182 {
1183 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1184 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1185 PL080_CONTROL_PROT_MASK);
1186
1187 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1188 return cctl | PL080_CONTROL_PROT_SYS;
1189 }
1190
1191 static u32 pl08x_width(enum dma_slave_buswidth width)
1192 {
1193 switch (width) {
1194 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1195 return PL080_WIDTH_8BIT;
1196 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1197 return PL080_WIDTH_16BIT;
1198 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1199 return PL080_WIDTH_32BIT;
1200 default:
1201 return ~0;
1202 }
1203 }
1204
1205 static u32 pl08x_burst(u32 maxburst)
1206 {
1207 int i;
1208
1209 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1210 if (burst_sizes[i].burstwords <= maxburst)
1211 break;
1212
1213 return burst_sizes[i].reg;
1214 }
1215
1216 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1217 enum dma_slave_buswidth addr_width, u32 maxburst)
1218 {
1219 u32 width, burst, cctl = 0;
1220
1221 width = pl08x_width(addr_width);
1222 if (width == ~0)
1223 return ~0;
1224
1225 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1226 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1227
1228 /*
1229 * If this channel will only request single transfers, set this
1230 * down to ONE element. Also select one element if no maxburst
1231 * is specified.
1232 */
1233 if (plchan->cd->single)
1234 maxburst = 1;
1235
1236 burst = pl08x_burst(maxburst);
1237 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1238 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1239
1240 return pl08x_cctl(cctl);
1241 }
1242
1243 static int dma_set_runtime_config(struct dma_chan *chan,
1244 struct dma_slave_config *config)
1245 {
1246 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1247
1248 if (!plchan->slave)
1249 return -EINVAL;
1250
1251 /* Reject definitely invalid configurations */
1252 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1253 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1254 return -EINVAL;
1255
1256 plchan->cfg = *config;
1257
1258 return 0;
1259 }
1260
1261 /*
1262 * Slave transactions callback to the slave device to allow
1263 * synchronization of slave DMA signals with the DMAC enable
1264 */
1265 static void pl08x_issue_pending(struct dma_chan *chan)
1266 {
1267 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1268 unsigned long flags;
1269
1270 spin_lock_irqsave(&plchan->lock, flags);
1271 /* Something is already active, or we're waiting for a channel... */
1272 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1273 spin_unlock_irqrestore(&plchan->lock, flags);
1274 return;
1275 }
1276
1277 /* Take the first element in the queue and execute it */
1278 if (!list_empty(&plchan->pend_list)) {
1279 struct pl08x_txd *next;
1280
1281 next = list_first_entry(&plchan->pend_list,
1282 struct pl08x_txd,
1283 node);
1284 list_del(&next->node);
1285 plchan->state = PL08X_CHAN_RUNNING;
1286
1287 pl08x_start_txd(plchan, next);
1288 }
1289
1290 spin_unlock_irqrestore(&plchan->lock, flags);
1291 }
1292
1293 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1294 struct pl08x_txd *txd)
1295 {
1296 struct pl08x_driver_data *pl08x = plchan->host;
1297 unsigned long flags;
1298 int num_llis, ret;
1299
1300 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1301 if (!num_llis) {
1302 spin_lock_irqsave(&plchan->lock, flags);
1303 pl08x_free_txd(pl08x, txd);
1304 spin_unlock_irqrestore(&plchan->lock, flags);
1305 return -EINVAL;
1306 }
1307
1308 spin_lock_irqsave(&plchan->lock, flags);
1309
1310 /*
1311 * See if we already have a physical channel allocated,
1312 * else this is the time to try to get one.
1313 */
1314 ret = prep_phy_channel(plchan);
1315 if (ret) {
1316 /*
1317 * No physical channel was available.
1318 *
1319 * memcpy transfers can be sorted out at submission time.
1320 */
1321 if (plchan->slave) {
1322 pl08x_free_txd_list(pl08x, plchan);
1323 pl08x_free_txd(pl08x, txd);
1324 spin_unlock_irqrestore(&plchan->lock, flags);
1325 return -EBUSY;
1326 }
1327 } else
1328 /*
1329 * Else we're all set, paused and ready to roll, status
1330 * will switch to PL08X_CHAN_RUNNING when we call
1331 * issue_pending(). If there is something running on the
1332 * channel already we don't change its state.
1333 */
1334 if (plchan->state == PL08X_CHAN_IDLE)
1335 plchan->state = PL08X_CHAN_PAUSED;
1336
1337 spin_unlock_irqrestore(&plchan->lock, flags);
1338
1339 return 0;
1340 }
1341
1342 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1343 unsigned long flags)
1344 {
1345 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1346
1347 if (txd) {
1348 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1349 txd->tx.flags = flags;
1350 txd->tx.tx_submit = pl08x_tx_submit;
1351 INIT_LIST_HEAD(&txd->node);
1352 INIT_LIST_HEAD(&txd->dsg_list);
1353
1354 /* Always enable error and terminal interrupts */
1355 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1356 PL080_CONFIG_TC_IRQ_MASK;
1357 }
1358 return txd;
1359 }
1360
1361 /*
1362 * Initialize a descriptor to be used by memcpy submit
1363 */
1364 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1365 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1366 size_t len, unsigned long flags)
1367 {
1368 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1369 struct pl08x_driver_data *pl08x = plchan->host;
1370 struct pl08x_txd *txd;
1371 struct pl08x_sg *dsg;
1372 int ret;
1373
1374 txd = pl08x_get_txd(plchan, flags);
1375 if (!txd) {
1376 dev_err(&pl08x->adev->dev,
1377 "%s no memory for descriptor\n", __func__);
1378 return NULL;
1379 }
1380
1381 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1382 if (!dsg) {
1383 pl08x_free_txd(pl08x, txd);
1384 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1385 __func__);
1386 return NULL;
1387 }
1388 list_add_tail(&dsg->node, &txd->dsg_list);
1389
1390 dsg->src_addr = src;
1391 dsg->dst_addr = dest;
1392 dsg->len = len;
1393
1394 /* Set platform data for m2m */
1395 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1396 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1397 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1398
1399 /* Both to be incremented or the code will break */
1400 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1401
1402 if (pl08x->vd->dualmaster)
1403 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1404 pl08x->mem_buses);
1405
1406 ret = pl08x_prep_channel_resources(plchan, txd);
1407 if (ret)
1408 return NULL;
1409
1410 return &txd->tx;
1411 }
1412
1413 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1414 struct dma_chan *chan, struct scatterlist *sgl,
1415 unsigned int sg_len, enum dma_transfer_direction direction,
1416 unsigned long flags, void *context)
1417 {
1418 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1419 struct pl08x_driver_data *pl08x = plchan->host;
1420 struct pl08x_txd *txd;
1421 struct pl08x_sg *dsg;
1422 struct scatterlist *sg;
1423 enum dma_slave_buswidth addr_width;
1424 dma_addr_t slave_addr;
1425 int ret, tmp;
1426 u8 src_buses, dst_buses;
1427 u32 maxburst, cctl;
1428
1429 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1430 __func__, sg_dma_len(sgl), plchan->name);
1431
1432 txd = pl08x_get_txd(plchan, flags);
1433 if (!txd) {
1434 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1435 return NULL;
1436 }
1437
1438 /*
1439 * Set up addresses, the PrimeCell configured address
1440 * will take precedence since this may configure the
1441 * channel target address dynamically at runtime.
1442 */
1443 if (direction == DMA_MEM_TO_DEV) {
1444 cctl = PL080_CONTROL_SRC_INCR;
1445 slave_addr = plchan->cfg.dst_addr;
1446 addr_width = plchan->cfg.dst_addr_width;
1447 maxburst = plchan->cfg.dst_maxburst;
1448 src_buses = pl08x->mem_buses;
1449 dst_buses = plchan->cd->periph_buses;
1450 } else if (direction == DMA_DEV_TO_MEM) {
1451 cctl = PL080_CONTROL_DST_INCR;
1452 slave_addr = plchan->cfg.src_addr;
1453 addr_width = plchan->cfg.src_addr_width;
1454 maxburst = plchan->cfg.src_maxburst;
1455 src_buses = plchan->cd->periph_buses;
1456 dst_buses = pl08x->mem_buses;
1457 } else {
1458 pl08x_free_txd(pl08x, txd);
1459 dev_err(&pl08x->adev->dev,
1460 "%s direction unsupported\n", __func__);
1461 return NULL;
1462 }
1463
1464 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1465 if (cctl == ~0) {
1466 pl08x_free_txd(pl08x, txd);
1467 dev_err(&pl08x->adev->dev,
1468 "DMA slave configuration botched?\n");
1469 return NULL;
1470 }
1471
1472 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1473
1474 if (plchan->cfg.device_fc)
1475 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1476 PL080_FLOW_PER2MEM_PER;
1477 else
1478 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1479 PL080_FLOW_PER2MEM;
1480
1481 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1482
1483 ret = pl08x_request_mux(plchan);
1484 if (ret < 0) {
1485 pl08x_free_txd(pl08x, txd);
1486 dev_dbg(&pl08x->adev->dev,
1487 "unable to mux for transfer on %s due to platform restrictions\n",
1488 plchan->name);
1489 return NULL;
1490 }
1491
1492 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1493 plchan->signal, plchan->name);
1494
1495 /* Assign the flow control signal to this channel */
1496 if (direction == DMA_MEM_TO_DEV)
1497 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1498 else
1499 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1500
1501 for_each_sg(sgl, sg, sg_len, tmp) {
1502 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1503 if (!dsg) {
1504 pl08x_release_mux(plchan);
1505 pl08x_free_txd(pl08x, txd);
1506 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1507 __func__);
1508 return NULL;
1509 }
1510 list_add_tail(&dsg->node, &txd->dsg_list);
1511
1512 dsg->len = sg_dma_len(sg);
1513 if (direction == DMA_MEM_TO_DEV) {
1514 dsg->src_addr = sg_dma_address(sg);
1515 dsg->dst_addr = slave_addr;
1516 } else {
1517 dsg->src_addr = slave_addr;
1518 dsg->dst_addr = sg_dma_address(sg);
1519 }
1520 }
1521
1522 ret = pl08x_prep_channel_resources(plchan, txd);
1523 if (ret)
1524 return NULL;
1525
1526 return &txd->tx;
1527 }
1528
1529 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1530 unsigned long arg)
1531 {
1532 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1533 struct pl08x_driver_data *pl08x = plchan->host;
1534 unsigned long flags;
1535 int ret = 0;
1536
1537 /* Controls applicable to inactive channels */
1538 if (cmd == DMA_SLAVE_CONFIG) {
1539 return dma_set_runtime_config(chan,
1540 (struct dma_slave_config *)arg);
1541 }
1542
1543 /*
1544 * Anything succeeds on channels with no physical allocation and
1545 * no queued transfers.
1546 */
1547 spin_lock_irqsave(&plchan->lock, flags);
1548 if (!plchan->phychan && !plchan->at) {
1549 spin_unlock_irqrestore(&plchan->lock, flags);
1550 return 0;
1551 }
1552
1553 switch (cmd) {
1554 case DMA_TERMINATE_ALL:
1555 plchan->state = PL08X_CHAN_IDLE;
1556
1557 if (plchan->phychan) {
1558 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1559
1560 /*
1561 * Mark physical channel as free and free any slave
1562 * signal
1563 */
1564 release_phy_channel(plchan);
1565 plchan->phychan_hold = 0;
1566 }
1567 /* Dequeue jobs and free LLIs */
1568 if (plchan->at) {
1569 /* Killing this one off, release its mux */
1570 pl08x_release_mux(plchan);
1571 pl08x_free_txd(pl08x, plchan->at);
1572 plchan->at = NULL;
1573 }
1574 /* Dequeue jobs not yet fired as well */
1575 pl08x_free_txd_list(pl08x, plchan);
1576 break;
1577 case DMA_PAUSE:
1578 pl08x_pause_phy_chan(plchan->phychan);
1579 plchan->state = PL08X_CHAN_PAUSED;
1580 break;
1581 case DMA_RESUME:
1582 pl08x_resume_phy_chan(plchan->phychan);
1583 plchan->state = PL08X_CHAN_RUNNING;
1584 break;
1585 default:
1586 /* Unknown command */
1587 ret = -ENXIO;
1588 break;
1589 }
1590
1591 spin_unlock_irqrestore(&plchan->lock, flags);
1592
1593 return ret;
1594 }
1595
1596 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1597 {
1598 struct pl08x_dma_chan *plchan;
1599 char *name = chan_id;
1600
1601 /* Reject channels for devices not bound to this driver */
1602 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1603 return false;
1604
1605 plchan = to_pl08x_chan(chan);
1606
1607 /* Check that the channel is not taken! */
1608 if (!strcmp(plchan->name, name))
1609 return true;
1610
1611 return false;
1612 }
1613
1614 /*
1615 * Just check that the device is there and active
1616 * TODO: turn this bit on/off depending on the number of physical channels
1617 * actually used, if it is zero... well shut it off. That will save some
1618 * power. Cut the clock at the same time.
1619 */
1620 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1621 {
1622 /* The Nomadik variant does not have the config register */
1623 if (pl08x->vd->nomadik)
1624 return;
1625 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1626 }
1627
1628 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1629 {
1630 struct device *dev = txd->tx.chan->device->dev;
1631 struct pl08x_sg *dsg;
1632
1633 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1634 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1635 list_for_each_entry(dsg, &txd->dsg_list, node)
1636 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1637 DMA_TO_DEVICE);
1638 else {
1639 list_for_each_entry(dsg, &txd->dsg_list, node)
1640 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1641 DMA_TO_DEVICE);
1642 }
1643 }
1644 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1645 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1646 list_for_each_entry(dsg, &txd->dsg_list, node)
1647 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1648 DMA_FROM_DEVICE);
1649 else
1650 list_for_each_entry(dsg, &txd->dsg_list, node)
1651 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1652 DMA_FROM_DEVICE);
1653 }
1654 }
1655
1656 static void pl08x_tasklet(unsigned long data)
1657 {
1658 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1659 struct pl08x_driver_data *pl08x = plchan->host;
1660 unsigned long flags;
1661 LIST_HEAD(head);
1662
1663 spin_lock_irqsave(&plchan->lock, flags);
1664 list_splice_tail_init(&plchan->done_list, &head);
1665
1666 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1667 if (!list_empty(&plchan->pend_list)) {
1668 struct pl08x_txd *next;
1669
1670 next = list_first_entry(&plchan->pend_list,
1671 struct pl08x_txd,
1672 node);
1673 list_del(&next->node);
1674
1675 pl08x_start_txd(plchan, next);
1676 } else if (plchan->phychan_hold) {
1677 /*
1678 * This channel is still in use - we have a new txd being
1679 * prepared and will soon be queued. Don't give up the
1680 * physical channel.
1681 */
1682 } else {
1683 struct pl08x_dma_chan *waiting = NULL;
1684
1685 /*
1686 * No more jobs, so free up the physical channel
1687 */
1688 release_phy_channel(plchan);
1689 plchan->state = PL08X_CHAN_IDLE;
1690
1691 /*
1692 * And NOW before anyone else can grab that free:d up
1693 * physical channel, see if there is some memcpy pending
1694 * that seriously needs to start because of being stacked
1695 * up while we were choking the physical channels with data.
1696 */
1697 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1698 chan.device_node) {
1699 if (waiting->state == PL08X_CHAN_WAITING &&
1700 waiting->waiting != NULL) {
1701 int ret;
1702
1703 /* This should REALLY not fail now */
1704 ret = prep_phy_channel(waiting);
1705 BUG_ON(ret);
1706 waiting->phychan_hold--;
1707 waiting->state = PL08X_CHAN_RUNNING;
1708 waiting->waiting = NULL;
1709 pl08x_issue_pending(&waiting->chan);
1710 break;
1711 }
1712 }
1713 }
1714
1715 spin_unlock_irqrestore(&plchan->lock, flags);
1716
1717 while (!list_empty(&head)) {
1718 struct pl08x_txd *txd = list_first_entry(&head,
1719 struct pl08x_txd, node);
1720 dma_async_tx_callback callback = txd->tx.callback;
1721 void *callback_param = txd->tx.callback_param;
1722
1723 list_del(&txd->node);
1724
1725 /* Don't try to unmap buffers on slave channels */
1726 if (!plchan->slave)
1727 pl08x_unmap_buffers(txd);
1728
1729 /* Free the descriptor */
1730 spin_lock_irqsave(&plchan->lock, flags);
1731 pl08x_free_txd(pl08x, txd);
1732 spin_unlock_irqrestore(&plchan->lock, flags);
1733
1734 /* Callback to signal completion */
1735 if (callback)
1736 callback(callback_param);
1737 }
1738 }
1739
1740 static irqreturn_t pl08x_irq(int irq, void *dev)
1741 {
1742 struct pl08x_driver_data *pl08x = dev;
1743 u32 mask = 0, err, tc, i;
1744
1745 /* check & clear - ERR & TC interrupts */
1746 err = readl(pl08x->base + PL080_ERR_STATUS);
1747 if (err) {
1748 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1749 __func__, err);
1750 writel(err, pl08x->base + PL080_ERR_CLEAR);
1751 }
1752 tc = readl(pl08x->base + PL080_TC_STATUS);
1753 if (tc)
1754 writel(tc, pl08x->base + PL080_TC_CLEAR);
1755
1756 if (!err && !tc)
1757 return IRQ_NONE;
1758
1759 for (i = 0; i < pl08x->vd->channels; i++) {
1760 if (((1 << i) & err) || ((1 << i) & tc)) {
1761 /* Locate physical channel */
1762 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1763 struct pl08x_dma_chan *plchan = phychan->serving;
1764 struct pl08x_txd *tx;
1765
1766 if (!plchan) {
1767 dev_err(&pl08x->adev->dev,
1768 "%s Error TC interrupt on unused channel: 0x%08x\n",
1769 __func__, i);
1770 continue;
1771 }
1772
1773 spin_lock(&plchan->lock);
1774 tx = plchan->at;
1775 if (tx) {
1776 plchan->at = NULL;
1777 /*
1778 * This descriptor is done, release its mux
1779 * reservation.
1780 */
1781 pl08x_release_mux(plchan);
1782 dma_cookie_complete(&tx->tx);
1783 list_add_tail(&tx->node, &plchan->done_list);
1784 }
1785 spin_unlock(&plchan->lock);
1786
1787 /* Schedule tasklet on this channel */
1788 tasklet_schedule(&plchan->tasklet);
1789 mask |= (1 << i);
1790 }
1791 }
1792
1793 return mask ? IRQ_HANDLED : IRQ_NONE;
1794 }
1795
1796 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1797 {
1798 chan->slave = true;
1799 chan->name = chan->cd->bus_id;
1800 chan->cfg.src_addr = chan->cd->addr;
1801 chan->cfg.dst_addr = chan->cd->addr;
1802 }
1803
1804 /*
1805 * Initialise the DMAC memcpy/slave channels.
1806 * Make a local wrapper to hold required data
1807 */
1808 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1809 struct dma_device *dmadev, unsigned int channels, bool slave)
1810 {
1811 struct pl08x_dma_chan *chan;
1812 int i;
1813
1814 INIT_LIST_HEAD(&dmadev->channels);
1815
1816 /*
1817 * Register as many many memcpy as we have physical channels,
1818 * we won't always be able to use all but the code will have
1819 * to cope with that situation.
1820 */
1821 for (i = 0; i < channels; i++) {
1822 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1823 if (!chan) {
1824 dev_err(&pl08x->adev->dev,
1825 "%s no memory for channel\n", __func__);
1826 return -ENOMEM;
1827 }
1828
1829 chan->host = pl08x;
1830 chan->state = PL08X_CHAN_IDLE;
1831 chan->signal = -1;
1832
1833 if (slave) {
1834 chan->cd = &pl08x->pd->slave_channels[i];
1835 pl08x_dma_slave_init(chan);
1836 } else {
1837 chan->cd = &pl08x->pd->memcpy_channel;
1838 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1839 if (!chan->name) {
1840 kfree(chan);
1841 return -ENOMEM;
1842 }
1843 }
1844 dev_dbg(&pl08x->adev->dev,
1845 "initialize virtual channel \"%s\"\n",
1846 chan->name);
1847
1848 chan->chan.device = dmadev;
1849 dma_cookie_init(&chan->chan);
1850
1851 spin_lock_init(&chan->lock);
1852 INIT_LIST_HEAD(&chan->pend_list);
1853 INIT_LIST_HEAD(&chan->done_list);
1854 tasklet_init(&chan->tasklet, pl08x_tasklet,
1855 (unsigned long) chan);
1856
1857 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1858 }
1859 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1860 i, slave ? "slave" : "memcpy");
1861 return i;
1862 }
1863
1864 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1865 {
1866 struct pl08x_dma_chan *chan = NULL;
1867 struct pl08x_dma_chan *next;
1868
1869 list_for_each_entry_safe(chan,
1870 next, &dmadev->channels, chan.device_node) {
1871 list_del(&chan->chan.device_node);
1872 kfree(chan);
1873 }
1874 }
1875
1876 #ifdef CONFIG_DEBUG_FS
1877 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1878 {
1879 switch (state) {
1880 case PL08X_CHAN_IDLE:
1881 return "idle";
1882 case PL08X_CHAN_RUNNING:
1883 return "running";
1884 case PL08X_CHAN_PAUSED:
1885 return "paused";
1886 case PL08X_CHAN_WAITING:
1887 return "waiting";
1888 default:
1889 break;
1890 }
1891 return "UNKNOWN STATE";
1892 }
1893
1894 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1895 {
1896 struct pl08x_driver_data *pl08x = s->private;
1897 struct pl08x_dma_chan *chan;
1898 struct pl08x_phy_chan *ch;
1899 unsigned long flags;
1900 int i;
1901
1902 seq_printf(s, "PL08x physical channels:\n");
1903 seq_printf(s, "CHANNEL:\tUSER:\n");
1904 seq_printf(s, "--------\t-----\n");
1905 for (i = 0; i < pl08x->vd->channels; i++) {
1906 struct pl08x_dma_chan *virt_chan;
1907
1908 ch = &pl08x->phy_chans[i];
1909
1910 spin_lock_irqsave(&ch->lock, flags);
1911 virt_chan = ch->serving;
1912
1913 seq_printf(s, "%d\t\t%s%s\n",
1914 ch->id,
1915 virt_chan ? virt_chan->name : "(none)",
1916 ch->locked ? " LOCKED" : "");
1917
1918 spin_unlock_irqrestore(&ch->lock, flags);
1919 }
1920
1921 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1922 seq_printf(s, "CHANNEL:\tSTATE:\n");
1923 seq_printf(s, "--------\t------\n");
1924 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1925 seq_printf(s, "%s\t\t%s\n", chan->name,
1926 pl08x_state_str(chan->state));
1927 }
1928
1929 seq_printf(s, "\nPL08x virtual slave channels:\n");
1930 seq_printf(s, "CHANNEL:\tSTATE:\n");
1931 seq_printf(s, "--------\t------\n");
1932 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1933 seq_printf(s, "%s\t\t%s\n", chan->name,
1934 pl08x_state_str(chan->state));
1935 }
1936
1937 return 0;
1938 }
1939
1940 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1941 {
1942 return single_open(file, pl08x_debugfs_show, inode->i_private);
1943 }
1944
1945 static const struct file_operations pl08x_debugfs_operations = {
1946 .open = pl08x_debugfs_open,
1947 .read = seq_read,
1948 .llseek = seq_lseek,
1949 .release = single_release,
1950 };
1951
1952 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1953 {
1954 /* Expose a simple debugfs interface to view all clocks */
1955 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1956 S_IFREG | S_IRUGO, NULL, pl08x,
1957 &pl08x_debugfs_operations);
1958 }
1959
1960 #else
1961 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1962 {
1963 }
1964 #endif
1965
1966 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1967 {
1968 struct pl08x_driver_data *pl08x;
1969 const struct vendor_data *vd = id->data;
1970 int ret = 0;
1971 int i;
1972
1973 ret = amba_request_regions(adev, NULL);
1974 if (ret)
1975 return ret;
1976
1977 /* Create the driver state holder */
1978 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1979 if (!pl08x) {
1980 ret = -ENOMEM;
1981 goto out_no_pl08x;
1982 }
1983
1984 /* Initialize memcpy engine */
1985 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1986 pl08x->memcpy.dev = &adev->dev;
1987 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1988 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1989 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1990 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1991 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1992 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1993 pl08x->memcpy.device_control = pl08x_control;
1994
1995 /* Initialize slave engine */
1996 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1997 pl08x->slave.dev = &adev->dev;
1998 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1999 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
2000 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
2001 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
2002 pl08x->slave.device_issue_pending = pl08x_issue_pending;
2003 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
2004 pl08x->slave.device_control = pl08x_control;
2005
2006 /* Get the platform data */
2007 pl08x->pd = dev_get_platdata(&adev->dev);
2008 if (!pl08x->pd) {
2009 dev_err(&adev->dev, "no platform data supplied\n");
2010 goto out_no_platdata;
2011 }
2012
2013 /* Assign useful pointers to the driver state */
2014 pl08x->adev = adev;
2015 pl08x->vd = vd;
2016
2017 /* By default, AHB1 only. If dualmaster, from platform */
2018 pl08x->lli_buses = PL08X_AHB1;
2019 pl08x->mem_buses = PL08X_AHB1;
2020 if (pl08x->vd->dualmaster) {
2021 pl08x->lli_buses = pl08x->pd->lli_buses;
2022 pl08x->mem_buses = pl08x->pd->mem_buses;
2023 }
2024
2025 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2026 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2027 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
2028 if (!pl08x->pool) {
2029 ret = -ENOMEM;
2030 goto out_no_lli_pool;
2031 }
2032
2033 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2034 if (!pl08x->base) {
2035 ret = -ENOMEM;
2036 goto out_no_ioremap;
2037 }
2038
2039 /* Turn on the PL08x */
2040 pl08x_ensure_on(pl08x);
2041
2042 /* Attach the interrupt handler */
2043 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2044 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2045
2046 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2047 DRIVER_NAME, pl08x);
2048 if (ret) {
2049 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2050 __func__, adev->irq[0]);
2051 goto out_no_irq;
2052 }
2053
2054 /* Initialize physical channels */
2055 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2056 GFP_KERNEL);
2057 if (!pl08x->phy_chans) {
2058 dev_err(&adev->dev, "%s failed to allocate "
2059 "physical channel holders\n",
2060 __func__);
2061 goto out_no_phychans;
2062 }
2063
2064 for (i = 0; i < vd->channels; i++) {
2065 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2066
2067 ch->id = i;
2068 ch->base = pl08x->base + PL080_Cx_BASE(i);
2069 spin_lock_init(&ch->lock);
2070
2071 /*
2072 * Nomadik variants can have channels that are locked
2073 * down for the secure world only. Lock up these channels
2074 * by perpetually serving a dummy virtual channel.
2075 */
2076 if (vd->nomadik) {
2077 u32 val;
2078
2079 val = readl(ch->base + PL080_CH_CONFIG);
2080 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2081 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2082 ch->locked = true;
2083 }
2084 }
2085
2086 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2087 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2088 }
2089
2090 /* Register as many memcpy channels as there are physical channels */
2091 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2092 pl08x->vd->channels, false);
2093 if (ret <= 0) {
2094 dev_warn(&pl08x->adev->dev,
2095 "%s failed to enumerate memcpy channels - %d\n",
2096 __func__, ret);
2097 goto out_no_memcpy;
2098 }
2099 pl08x->memcpy.chancnt = ret;
2100
2101 /* Register slave channels */
2102 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2103 pl08x->pd->num_slave_channels, true);
2104 if (ret <= 0) {
2105 dev_warn(&pl08x->adev->dev,
2106 "%s failed to enumerate slave channels - %d\n",
2107 __func__, ret);
2108 goto out_no_slave;
2109 }
2110 pl08x->slave.chancnt = ret;
2111
2112 ret = dma_async_device_register(&pl08x->memcpy);
2113 if (ret) {
2114 dev_warn(&pl08x->adev->dev,
2115 "%s failed to register memcpy as an async device - %d\n",
2116 __func__, ret);
2117 goto out_no_memcpy_reg;
2118 }
2119
2120 ret = dma_async_device_register(&pl08x->slave);
2121 if (ret) {
2122 dev_warn(&pl08x->adev->dev,
2123 "%s failed to register slave as an async device - %d\n",
2124 __func__, ret);
2125 goto out_no_slave_reg;
2126 }
2127
2128 amba_set_drvdata(adev, pl08x);
2129 init_pl08x_debugfs(pl08x);
2130 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2131 amba_part(adev), amba_rev(adev),
2132 (unsigned long long)adev->res.start, adev->irq[0]);
2133
2134 return 0;
2135
2136 out_no_slave_reg:
2137 dma_async_device_unregister(&pl08x->memcpy);
2138 out_no_memcpy_reg:
2139 pl08x_free_virtual_channels(&pl08x->slave);
2140 out_no_slave:
2141 pl08x_free_virtual_channels(&pl08x->memcpy);
2142 out_no_memcpy:
2143 kfree(pl08x->phy_chans);
2144 out_no_phychans:
2145 free_irq(adev->irq[0], pl08x);
2146 out_no_irq:
2147 iounmap(pl08x->base);
2148 out_no_ioremap:
2149 dma_pool_destroy(pl08x->pool);
2150 out_no_lli_pool:
2151 out_no_platdata:
2152 kfree(pl08x);
2153 out_no_pl08x:
2154 amba_release_regions(adev);
2155 return ret;
2156 }
2157
2158 /* PL080 has 8 channels and the PL080 have just 2 */
2159 static struct vendor_data vendor_pl080 = {
2160 .channels = 8,
2161 .dualmaster = true,
2162 };
2163
2164 static struct vendor_data vendor_nomadik = {
2165 .channels = 8,
2166 .dualmaster = true,
2167 .nomadik = true,
2168 };
2169
2170 static struct vendor_data vendor_pl081 = {
2171 .channels = 2,
2172 .dualmaster = false,
2173 };
2174
2175 static struct amba_id pl08x_ids[] = {
2176 /* PL080 */
2177 {
2178 .id = 0x00041080,
2179 .mask = 0x000fffff,
2180 .data = &vendor_pl080,
2181 },
2182 /* PL081 */
2183 {
2184 .id = 0x00041081,
2185 .mask = 0x000fffff,
2186 .data = &vendor_pl081,
2187 },
2188 /* Nomadik 8815 PL080 variant */
2189 {
2190 .id = 0x00280080,
2191 .mask = 0x00ffffff,
2192 .data = &vendor_nomadik,
2193 },
2194 { 0, 0 },
2195 };
2196
2197 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2198
2199 static struct amba_driver pl08x_amba_driver = {
2200 .drv.name = DRIVER_NAME,
2201 .id_table = pl08x_ids,
2202 .probe = pl08x_probe,
2203 };
2204
2205 static int __init pl08x_init(void)
2206 {
2207 int retval;
2208 retval = amba_driver_register(&pl08x_amba_driver);
2209 if (retval)
2210 printk(KERN_WARNING DRIVER_NAME
2211 "failed to register as an AMBA device (%d)\n",
2212 retval);
2213 return retval;
2214 }
2215 subsys_initcall(pl08x_init);
This page took 0.073658 seconds and 6 git commands to generate.