dmaengine: PL08x: re-jig the starting of txds
[deliverable/linux.git] / drivers / dma / amba-pl08x.c
1 /*
2 * Copyright (c) 2006 ARM Ltd.
3 * Copyright (c) 2010 ST-Ericsson SA
4 *
5 * Author: Peter Pearse <peter.pearse@arm.com>
6 * Author: Linus Walleij <linus.walleij@stericsson.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc., 59
20 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 *
22 * The full GNU General Public License is in this distribution in the file
23 * called COPYING.
24 *
25 * Documentation: ARM DDI 0196G == PL080
26 * Documentation: ARM DDI 0218E == PL081
27 *
28 * PL080 & PL081 both have 16 sets of DMA signals that can be routed to any
29 * channel.
30 *
31 * The PL080 has 8 channels available for simultaneous use, and the PL081
32 * has only two channels. So on these DMA controllers the number of channels
33 * and the number of incoming DMA signals are two totally different things.
34 * It is usually not possible to theoretically handle all physical signals,
35 * so a multiplexing scheme with possible denial of use is necessary.
36 *
37 * The PL080 has a dual bus master, PL081 has a single master.
38 *
39 * Memory to peripheral transfer may be visualized as
40 * Get data from memory to DMAC
41 * Until no data left
42 * On burst request from peripheral
43 * Destination burst from DMAC to peripheral
44 * Clear burst request
45 * Raise terminal count interrupt
46 *
47 * For peripherals with a FIFO:
48 * Source burst size == half the depth of the peripheral FIFO
49 * Destination burst size == the depth of the peripheral FIFO
50 *
51 * (Bursts are irrelevant for mem to mem transfers - there are no burst
52 * signals, the DMA controller will simply facilitate its AHB master.)
53 *
54 * ASSUMES default (little) endianness for DMA transfers
55 *
56 * The PL08x has two flow control settings:
57 * - DMAC flow control: the transfer size defines the number of transfers
58 * which occur for the current LLI entry, and the DMAC raises TC at the
59 * end of every LLI entry. Observed behaviour shows the DMAC listening
60 * to both the BREQ and SREQ signals (contrary to documented),
61 * transferring data if either is active. The LBREQ and LSREQ signals
62 * are ignored.
63 *
64 * - Peripheral flow control: the transfer size is ignored (and should be
65 * zero). The data is transferred from the current LLI entry, until
66 * after the final transfer signalled by LBREQ or LSREQ. The DMAC
67 * will then move to the next LLI entry.
68 *
69 * Global TODO:
70 * - Break out common code from arch/arm/mach-s3c64xx and share
71 */
72 #include <linux/amba/bus.h>
73 #include <linux/amba/pl08x.h>
74 #include <linux/debugfs.h>
75 #include <linux/delay.h>
76 #include <linux/device.h>
77 #include <linux/dmaengine.h>
78 #include <linux/dmapool.h>
79 #include <linux/dma-mapping.h>
80 #include <linux/init.h>
81 #include <linux/interrupt.h>
82 #include <linux/module.h>
83 #include <linux/pm_runtime.h>
84 #include <linux/seq_file.h>
85 #include <linux/slab.h>
86 #include <asm/hardware/pl080.h>
87
88 #include "dmaengine.h"
89
90 #define DRIVER_NAME "pl08xdmac"
91
92 static struct amba_driver pl08x_amba_driver;
93 struct pl08x_driver_data;
94
95 /**
96 * struct vendor_data - vendor-specific config parameters for PL08x derivatives
97 * @channels: the number of channels available in this variant
98 * @dualmaster: whether this version supports dual AHB masters or not.
99 * @nomadik: whether the channels have Nomadik security extension bits
100 * that need to be checked for permission before use and some registers are
101 * missing
102 */
103 struct vendor_data {
104 u8 channels;
105 bool dualmaster;
106 bool nomadik;
107 };
108
109 /*
110 * PL08X private data structures
111 * An LLI struct - see PL08x TRM. Note that next uses bit[0] as a bus bit,
112 * start & end do not - their bus bit info is in cctl. Also note that these
113 * are fixed 32-bit quantities.
114 */
115 struct pl08x_lli {
116 u32 src;
117 u32 dst;
118 u32 lli;
119 u32 cctl;
120 };
121
122 /**
123 * struct pl08x_bus_data - information of source or destination
124 * busses for a transfer
125 * @addr: current address
126 * @maxwidth: the maximum width of a transfer on this bus
127 * @buswidth: the width of this bus in bytes: 1, 2 or 4
128 */
129 struct pl08x_bus_data {
130 dma_addr_t addr;
131 u8 maxwidth;
132 u8 buswidth;
133 };
134
135 /**
136 * struct pl08x_phy_chan - holder for the physical channels
137 * @id: physical index to this channel
138 * @lock: a lock to use when altering an instance of this struct
139 * @serving: the virtual channel currently being served by this physical
140 * channel
141 * @locked: channel unavailable for the system, e.g. dedicated to secure
142 * world
143 */
144 struct pl08x_phy_chan {
145 unsigned int id;
146 void __iomem *base;
147 spinlock_t lock;
148 struct pl08x_dma_chan *serving;
149 bool locked;
150 };
151
152 /**
153 * struct pl08x_sg - structure containing data per sg
154 * @src_addr: src address of sg
155 * @dst_addr: dst address of sg
156 * @len: transfer len in bytes
157 * @node: node for txd's dsg_list
158 */
159 struct pl08x_sg {
160 dma_addr_t src_addr;
161 dma_addr_t dst_addr;
162 size_t len;
163 struct list_head node;
164 };
165
166 /**
167 * struct pl08x_txd - wrapper for struct dma_async_tx_descriptor
168 * @tx: async tx descriptor
169 * @node: node for txd list for channels
170 * @dsg_list: list of children sg's
171 * @llis_bus: DMA memory address (physical) start for the LLIs
172 * @llis_va: virtual memory address start for the LLIs
173 * @cctl: control reg values for current txd
174 * @ccfg: config reg values for current txd
175 */
176 struct pl08x_txd {
177 struct dma_async_tx_descriptor tx;
178 struct list_head node;
179 struct list_head dsg_list;
180 dma_addr_t llis_bus;
181 struct pl08x_lli *llis_va;
182 /* Default cctl value for LLIs */
183 u32 cctl;
184 /*
185 * Settings to be put into the physical channel when we
186 * trigger this txd. Other registers are in llis_va[0].
187 */
188 u32 ccfg;
189 };
190
191 /**
192 * struct pl08x_dma_chan_state - holds the PL08x specific virtual channel
193 * states
194 * @PL08X_CHAN_IDLE: the channel is idle
195 * @PL08X_CHAN_RUNNING: the channel has allocated a physical transport
196 * channel and is running a transfer on it
197 * @PL08X_CHAN_PAUSED: the channel has allocated a physical transport
198 * channel, but the transfer is currently paused
199 * @PL08X_CHAN_WAITING: the channel is waiting for a physical transport
200 * channel to become available (only pertains to memcpy channels)
201 */
202 enum pl08x_dma_chan_state {
203 PL08X_CHAN_IDLE,
204 PL08X_CHAN_RUNNING,
205 PL08X_CHAN_PAUSED,
206 PL08X_CHAN_WAITING,
207 };
208
209 /**
210 * struct pl08x_dma_chan - this structure wraps a DMA ENGINE channel
211 * @chan: wrappped abstract channel
212 * @phychan: the physical channel utilized by this channel, if there is one
213 * @phychan_hold: if non-zero, hold on to the physical channel even if we
214 * have no pending entries
215 * @tasklet: tasklet scheduled by the IRQ to handle actual work etc
216 * @name: name of channel
217 * @cd: channel platform data
218 * @runtime_addr: address for RX/TX according to the runtime config
219 * @pend_list: queued transactions pending on this channel
220 * @done_list: list of completed transactions
221 * @at: active transaction on this channel
222 * @lock: a lock for this channel data
223 * @host: a pointer to the host (internal use)
224 * @state: whether the channel is idle, paused, running etc
225 * @slave: whether this channel is a device (slave) or for memcpy
226 * @signal: the physical DMA request signal which this channel is using
227 * @mux_use: count of descriptors using this DMA request signal setting
228 */
229 struct pl08x_dma_chan {
230 struct dma_chan chan;
231 struct pl08x_phy_chan *phychan;
232 int phychan_hold;
233 struct tasklet_struct tasklet;
234 const char *name;
235 const struct pl08x_channel_data *cd;
236 struct dma_slave_config cfg;
237 struct list_head pend_list;
238 struct list_head done_list;
239 struct pl08x_txd *at;
240 spinlock_t lock;
241 struct pl08x_driver_data *host;
242 enum pl08x_dma_chan_state state;
243 bool slave;
244 int signal;
245 unsigned mux_use;
246 };
247
248 /**
249 * struct pl08x_driver_data - the local state holder for the PL08x
250 * @slave: slave engine for this instance
251 * @memcpy: memcpy engine for this instance
252 * @base: virtual memory base (remapped) for the PL08x
253 * @adev: the corresponding AMBA (PrimeCell) bus entry
254 * @vd: vendor data for this PL08x variant
255 * @pd: platform data passed in from the platform/machine
256 * @phy_chans: array of data for the physical channels
257 * @pool: a pool for the LLI descriptors
258 * @pool_ctr: counter of LLIs in the pool
259 * @lli_buses: bitmask to or in to LLI pointer selecting AHB port for LLI
260 * fetches
261 * @mem_buses: set to indicate memory transfers on AHB2.
262 * @lock: a spinlock for this struct
263 */
264 struct pl08x_driver_data {
265 struct dma_device slave;
266 struct dma_device memcpy;
267 void __iomem *base;
268 struct amba_device *adev;
269 const struct vendor_data *vd;
270 struct pl08x_platform_data *pd;
271 struct pl08x_phy_chan *phy_chans;
272 struct dma_pool *pool;
273 int pool_ctr;
274 u8 lli_buses;
275 u8 mem_buses;
276 };
277
278 /*
279 * PL08X specific defines
280 */
281
282 /* Size (bytes) of each LLI buffer allocated for one transfer */
283 # define PL08X_LLI_TSFR_SIZE 0x2000
284
285 /* Maximum times we call dma_pool_alloc on this pool without freeing */
286 #define MAX_NUM_TSFR_LLIS (PL08X_LLI_TSFR_SIZE/sizeof(struct pl08x_lli))
287 #define PL08X_ALIGN 8
288
289 static inline struct pl08x_dma_chan *to_pl08x_chan(struct dma_chan *chan)
290 {
291 return container_of(chan, struct pl08x_dma_chan, chan);
292 }
293
294 static inline struct pl08x_txd *to_pl08x_txd(struct dma_async_tx_descriptor *tx)
295 {
296 return container_of(tx, struct pl08x_txd, tx);
297 }
298
299 /*
300 * Mux handling.
301 *
302 * This gives us the DMA request input to the PL08x primecell which the
303 * peripheral described by the channel data will be routed to, possibly
304 * via a board/SoC specific external MUX. One important point to note
305 * here is that this does not depend on the physical channel.
306 */
307 static int pl08x_request_mux(struct pl08x_dma_chan *plchan)
308 {
309 const struct pl08x_platform_data *pd = plchan->host->pd;
310 int ret;
311
312 if (plchan->mux_use++ == 0 && pd->get_signal) {
313 ret = pd->get_signal(plchan->cd);
314 if (ret < 0) {
315 plchan->mux_use = 0;
316 return ret;
317 }
318
319 plchan->signal = ret;
320 }
321 return 0;
322 }
323
324 static void pl08x_release_mux(struct pl08x_dma_chan *plchan)
325 {
326 const struct pl08x_platform_data *pd = plchan->host->pd;
327
328 if (plchan->signal >= 0) {
329 WARN_ON(plchan->mux_use == 0);
330
331 if (--plchan->mux_use == 0 && pd->put_signal) {
332 pd->put_signal(plchan->cd, plchan->signal);
333 plchan->signal = -1;
334 }
335 }
336 }
337
338 /*
339 * Physical channel handling
340 */
341
342 /* Whether a certain channel is busy or not */
343 static int pl08x_phy_channel_busy(struct pl08x_phy_chan *ch)
344 {
345 unsigned int val;
346
347 val = readl(ch->base + PL080_CH_CONFIG);
348 return val & PL080_CONFIG_ACTIVE;
349 }
350
351 /*
352 * Set the initial DMA register values i.e. those for the first LLI
353 * The next LLI pointer and the configuration interrupt bit have
354 * been set when the LLIs were constructed. Poke them into the hardware
355 * and start the transfer.
356 */
357 static void pl08x_start_next_txd(struct pl08x_dma_chan *plchan)
358 {
359 struct pl08x_driver_data *pl08x = plchan->host;
360 struct pl08x_phy_chan *phychan = plchan->phychan;
361 struct pl08x_lli *lli;
362 struct pl08x_txd *txd;
363 u32 val;
364
365 txd = list_first_entry(&plchan->pend_list, struct pl08x_txd, node);
366 list_del(&txd->node);
367
368 plchan->at = txd;
369
370 /* Wait for channel inactive */
371 while (pl08x_phy_channel_busy(phychan))
372 cpu_relax();
373
374 lli = &txd->llis_va[0];
375
376 dev_vdbg(&pl08x->adev->dev,
377 "WRITE channel %d: csrc=0x%08x, cdst=0x%08x, "
378 "clli=0x%08x, cctl=0x%08x, ccfg=0x%08x\n",
379 phychan->id, lli->src, lli->dst, lli->lli, lli->cctl,
380 txd->ccfg);
381
382 writel(lli->src, phychan->base + PL080_CH_SRC_ADDR);
383 writel(lli->dst, phychan->base + PL080_CH_DST_ADDR);
384 writel(lli->lli, phychan->base + PL080_CH_LLI);
385 writel(lli->cctl, phychan->base + PL080_CH_CONTROL);
386 writel(txd->ccfg, phychan->base + PL080_CH_CONFIG);
387
388 /* Enable the DMA channel */
389 /* Do not access config register until channel shows as disabled */
390 while (readl(pl08x->base + PL080_EN_CHAN) & (1 << phychan->id))
391 cpu_relax();
392
393 /* Do not access config register until channel shows as inactive */
394 val = readl(phychan->base + PL080_CH_CONFIG);
395 while ((val & PL080_CONFIG_ACTIVE) || (val & PL080_CONFIG_ENABLE))
396 val = readl(phychan->base + PL080_CH_CONFIG);
397
398 writel(val | PL080_CONFIG_ENABLE, phychan->base + PL080_CH_CONFIG);
399 }
400
401 /*
402 * Pause the channel by setting the HALT bit.
403 *
404 * For M->P transfers, pause the DMAC first and then stop the peripheral -
405 * the FIFO can only drain if the peripheral is still requesting data.
406 * (note: this can still timeout if the DMAC FIFO never drains of data.)
407 *
408 * For P->M transfers, disable the peripheral first to stop it filling
409 * the DMAC FIFO, and then pause the DMAC.
410 */
411 static void pl08x_pause_phy_chan(struct pl08x_phy_chan *ch)
412 {
413 u32 val;
414 int timeout;
415
416 /* Set the HALT bit and wait for the FIFO to drain */
417 val = readl(ch->base + PL080_CH_CONFIG);
418 val |= PL080_CONFIG_HALT;
419 writel(val, ch->base + PL080_CH_CONFIG);
420
421 /* Wait for channel inactive */
422 for (timeout = 1000; timeout; timeout--) {
423 if (!pl08x_phy_channel_busy(ch))
424 break;
425 udelay(1);
426 }
427 if (pl08x_phy_channel_busy(ch))
428 pr_err("pl08x: channel%u timeout waiting for pause\n", ch->id);
429 }
430
431 static void pl08x_resume_phy_chan(struct pl08x_phy_chan *ch)
432 {
433 u32 val;
434
435 /* Clear the HALT bit */
436 val = readl(ch->base + PL080_CH_CONFIG);
437 val &= ~PL080_CONFIG_HALT;
438 writel(val, ch->base + PL080_CH_CONFIG);
439 }
440
441 /*
442 * pl08x_terminate_phy_chan() stops the channel, clears the FIFO and
443 * clears any pending interrupt status. This should not be used for
444 * an on-going transfer, but as a method of shutting down a channel
445 * (eg, when it's no longer used) or terminating a transfer.
446 */
447 static void pl08x_terminate_phy_chan(struct pl08x_driver_data *pl08x,
448 struct pl08x_phy_chan *ch)
449 {
450 u32 val = readl(ch->base + PL080_CH_CONFIG);
451
452 val &= ~(PL080_CONFIG_ENABLE | PL080_CONFIG_ERR_IRQ_MASK |
453 PL080_CONFIG_TC_IRQ_MASK);
454
455 writel(val, ch->base + PL080_CH_CONFIG);
456
457 writel(1 << ch->id, pl08x->base + PL080_ERR_CLEAR);
458 writel(1 << ch->id, pl08x->base + PL080_TC_CLEAR);
459 }
460
461 static inline u32 get_bytes_in_cctl(u32 cctl)
462 {
463 /* The source width defines the number of bytes */
464 u32 bytes = cctl & PL080_CONTROL_TRANSFER_SIZE_MASK;
465
466 switch (cctl >> PL080_CONTROL_SWIDTH_SHIFT) {
467 case PL080_WIDTH_8BIT:
468 break;
469 case PL080_WIDTH_16BIT:
470 bytes *= 2;
471 break;
472 case PL080_WIDTH_32BIT:
473 bytes *= 4;
474 break;
475 }
476 return bytes;
477 }
478
479 /* The channel should be paused when calling this */
480 static u32 pl08x_getbytes_chan(struct pl08x_dma_chan *plchan)
481 {
482 struct pl08x_phy_chan *ch;
483 struct pl08x_txd *txd;
484 unsigned long flags;
485 size_t bytes = 0;
486
487 spin_lock_irqsave(&plchan->lock, flags);
488 ch = plchan->phychan;
489 txd = plchan->at;
490
491 /*
492 * Follow the LLIs to get the number of remaining
493 * bytes in the currently active transaction.
494 */
495 if (ch && txd) {
496 u32 clli = readl(ch->base + PL080_CH_LLI) & ~PL080_LLI_LM_AHB2;
497
498 /* First get the remaining bytes in the active transfer */
499 bytes = get_bytes_in_cctl(readl(ch->base + PL080_CH_CONTROL));
500
501 if (clli) {
502 struct pl08x_lli *llis_va = txd->llis_va;
503 dma_addr_t llis_bus = txd->llis_bus;
504 int index;
505
506 BUG_ON(clli < llis_bus || clli >= llis_bus +
507 sizeof(struct pl08x_lli) * MAX_NUM_TSFR_LLIS);
508
509 /*
510 * Locate the next LLI - as this is an array,
511 * it's simple maths to find.
512 */
513 index = (clli - llis_bus) / sizeof(struct pl08x_lli);
514
515 for (; index < MAX_NUM_TSFR_LLIS; index++) {
516 bytes += get_bytes_in_cctl(llis_va[index].cctl);
517
518 /*
519 * A LLI pointer of 0 terminates the LLI list
520 */
521 if (!llis_va[index].lli)
522 break;
523 }
524 }
525 }
526
527 /* Sum up all queued transactions */
528 if (!list_empty(&plchan->pend_list)) {
529 struct pl08x_txd *txdi;
530 list_for_each_entry(txdi, &plchan->pend_list, node) {
531 struct pl08x_sg *dsg;
532 list_for_each_entry(dsg, &txd->dsg_list, node)
533 bytes += dsg->len;
534 }
535 }
536
537 spin_unlock_irqrestore(&plchan->lock, flags);
538
539 return bytes;
540 }
541
542 /*
543 * Allocate a physical channel for a virtual channel
544 *
545 * Try to locate a physical channel to be used for this transfer. If all
546 * are taken return NULL and the requester will have to cope by using
547 * some fallback PIO mode or retrying later.
548 */
549 static struct pl08x_phy_chan *
550 pl08x_get_phy_channel(struct pl08x_driver_data *pl08x,
551 struct pl08x_dma_chan *virt_chan)
552 {
553 struct pl08x_phy_chan *ch = NULL;
554 unsigned long flags;
555 int i;
556
557 for (i = 0; i < pl08x->vd->channels; i++) {
558 ch = &pl08x->phy_chans[i];
559
560 spin_lock_irqsave(&ch->lock, flags);
561
562 if (!ch->locked && !ch->serving) {
563 ch->serving = virt_chan;
564 spin_unlock_irqrestore(&ch->lock, flags);
565 break;
566 }
567
568 spin_unlock_irqrestore(&ch->lock, flags);
569 }
570
571 if (i == pl08x->vd->channels) {
572 /* No physical channel available, cope with it */
573 return NULL;
574 }
575
576 return ch;
577 }
578
579 static inline void pl08x_put_phy_channel(struct pl08x_driver_data *pl08x,
580 struct pl08x_phy_chan *ch)
581 {
582 unsigned long flags;
583
584 spin_lock_irqsave(&ch->lock, flags);
585
586 /* Stop the channel and clear its interrupts */
587 pl08x_terminate_phy_chan(pl08x, ch);
588
589 /* Mark it as free */
590 ch->serving = NULL;
591 spin_unlock_irqrestore(&ch->lock, flags);
592 }
593
594 /*
595 * LLI handling
596 */
597
598 static inline unsigned int pl08x_get_bytes_for_cctl(unsigned int coded)
599 {
600 switch (coded) {
601 case PL080_WIDTH_8BIT:
602 return 1;
603 case PL080_WIDTH_16BIT:
604 return 2;
605 case PL080_WIDTH_32BIT:
606 return 4;
607 default:
608 break;
609 }
610 BUG();
611 return 0;
612 }
613
614 static inline u32 pl08x_cctl_bits(u32 cctl, u8 srcwidth, u8 dstwidth,
615 size_t tsize)
616 {
617 u32 retbits = cctl;
618
619 /* Remove all src, dst and transfer size bits */
620 retbits &= ~PL080_CONTROL_DWIDTH_MASK;
621 retbits &= ~PL080_CONTROL_SWIDTH_MASK;
622 retbits &= ~PL080_CONTROL_TRANSFER_SIZE_MASK;
623
624 /* Then set the bits according to the parameters */
625 switch (srcwidth) {
626 case 1:
627 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_SWIDTH_SHIFT;
628 break;
629 case 2:
630 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_SWIDTH_SHIFT;
631 break;
632 case 4:
633 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_SWIDTH_SHIFT;
634 break;
635 default:
636 BUG();
637 break;
638 }
639
640 switch (dstwidth) {
641 case 1:
642 retbits |= PL080_WIDTH_8BIT << PL080_CONTROL_DWIDTH_SHIFT;
643 break;
644 case 2:
645 retbits |= PL080_WIDTH_16BIT << PL080_CONTROL_DWIDTH_SHIFT;
646 break;
647 case 4:
648 retbits |= PL080_WIDTH_32BIT << PL080_CONTROL_DWIDTH_SHIFT;
649 break;
650 default:
651 BUG();
652 break;
653 }
654
655 retbits |= tsize << PL080_CONTROL_TRANSFER_SIZE_SHIFT;
656 return retbits;
657 }
658
659 struct pl08x_lli_build_data {
660 struct pl08x_txd *txd;
661 struct pl08x_bus_data srcbus;
662 struct pl08x_bus_data dstbus;
663 size_t remainder;
664 u32 lli_bus;
665 };
666
667 /*
668 * Autoselect a master bus to use for the transfer. Slave will be the chosen as
669 * victim in case src & dest are not similarly aligned. i.e. If after aligning
670 * masters address with width requirements of transfer (by sending few byte by
671 * byte data), slave is still not aligned, then its width will be reduced to
672 * BYTE.
673 * - prefers the destination bus if both available
674 * - prefers bus with fixed address (i.e. peripheral)
675 */
676 static void pl08x_choose_master_bus(struct pl08x_lli_build_data *bd,
677 struct pl08x_bus_data **mbus, struct pl08x_bus_data **sbus, u32 cctl)
678 {
679 if (!(cctl & PL080_CONTROL_DST_INCR)) {
680 *mbus = &bd->dstbus;
681 *sbus = &bd->srcbus;
682 } else if (!(cctl & PL080_CONTROL_SRC_INCR)) {
683 *mbus = &bd->srcbus;
684 *sbus = &bd->dstbus;
685 } else {
686 if (bd->dstbus.buswidth >= bd->srcbus.buswidth) {
687 *mbus = &bd->dstbus;
688 *sbus = &bd->srcbus;
689 } else {
690 *mbus = &bd->srcbus;
691 *sbus = &bd->dstbus;
692 }
693 }
694 }
695
696 /*
697 * Fills in one LLI for a certain transfer descriptor and advance the counter
698 */
699 static void pl08x_fill_lli_for_desc(struct pl08x_lli_build_data *bd,
700 int num_llis, int len, u32 cctl)
701 {
702 struct pl08x_lli *llis_va = bd->txd->llis_va;
703 dma_addr_t llis_bus = bd->txd->llis_bus;
704
705 BUG_ON(num_llis >= MAX_NUM_TSFR_LLIS);
706
707 llis_va[num_llis].cctl = cctl;
708 llis_va[num_llis].src = bd->srcbus.addr;
709 llis_va[num_llis].dst = bd->dstbus.addr;
710 llis_va[num_llis].lli = llis_bus + (num_llis + 1) *
711 sizeof(struct pl08x_lli);
712 llis_va[num_llis].lli |= bd->lli_bus;
713
714 if (cctl & PL080_CONTROL_SRC_INCR)
715 bd->srcbus.addr += len;
716 if (cctl & PL080_CONTROL_DST_INCR)
717 bd->dstbus.addr += len;
718
719 BUG_ON(bd->remainder < len);
720
721 bd->remainder -= len;
722 }
723
724 static inline void prep_byte_width_lli(struct pl08x_lli_build_data *bd,
725 u32 *cctl, u32 len, int num_llis, size_t *total_bytes)
726 {
727 *cctl = pl08x_cctl_bits(*cctl, 1, 1, len);
728 pl08x_fill_lli_for_desc(bd, num_llis, len, *cctl);
729 (*total_bytes) += len;
730 }
731
732 /*
733 * This fills in the table of LLIs for the transfer descriptor
734 * Note that we assume we never have to change the burst sizes
735 * Return 0 for error
736 */
737 static int pl08x_fill_llis_for_desc(struct pl08x_driver_data *pl08x,
738 struct pl08x_txd *txd)
739 {
740 struct pl08x_bus_data *mbus, *sbus;
741 struct pl08x_lli_build_data bd;
742 int num_llis = 0;
743 u32 cctl, early_bytes = 0;
744 size_t max_bytes_per_lli, total_bytes;
745 struct pl08x_lli *llis_va;
746 struct pl08x_sg *dsg;
747
748 txd->llis_va = dma_pool_alloc(pl08x->pool, GFP_NOWAIT, &txd->llis_bus);
749 if (!txd->llis_va) {
750 dev_err(&pl08x->adev->dev, "%s no memory for llis\n", __func__);
751 return 0;
752 }
753
754 pl08x->pool_ctr++;
755
756 bd.txd = txd;
757 bd.lli_bus = (pl08x->lli_buses & PL08X_AHB2) ? PL080_LLI_LM_AHB2 : 0;
758 cctl = txd->cctl;
759
760 /* Find maximum width of the source bus */
761 bd.srcbus.maxwidth =
762 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_SWIDTH_MASK) >>
763 PL080_CONTROL_SWIDTH_SHIFT);
764
765 /* Find maximum width of the destination bus */
766 bd.dstbus.maxwidth =
767 pl08x_get_bytes_for_cctl((cctl & PL080_CONTROL_DWIDTH_MASK) >>
768 PL080_CONTROL_DWIDTH_SHIFT);
769
770 list_for_each_entry(dsg, &txd->dsg_list, node) {
771 total_bytes = 0;
772 cctl = txd->cctl;
773
774 bd.srcbus.addr = dsg->src_addr;
775 bd.dstbus.addr = dsg->dst_addr;
776 bd.remainder = dsg->len;
777 bd.srcbus.buswidth = bd.srcbus.maxwidth;
778 bd.dstbus.buswidth = bd.dstbus.maxwidth;
779
780 pl08x_choose_master_bus(&bd, &mbus, &sbus, cctl);
781
782 dev_vdbg(&pl08x->adev->dev, "src=0x%08x%s/%u dst=0x%08x%s/%u len=%zu\n",
783 bd.srcbus.addr, cctl & PL080_CONTROL_SRC_INCR ? "+" : "",
784 bd.srcbus.buswidth,
785 bd.dstbus.addr, cctl & PL080_CONTROL_DST_INCR ? "+" : "",
786 bd.dstbus.buswidth,
787 bd.remainder);
788 dev_vdbg(&pl08x->adev->dev, "mbus=%s sbus=%s\n",
789 mbus == &bd.srcbus ? "src" : "dst",
790 sbus == &bd.srcbus ? "src" : "dst");
791
792 /*
793 * Zero length is only allowed if all these requirements are
794 * met:
795 * - flow controller is peripheral.
796 * - src.addr is aligned to src.width
797 * - dst.addr is aligned to dst.width
798 *
799 * sg_len == 1 should be true, as there can be two cases here:
800 *
801 * - Memory addresses are contiguous and are not scattered.
802 * Here, Only one sg will be passed by user driver, with
803 * memory address and zero length. We pass this to controller
804 * and after the transfer it will receive the last burst
805 * request from peripheral and so transfer finishes.
806 *
807 * - Memory addresses are scattered and are not contiguous.
808 * Here, Obviously as DMA controller doesn't know when a lli's
809 * transfer gets over, it can't load next lli. So in this
810 * case, there has to be an assumption that only one lli is
811 * supported. Thus, we can't have scattered addresses.
812 */
813 if (!bd.remainder) {
814 u32 fc = (txd->ccfg & PL080_CONFIG_FLOW_CONTROL_MASK) >>
815 PL080_CONFIG_FLOW_CONTROL_SHIFT;
816 if (!((fc >= PL080_FLOW_SRC2DST_DST) &&
817 (fc <= PL080_FLOW_SRC2DST_SRC))) {
818 dev_err(&pl08x->adev->dev, "%s sg len can't be zero",
819 __func__);
820 return 0;
821 }
822
823 if ((bd.srcbus.addr % bd.srcbus.buswidth) ||
824 (bd.dstbus.addr % bd.dstbus.buswidth)) {
825 dev_err(&pl08x->adev->dev,
826 "%s src & dst address must be aligned to src"
827 " & dst width if peripheral is flow controller",
828 __func__);
829 return 0;
830 }
831
832 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
833 bd.dstbus.buswidth, 0);
834 pl08x_fill_lli_for_desc(&bd, num_llis++, 0, cctl);
835 break;
836 }
837
838 /*
839 * Send byte by byte for following cases
840 * - Less than a bus width available
841 * - until master bus is aligned
842 */
843 if (bd.remainder < mbus->buswidth)
844 early_bytes = bd.remainder;
845 else if ((mbus->addr) % (mbus->buswidth)) {
846 early_bytes = mbus->buswidth - (mbus->addr) %
847 (mbus->buswidth);
848 if ((bd.remainder - early_bytes) < mbus->buswidth)
849 early_bytes = bd.remainder;
850 }
851
852 if (early_bytes) {
853 dev_vdbg(&pl08x->adev->dev,
854 "%s byte width LLIs (remain 0x%08x)\n",
855 __func__, bd.remainder);
856 prep_byte_width_lli(&bd, &cctl, early_bytes, num_llis++,
857 &total_bytes);
858 }
859
860 if (bd.remainder) {
861 /*
862 * Master now aligned
863 * - if slave is not then we must set its width down
864 */
865 if (sbus->addr % sbus->buswidth) {
866 dev_dbg(&pl08x->adev->dev,
867 "%s set down bus width to one byte\n",
868 __func__);
869
870 sbus->buswidth = 1;
871 }
872
873 /*
874 * Bytes transferred = tsize * src width, not
875 * MIN(buswidths)
876 */
877 max_bytes_per_lli = bd.srcbus.buswidth *
878 PL080_CONTROL_TRANSFER_SIZE_MASK;
879 dev_vdbg(&pl08x->adev->dev,
880 "%s max bytes per lli = %zu\n",
881 __func__, max_bytes_per_lli);
882
883 /*
884 * Make largest possible LLIs until less than one bus
885 * width left
886 */
887 while (bd.remainder > (mbus->buswidth - 1)) {
888 size_t lli_len, tsize, width;
889
890 /*
891 * If enough left try to send max possible,
892 * otherwise try to send the remainder
893 */
894 lli_len = min(bd.remainder, max_bytes_per_lli);
895
896 /*
897 * Check against maximum bus alignment:
898 * Calculate actual transfer size in relation to
899 * bus width an get a maximum remainder of the
900 * highest bus width - 1
901 */
902 width = max(mbus->buswidth, sbus->buswidth);
903 lli_len = (lli_len / width) * width;
904 tsize = lli_len / bd.srcbus.buswidth;
905
906 dev_vdbg(&pl08x->adev->dev,
907 "%s fill lli with single lli chunk of "
908 "size 0x%08zx (remainder 0x%08zx)\n",
909 __func__, lli_len, bd.remainder);
910
911 cctl = pl08x_cctl_bits(cctl, bd.srcbus.buswidth,
912 bd.dstbus.buswidth, tsize);
913 pl08x_fill_lli_for_desc(&bd, num_llis++,
914 lli_len, cctl);
915 total_bytes += lli_len;
916 }
917
918 /*
919 * Send any odd bytes
920 */
921 if (bd.remainder) {
922 dev_vdbg(&pl08x->adev->dev,
923 "%s align with boundary, send odd bytes (remain %zu)\n",
924 __func__, bd.remainder);
925 prep_byte_width_lli(&bd, &cctl, bd.remainder,
926 num_llis++, &total_bytes);
927 }
928 }
929
930 if (total_bytes != dsg->len) {
931 dev_err(&pl08x->adev->dev,
932 "%s size of encoded lli:s don't match total txd, transferred 0x%08zx from size 0x%08zx\n",
933 __func__, total_bytes, dsg->len);
934 return 0;
935 }
936
937 if (num_llis >= MAX_NUM_TSFR_LLIS) {
938 dev_err(&pl08x->adev->dev,
939 "%s need to increase MAX_NUM_TSFR_LLIS from 0x%08x\n",
940 __func__, (u32) MAX_NUM_TSFR_LLIS);
941 return 0;
942 }
943 }
944
945 llis_va = txd->llis_va;
946 /* The final LLI terminates the LLI. */
947 llis_va[num_llis - 1].lli = 0;
948 /* The final LLI element shall also fire an interrupt. */
949 llis_va[num_llis - 1].cctl |= PL080_CONTROL_TC_IRQ_EN;
950
951 #ifdef VERBOSE_DEBUG
952 {
953 int i;
954
955 dev_vdbg(&pl08x->adev->dev,
956 "%-3s %-9s %-10s %-10s %-10s %s\n",
957 "lli", "", "csrc", "cdst", "clli", "cctl");
958 for (i = 0; i < num_llis; i++) {
959 dev_vdbg(&pl08x->adev->dev,
960 "%3d @%p: 0x%08x 0x%08x 0x%08x 0x%08x\n",
961 i, &llis_va[i], llis_va[i].src,
962 llis_va[i].dst, llis_va[i].lli, llis_va[i].cctl
963 );
964 }
965 }
966 #endif
967
968 return num_llis;
969 }
970
971 /* You should call this with the struct pl08x lock held */
972 static void pl08x_free_txd(struct pl08x_driver_data *pl08x,
973 struct pl08x_txd *txd)
974 {
975 struct pl08x_sg *dsg, *_dsg;
976
977 /* Free the LLI */
978 if (txd->llis_va)
979 dma_pool_free(pl08x->pool, txd->llis_va, txd->llis_bus);
980
981 pl08x->pool_ctr--;
982
983 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
984 list_del(&dsg->node);
985 kfree(dsg);
986 }
987
988 kfree(txd);
989 }
990
991 static void pl08x_free_txd_list(struct pl08x_driver_data *pl08x,
992 struct pl08x_dma_chan *plchan)
993 {
994 struct pl08x_txd *txdi = NULL;
995 struct pl08x_txd *next;
996
997 if (!list_empty(&plchan->pend_list)) {
998 list_for_each_entry_safe(txdi,
999 next, &plchan->pend_list, node) {
1000 pl08x_release_mux(plchan);
1001 list_del(&txdi->node);
1002 pl08x_free_txd(pl08x, txdi);
1003 }
1004 }
1005 }
1006
1007 /*
1008 * The DMA ENGINE API
1009 */
1010 static int pl08x_alloc_chan_resources(struct dma_chan *chan)
1011 {
1012 return 0;
1013 }
1014
1015 static void pl08x_free_chan_resources(struct dma_chan *chan)
1016 {
1017 }
1018
1019 /*
1020 * This should be called with the channel plchan->lock held
1021 */
1022 static int prep_phy_channel(struct pl08x_dma_chan *plchan)
1023 {
1024 struct pl08x_driver_data *pl08x = plchan->host;
1025 struct pl08x_phy_chan *ch;
1026
1027 /* Check if we already have a channel */
1028 if (plchan->phychan) {
1029 ch = plchan->phychan;
1030 goto got_channel;
1031 }
1032
1033 ch = pl08x_get_phy_channel(pl08x, plchan);
1034 if (!ch) {
1035 /* No physical channel available, cope with it */
1036 dev_dbg(&pl08x->adev->dev, "no physical channel available for xfer on %s\n", plchan->name);
1037 return -EBUSY;
1038 }
1039
1040 plchan->phychan = ch;
1041 dev_dbg(&pl08x->adev->dev, "allocated physical channel %d for xfer on %s\n",
1042 ch->id, plchan->name);
1043
1044 got_channel:
1045 plchan->phychan_hold++;
1046
1047 return 0;
1048 }
1049
1050 static void release_phy_channel(struct pl08x_dma_chan *plchan)
1051 {
1052 struct pl08x_driver_data *pl08x = plchan->host;
1053
1054 pl08x_put_phy_channel(pl08x, plchan->phychan);
1055 plchan->phychan = NULL;
1056 }
1057
1058 static dma_cookie_t pl08x_tx_submit(struct dma_async_tx_descriptor *tx)
1059 {
1060 struct pl08x_dma_chan *plchan = to_pl08x_chan(tx->chan);
1061 struct pl08x_txd *txd = to_pl08x_txd(tx);
1062 unsigned long flags;
1063 dma_cookie_t cookie;
1064
1065 spin_lock_irqsave(&plchan->lock, flags);
1066 cookie = dma_cookie_assign(tx);
1067
1068 /* Put this onto the pending list */
1069 list_add_tail(&txd->node, &plchan->pend_list);
1070
1071 /*
1072 * If there was no physical channel available for this memcpy,
1073 * stack the request up and indicate that the channel is waiting
1074 * for a free physical channel.
1075 */
1076 if (!plchan->slave && !plchan->phychan) {
1077 /* Do this memcpy whenever there is a channel ready */
1078 plchan->state = PL08X_CHAN_WAITING;
1079 } else {
1080 plchan->phychan_hold--;
1081 }
1082
1083 spin_unlock_irqrestore(&plchan->lock, flags);
1084
1085 return cookie;
1086 }
1087
1088 static struct dma_async_tx_descriptor *pl08x_prep_dma_interrupt(
1089 struct dma_chan *chan, unsigned long flags)
1090 {
1091 struct dma_async_tx_descriptor *retval = NULL;
1092
1093 return retval;
1094 }
1095
1096 /*
1097 * Code accessing dma_async_is_complete() in a tight loop may give problems.
1098 * If slaves are relying on interrupts to signal completion this function
1099 * must not be called with interrupts disabled.
1100 */
1101 static enum dma_status pl08x_dma_tx_status(struct dma_chan *chan,
1102 dma_cookie_t cookie, struct dma_tx_state *txstate)
1103 {
1104 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1105 enum dma_status ret;
1106
1107 ret = dma_cookie_status(chan, cookie, txstate);
1108 if (ret == DMA_SUCCESS)
1109 return ret;
1110
1111 /*
1112 * This cookie not complete yet
1113 * Get number of bytes left in the active transactions and queue
1114 */
1115 dma_set_residue(txstate, pl08x_getbytes_chan(plchan));
1116
1117 if (plchan->state == PL08X_CHAN_PAUSED)
1118 return DMA_PAUSED;
1119
1120 /* Whether waiting or running, we're in progress */
1121 return DMA_IN_PROGRESS;
1122 }
1123
1124 /* PrimeCell DMA extension */
1125 struct burst_table {
1126 u32 burstwords;
1127 u32 reg;
1128 };
1129
1130 static const struct burst_table burst_sizes[] = {
1131 {
1132 .burstwords = 256,
1133 .reg = PL080_BSIZE_256,
1134 },
1135 {
1136 .burstwords = 128,
1137 .reg = PL080_BSIZE_128,
1138 },
1139 {
1140 .burstwords = 64,
1141 .reg = PL080_BSIZE_64,
1142 },
1143 {
1144 .burstwords = 32,
1145 .reg = PL080_BSIZE_32,
1146 },
1147 {
1148 .burstwords = 16,
1149 .reg = PL080_BSIZE_16,
1150 },
1151 {
1152 .burstwords = 8,
1153 .reg = PL080_BSIZE_8,
1154 },
1155 {
1156 .burstwords = 4,
1157 .reg = PL080_BSIZE_4,
1158 },
1159 {
1160 .burstwords = 0,
1161 .reg = PL080_BSIZE_1,
1162 },
1163 };
1164
1165 /*
1166 * Given the source and destination available bus masks, select which
1167 * will be routed to each port. We try to have source and destination
1168 * on separate ports, but always respect the allowable settings.
1169 */
1170 static u32 pl08x_select_bus(u8 src, u8 dst)
1171 {
1172 u32 cctl = 0;
1173
1174 if (!(dst & PL08X_AHB1) || ((dst & PL08X_AHB2) && (src & PL08X_AHB1)))
1175 cctl |= PL080_CONTROL_DST_AHB2;
1176 if (!(src & PL08X_AHB1) || ((src & PL08X_AHB2) && !(dst & PL08X_AHB2)))
1177 cctl |= PL080_CONTROL_SRC_AHB2;
1178
1179 return cctl;
1180 }
1181
1182 static u32 pl08x_cctl(u32 cctl)
1183 {
1184 cctl &= ~(PL080_CONTROL_SRC_AHB2 | PL080_CONTROL_DST_AHB2 |
1185 PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR |
1186 PL080_CONTROL_PROT_MASK);
1187
1188 /* Access the cell in privileged mode, non-bufferable, non-cacheable */
1189 return cctl | PL080_CONTROL_PROT_SYS;
1190 }
1191
1192 static u32 pl08x_width(enum dma_slave_buswidth width)
1193 {
1194 switch (width) {
1195 case DMA_SLAVE_BUSWIDTH_1_BYTE:
1196 return PL080_WIDTH_8BIT;
1197 case DMA_SLAVE_BUSWIDTH_2_BYTES:
1198 return PL080_WIDTH_16BIT;
1199 case DMA_SLAVE_BUSWIDTH_4_BYTES:
1200 return PL080_WIDTH_32BIT;
1201 default:
1202 return ~0;
1203 }
1204 }
1205
1206 static u32 pl08x_burst(u32 maxburst)
1207 {
1208 int i;
1209
1210 for (i = 0; i < ARRAY_SIZE(burst_sizes); i++)
1211 if (burst_sizes[i].burstwords <= maxburst)
1212 break;
1213
1214 return burst_sizes[i].reg;
1215 }
1216
1217 static u32 pl08x_get_cctl(struct pl08x_dma_chan *plchan,
1218 enum dma_slave_buswidth addr_width, u32 maxburst)
1219 {
1220 u32 width, burst, cctl = 0;
1221
1222 width = pl08x_width(addr_width);
1223 if (width == ~0)
1224 return ~0;
1225
1226 cctl |= width << PL080_CONTROL_SWIDTH_SHIFT;
1227 cctl |= width << PL080_CONTROL_DWIDTH_SHIFT;
1228
1229 /*
1230 * If this channel will only request single transfers, set this
1231 * down to ONE element. Also select one element if no maxburst
1232 * is specified.
1233 */
1234 if (plchan->cd->single)
1235 maxburst = 1;
1236
1237 burst = pl08x_burst(maxburst);
1238 cctl |= burst << PL080_CONTROL_SB_SIZE_SHIFT;
1239 cctl |= burst << PL080_CONTROL_DB_SIZE_SHIFT;
1240
1241 return pl08x_cctl(cctl);
1242 }
1243
1244 static int dma_set_runtime_config(struct dma_chan *chan,
1245 struct dma_slave_config *config)
1246 {
1247 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1248
1249 if (!plchan->slave)
1250 return -EINVAL;
1251
1252 /* Reject definitely invalid configurations */
1253 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
1254 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
1255 return -EINVAL;
1256
1257 plchan->cfg = *config;
1258
1259 return 0;
1260 }
1261
1262 /*
1263 * Slave transactions callback to the slave device to allow
1264 * synchronization of slave DMA signals with the DMAC enable
1265 */
1266 static void pl08x_issue_pending(struct dma_chan *chan)
1267 {
1268 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1269 unsigned long flags;
1270
1271 spin_lock_irqsave(&plchan->lock, flags);
1272 /* Something is already active, or we're waiting for a channel... */
1273 if (plchan->at || plchan->state == PL08X_CHAN_WAITING) {
1274 spin_unlock_irqrestore(&plchan->lock, flags);
1275 return;
1276 }
1277
1278 /* Take the first element in the queue and execute it */
1279 if (!list_empty(&plchan->pend_list)) {
1280 plchan->state = PL08X_CHAN_RUNNING;
1281 pl08x_start_next_txd(plchan);
1282 }
1283
1284 spin_unlock_irqrestore(&plchan->lock, flags);
1285 }
1286
1287 static int pl08x_prep_channel_resources(struct pl08x_dma_chan *plchan,
1288 struct pl08x_txd *txd)
1289 {
1290 struct pl08x_driver_data *pl08x = plchan->host;
1291 unsigned long flags;
1292 int num_llis, ret;
1293
1294 num_llis = pl08x_fill_llis_for_desc(pl08x, txd);
1295 if (!num_llis) {
1296 spin_lock_irqsave(&plchan->lock, flags);
1297 pl08x_free_txd(pl08x, txd);
1298 spin_unlock_irqrestore(&plchan->lock, flags);
1299 return -EINVAL;
1300 }
1301
1302 spin_lock_irqsave(&plchan->lock, flags);
1303
1304 /*
1305 * See if we already have a physical channel allocated,
1306 * else this is the time to try to get one.
1307 */
1308 ret = prep_phy_channel(plchan);
1309 if (ret) {
1310 /*
1311 * No physical channel was available.
1312 *
1313 * memcpy transfers can be sorted out at submission time.
1314 */
1315 if (plchan->slave) {
1316 pl08x_free_txd_list(pl08x, plchan);
1317 pl08x_free_txd(pl08x, txd);
1318 spin_unlock_irqrestore(&plchan->lock, flags);
1319 return -EBUSY;
1320 }
1321 } else
1322 /*
1323 * Else we're all set, paused and ready to roll, status
1324 * will switch to PL08X_CHAN_RUNNING when we call
1325 * issue_pending(). If there is something running on the
1326 * channel already we don't change its state.
1327 */
1328 if (plchan->state == PL08X_CHAN_IDLE)
1329 plchan->state = PL08X_CHAN_PAUSED;
1330
1331 spin_unlock_irqrestore(&plchan->lock, flags);
1332
1333 return 0;
1334 }
1335
1336 static struct pl08x_txd *pl08x_get_txd(struct pl08x_dma_chan *plchan,
1337 unsigned long flags)
1338 {
1339 struct pl08x_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
1340
1341 if (txd) {
1342 dma_async_tx_descriptor_init(&txd->tx, &plchan->chan);
1343 txd->tx.flags = flags;
1344 txd->tx.tx_submit = pl08x_tx_submit;
1345 INIT_LIST_HEAD(&txd->node);
1346 INIT_LIST_HEAD(&txd->dsg_list);
1347
1348 /* Always enable error and terminal interrupts */
1349 txd->ccfg = PL080_CONFIG_ERR_IRQ_MASK |
1350 PL080_CONFIG_TC_IRQ_MASK;
1351 }
1352 return txd;
1353 }
1354
1355 /*
1356 * Initialize a descriptor to be used by memcpy submit
1357 */
1358 static struct dma_async_tx_descriptor *pl08x_prep_dma_memcpy(
1359 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1360 size_t len, unsigned long flags)
1361 {
1362 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1363 struct pl08x_driver_data *pl08x = plchan->host;
1364 struct pl08x_txd *txd;
1365 struct pl08x_sg *dsg;
1366 int ret;
1367
1368 txd = pl08x_get_txd(plchan, flags);
1369 if (!txd) {
1370 dev_err(&pl08x->adev->dev,
1371 "%s no memory for descriptor\n", __func__);
1372 return NULL;
1373 }
1374
1375 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1376 if (!dsg) {
1377 pl08x_free_txd(pl08x, txd);
1378 dev_err(&pl08x->adev->dev, "%s no memory for pl080 sg\n",
1379 __func__);
1380 return NULL;
1381 }
1382 list_add_tail(&dsg->node, &txd->dsg_list);
1383
1384 dsg->src_addr = src;
1385 dsg->dst_addr = dest;
1386 dsg->len = len;
1387
1388 /* Set platform data for m2m */
1389 txd->ccfg |= PL080_FLOW_MEM2MEM << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1390 txd->cctl = pl08x->pd->memcpy_channel.cctl_memcpy &
1391 ~(PL080_CONTROL_DST_AHB2 | PL080_CONTROL_SRC_AHB2);
1392
1393 /* Both to be incremented or the code will break */
1394 txd->cctl |= PL080_CONTROL_SRC_INCR | PL080_CONTROL_DST_INCR;
1395
1396 if (pl08x->vd->dualmaster)
1397 txd->cctl |= pl08x_select_bus(pl08x->mem_buses,
1398 pl08x->mem_buses);
1399
1400 ret = pl08x_prep_channel_resources(plchan, txd);
1401 if (ret)
1402 return NULL;
1403
1404 return &txd->tx;
1405 }
1406
1407 static struct dma_async_tx_descriptor *pl08x_prep_slave_sg(
1408 struct dma_chan *chan, struct scatterlist *sgl,
1409 unsigned int sg_len, enum dma_transfer_direction direction,
1410 unsigned long flags, void *context)
1411 {
1412 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1413 struct pl08x_driver_data *pl08x = plchan->host;
1414 struct pl08x_txd *txd;
1415 struct pl08x_sg *dsg;
1416 struct scatterlist *sg;
1417 enum dma_slave_buswidth addr_width;
1418 dma_addr_t slave_addr;
1419 int ret, tmp;
1420 u8 src_buses, dst_buses;
1421 u32 maxburst, cctl;
1422
1423 dev_dbg(&pl08x->adev->dev, "%s prepare transaction of %d bytes from %s\n",
1424 __func__, sg_dma_len(sgl), plchan->name);
1425
1426 txd = pl08x_get_txd(plchan, flags);
1427 if (!txd) {
1428 dev_err(&pl08x->adev->dev, "%s no txd\n", __func__);
1429 return NULL;
1430 }
1431
1432 /*
1433 * Set up addresses, the PrimeCell configured address
1434 * will take precedence since this may configure the
1435 * channel target address dynamically at runtime.
1436 */
1437 if (direction == DMA_MEM_TO_DEV) {
1438 cctl = PL080_CONTROL_SRC_INCR;
1439 slave_addr = plchan->cfg.dst_addr;
1440 addr_width = plchan->cfg.dst_addr_width;
1441 maxburst = plchan->cfg.dst_maxburst;
1442 src_buses = pl08x->mem_buses;
1443 dst_buses = plchan->cd->periph_buses;
1444 } else if (direction == DMA_DEV_TO_MEM) {
1445 cctl = PL080_CONTROL_DST_INCR;
1446 slave_addr = plchan->cfg.src_addr;
1447 addr_width = plchan->cfg.src_addr_width;
1448 maxburst = plchan->cfg.src_maxburst;
1449 src_buses = plchan->cd->periph_buses;
1450 dst_buses = pl08x->mem_buses;
1451 } else {
1452 pl08x_free_txd(pl08x, txd);
1453 dev_err(&pl08x->adev->dev,
1454 "%s direction unsupported\n", __func__);
1455 return NULL;
1456 }
1457
1458 cctl |= pl08x_get_cctl(plchan, addr_width, maxburst);
1459 if (cctl == ~0) {
1460 pl08x_free_txd(pl08x, txd);
1461 dev_err(&pl08x->adev->dev,
1462 "DMA slave configuration botched?\n");
1463 return NULL;
1464 }
1465
1466 txd->cctl = cctl | pl08x_select_bus(src_buses, dst_buses);
1467
1468 if (plchan->cfg.device_fc)
1469 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER_PER :
1470 PL080_FLOW_PER2MEM_PER;
1471 else
1472 tmp = (direction == DMA_MEM_TO_DEV) ? PL080_FLOW_MEM2PER :
1473 PL080_FLOW_PER2MEM;
1474
1475 txd->ccfg |= tmp << PL080_CONFIG_FLOW_CONTROL_SHIFT;
1476
1477 ret = pl08x_request_mux(plchan);
1478 if (ret < 0) {
1479 pl08x_free_txd(pl08x, txd);
1480 dev_dbg(&pl08x->adev->dev,
1481 "unable to mux for transfer on %s due to platform restrictions\n",
1482 plchan->name);
1483 return NULL;
1484 }
1485
1486 dev_dbg(&pl08x->adev->dev, "allocated DMA request signal %d for xfer on %s\n",
1487 plchan->signal, plchan->name);
1488
1489 /* Assign the flow control signal to this channel */
1490 if (direction == DMA_MEM_TO_DEV)
1491 txd->ccfg |= plchan->signal << PL080_CONFIG_DST_SEL_SHIFT;
1492 else
1493 txd->ccfg |= plchan->signal << PL080_CONFIG_SRC_SEL_SHIFT;
1494
1495 for_each_sg(sgl, sg, sg_len, tmp) {
1496 dsg = kzalloc(sizeof(struct pl08x_sg), GFP_NOWAIT);
1497 if (!dsg) {
1498 pl08x_release_mux(plchan);
1499 pl08x_free_txd(pl08x, txd);
1500 dev_err(&pl08x->adev->dev, "%s no mem for pl080 sg\n",
1501 __func__);
1502 return NULL;
1503 }
1504 list_add_tail(&dsg->node, &txd->dsg_list);
1505
1506 dsg->len = sg_dma_len(sg);
1507 if (direction == DMA_MEM_TO_DEV) {
1508 dsg->src_addr = sg_dma_address(sg);
1509 dsg->dst_addr = slave_addr;
1510 } else {
1511 dsg->src_addr = slave_addr;
1512 dsg->dst_addr = sg_dma_address(sg);
1513 }
1514 }
1515
1516 ret = pl08x_prep_channel_resources(plchan, txd);
1517 if (ret)
1518 return NULL;
1519
1520 return &txd->tx;
1521 }
1522
1523 static int pl08x_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
1524 unsigned long arg)
1525 {
1526 struct pl08x_dma_chan *plchan = to_pl08x_chan(chan);
1527 struct pl08x_driver_data *pl08x = plchan->host;
1528 unsigned long flags;
1529 int ret = 0;
1530
1531 /* Controls applicable to inactive channels */
1532 if (cmd == DMA_SLAVE_CONFIG) {
1533 return dma_set_runtime_config(chan,
1534 (struct dma_slave_config *)arg);
1535 }
1536
1537 /*
1538 * Anything succeeds on channels with no physical allocation and
1539 * no queued transfers.
1540 */
1541 spin_lock_irqsave(&plchan->lock, flags);
1542 if (!plchan->phychan && !plchan->at) {
1543 spin_unlock_irqrestore(&plchan->lock, flags);
1544 return 0;
1545 }
1546
1547 switch (cmd) {
1548 case DMA_TERMINATE_ALL:
1549 plchan->state = PL08X_CHAN_IDLE;
1550
1551 if (plchan->phychan) {
1552 pl08x_terminate_phy_chan(pl08x, plchan->phychan);
1553
1554 /*
1555 * Mark physical channel as free and free any slave
1556 * signal
1557 */
1558 release_phy_channel(plchan);
1559 plchan->phychan_hold = 0;
1560 }
1561 /* Dequeue jobs and free LLIs */
1562 if (plchan->at) {
1563 /* Killing this one off, release its mux */
1564 pl08x_release_mux(plchan);
1565 pl08x_free_txd(pl08x, plchan->at);
1566 plchan->at = NULL;
1567 }
1568 /* Dequeue jobs not yet fired as well */
1569 pl08x_free_txd_list(pl08x, plchan);
1570 break;
1571 case DMA_PAUSE:
1572 pl08x_pause_phy_chan(plchan->phychan);
1573 plchan->state = PL08X_CHAN_PAUSED;
1574 break;
1575 case DMA_RESUME:
1576 pl08x_resume_phy_chan(plchan->phychan);
1577 plchan->state = PL08X_CHAN_RUNNING;
1578 break;
1579 default:
1580 /* Unknown command */
1581 ret = -ENXIO;
1582 break;
1583 }
1584
1585 spin_unlock_irqrestore(&plchan->lock, flags);
1586
1587 return ret;
1588 }
1589
1590 bool pl08x_filter_id(struct dma_chan *chan, void *chan_id)
1591 {
1592 struct pl08x_dma_chan *plchan;
1593 char *name = chan_id;
1594
1595 /* Reject channels for devices not bound to this driver */
1596 if (chan->device->dev->driver != &pl08x_amba_driver.drv)
1597 return false;
1598
1599 plchan = to_pl08x_chan(chan);
1600
1601 /* Check that the channel is not taken! */
1602 if (!strcmp(plchan->name, name))
1603 return true;
1604
1605 return false;
1606 }
1607
1608 /*
1609 * Just check that the device is there and active
1610 * TODO: turn this bit on/off depending on the number of physical channels
1611 * actually used, if it is zero... well shut it off. That will save some
1612 * power. Cut the clock at the same time.
1613 */
1614 static void pl08x_ensure_on(struct pl08x_driver_data *pl08x)
1615 {
1616 /* The Nomadik variant does not have the config register */
1617 if (pl08x->vd->nomadik)
1618 return;
1619 writel(PL080_CONFIG_ENABLE, pl08x->base + PL080_CONFIG);
1620 }
1621
1622 static void pl08x_unmap_buffers(struct pl08x_txd *txd)
1623 {
1624 struct device *dev = txd->tx.chan->device->dev;
1625 struct pl08x_sg *dsg;
1626
1627 if (!(txd->tx.flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
1628 if (txd->tx.flags & DMA_COMPL_SRC_UNMAP_SINGLE)
1629 list_for_each_entry(dsg, &txd->dsg_list, node)
1630 dma_unmap_single(dev, dsg->src_addr, dsg->len,
1631 DMA_TO_DEVICE);
1632 else {
1633 list_for_each_entry(dsg, &txd->dsg_list, node)
1634 dma_unmap_page(dev, dsg->src_addr, dsg->len,
1635 DMA_TO_DEVICE);
1636 }
1637 }
1638 if (!(txd->tx.flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
1639 if (txd->tx.flags & DMA_COMPL_DEST_UNMAP_SINGLE)
1640 list_for_each_entry(dsg, &txd->dsg_list, node)
1641 dma_unmap_single(dev, dsg->dst_addr, dsg->len,
1642 DMA_FROM_DEVICE);
1643 else
1644 list_for_each_entry(dsg, &txd->dsg_list, node)
1645 dma_unmap_page(dev, dsg->dst_addr, dsg->len,
1646 DMA_FROM_DEVICE);
1647 }
1648 }
1649
1650 static void pl08x_tasklet(unsigned long data)
1651 {
1652 struct pl08x_dma_chan *plchan = (struct pl08x_dma_chan *) data;
1653 struct pl08x_driver_data *pl08x = plchan->host;
1654 unsigned long flags;
1655 LIST_HEAD(head);
1656
1657 spin_lock_irqsave(&plchan->lock, flags);
1658 list_splice_tail_init(&plchan->done_list, &head);
1659
1660 /* If a new descriptor is queued, set it up plchan->at is NULL here */
1661 if (!list_empty(&plchan->pend_list)) {
1662 pl08x_start_next_txd(plchan);
1663 } else if (plchan->phychan_hold) {
1664 /*
1665 * This channel is still in use - we have a new txd being
1666 * prepared and will soon be queued. Don't give up the
1667 * physical channel.
1668 */
1669 } else {
1670 struct pl08x_dma_chan *waiting = NULL;
1671
1672 /*
1673 * No more jobs, so free up the physical channel
1674 */
1675 release_phy_channel(plchan);
1676 plchan->state = PL08X_CHAN_IDLE;
1677
1678 /*
1679 * And NOW before anyone else can grab that free:d up
1680 * physical channel, see if there is some memcpy pending
1681 * that seriously needs to start because of being stacked
1682 * up while we were choking the physical channels with data.
1683 */
1684 list_for_each_entry(waiting, &pl08x->memcpy.channels,
1685 chan.device_node) {
1686 if (waiting->state == PL08X_CHAN_WAITING) {
1687 int ret;
1688
1689 /* This should REALLY not fail now */
1690 ret = prep_phy_channel(waiting);
1691 BUG_ON(ret);
1692 waiting->phychan_hold--;
1693 waiting->state = PL08X_CHAN_RUNNING;
1694 /*
1695 * Eww. We know this isn't going to deadlock
1696 * but lockdep probably doens't.
1697 */
1698 spin_lock(&waiting->lock);
1699 pl08x_start_next_txd(waiting);
1700 spin_unlock(&waiting->lock);
1701 break;
1702 }
1703 }
1704 }
1705
1706 spin_unlock_irqrestore(&plchan->lock, flags);
1707
1708 while (!list_empty(&head)) {
1709 struct pl08x_txd *txd = list_first_entry(&head,
1710 struct pl08x_txd, node);
1711 dma_async_tx_callback callback = txd->tx.callback;
1712 void *callback_param = txd->tx.callback_param;
1713
1714 list_del(&txd->node);
1715
1716 /* Don't try to unmap buffers on slave channels */
1717 if (!plchan->slave)
1718 pl08x_unmap_buffers(txd);
1719
1720 /* Free the descriptor */
1721 spin_lock_irqsave(&plchan->lock, flags);
1722 pl08x_free_txd(pl08x, txd);
1723 spin_unlock_irqrestore(&plchan->lock, flags);
1724
1725 /* Callback to signal completion */
1726 if (callback)
1727 callback(callback_param);
1728 }
1729 }
1730
1731 static irqreturn_t pl08x_irq(int irq, void *dev)
1732 {
1733 struct pl08x_driver_data *pl08x = dev;
1734 u32 mask = 0, err, tc, i;
1735
1736 /* check & clear - ERR & TC interrupts */
1737 err = readl(pl08x->base + PL080_ERR_STATUS);
1738 if (err) {
1739 dev_err(&pl08x->adev->dev, "%s error interrupt, register value 0x%08x\n",
1740 __func__, err);
1741 writel(err, pl08x->base + PL080_ERR_CLEAR);
1742 }
1743 tc = readl(pl08x->base + PL080_TC_STATUS);
1744 if (tc)
1745 writel(tc, pl08x->base + PL080_TC_CLEAR);
1746
1747 if (!err && !tc)
1748 return IRQ_NONE;
1749
1750 for (i = 0; i < pl08x->vd->channels; i++) {
1751 if (((1 << i) & err) || ((1 << i) & tc)) {
1752 /* Locate physical channel */
1753 struct pl08x_phy_chan *phychan = &pl08x->phy_chans[i];
1754 struct pl08x_dma_chan *plchan = phychan->serving;
1755 struct pl08x_txd *tx;
1756
1757 if (!plchan) {
1758 dev_err(&pl08x->adev->dev,
1759 "%s Error TC interrupt on unused channel: 0x%08x\n",
1760 __func__, i);
1761 continue;
1762 }
1763
1764 spin_lock(&plchan->lock);
1765 tx = plchan->at;
1766 if (tx) {
1767 plchan->at = NULL;
1768 /*
1769 * This descriptor is done, release its mux
1770 * reservation.
1771 */
1772 pl08x_release_mux(plchan);
1773 dma_cookie_complete(&tx->tx);
1774 list_add_tail(&tx->node, &plchan->done_list);
1775 }
1776 spin_unlock(&plchan->lock);
1777
1778 /* Schedule tasklet on this channel */
1779 tasklet_schedule(&plchan->tasklet);
1780 mask |= (1 << i);
1781 }
1782 }
1783
1784 return mask ? IRQ_HANDLED : IRQ_NONE;
1785 }
1786
1787 static void pl08x_dma_slave_init(struct pl08x_dma_chan *chan)
1788 {
1789 chan->slave = true;
1790 chan->name = chan->cd->bus_id;
1791 chan->cfg.src_addr = chan->cd->addr;
1792 chan->cfg.dst_addr = chan->cd->addr;
1793 }
1794
1795 /*
1796 * Initialise the DMAC memcpy/slave channels.
1797 * Make a local wrapper to hold required data
1798 */
1799 static int pl08x_dma_init_virtual_channels(struct pl08x_driver_data *pl08x,
1800 struct dma_device *dmadev, unsigned int channels, bool slave)
1801 {
1802 struct pl08x_dma_chan *chan;
1803 int i;
1804
1805 INIT_LIST_HEAD(&dmadev->channels);
1806
1807 /*
1808 * Register as many many memcpy as we have physical channels,
1809 * we won't always be able to use all but the code will have
1810 * to cope with that situation.
1811 */
1812 for (i = 0; i < channels; i++) {
1813 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1814 if (!chan) {
1815 dev_err(&pl08x->adev->dev,
1816 "%s no memory for channel\n", __func__);
1817 return -ENOMEM;
1818 }
1819
1820 chan->host = pl08x;
1821 chan->state = PL08X_CHAN_IDLE;
1822 chan->signal = -1;
1823
1824 if (slave) {
1825 chan->cd = &pl08x->pd->slave_channels[i];
1826 pl08x_dma_slave_init(chan);
1827 } else {
1828 chan->cd = &pl08x->pd->memcpy_channel;
1829 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1830 if (!chan->name) {
1831 kfree(chan);
1832 return -ENOMEM;
1833 }
1834 }
1835 dev_dbg(&pl08x->adev->dev,
1836 "initialize virtual channel \"%s\"\n",
1837 chan->name);
1838
1839 chan->chan.device = dmadev;
1840 dma_cookie_init(&chan->chan);
1841
1842 spin_lock_init(&chan->lock);
1843 INIT_LIST_HEAD(&chan->pend_list);
1844 INIT_LIST_HEAD(&chan->done_list);
1845 tasklet_init(&chan->tasklet, pl08x_tasklet,
1846 (unsigned long) chan);
1847
1848 list_add_tail(&chan->chan.device_node, &dmadev->channels);
1849 }
1850 dev_info(&pl08x->adev->dev, "initialized %d virtual %s channels\n",
1851 i, slave ? "slave" : "memcpy");
1852 return i;
1853 }
1854
1855 static void pl08x_free_virtual_channels(struct dma_device *dmadev)
1856 {
1857 struct pl08x_dma_chan *chan = NULL;
1858 struct pl08x_dma_chan *next;
1859
1860 list_for_each_entry_safe(chan,
1861 next, &dmadev->channels, chan.device_node) {
1862 list_del(&chan->chan.device_node);
1863 kfree(chan);
1864 }
1865 }
1866
1867 #ifdef CONFIG_DEBUG_FS
1868 static const char *pl08x_state_str(enum pl08x_dma_chan_state state)
1869 {
1870 switch (state) {
1871 case PL08X_CHAN_IDLE:
1872 return "idle";
1873 case PL08X_CHAN_RUNNING:
1874 return "running";
1875 case PL08X_CHAN_PAUSED:
1876 return "paused";
1877 case PL08X_CHAN_WAITING:
1878 return "waiting";
1879 default:
1880 break;
1881 }
1882 return "UNKNOWN STATE";
1883 }
1884
1885 static int pl08x_debugfs_show(struct seq_file *s, void *data)
1886 {
1887 struct pl08x_driver_data *pl08x = s->private;
1888 struct pl08x_dma_chan *chan;
1889 struct pl08x_phy_chan *ch;
1890 unsigned long flags;
1891 int i;
1892
1893 seq_printf(s, "PL08x physical channels:\n");
1894 seq_printf(s, "CHANNEL:\tUSER:\n");
1895 seq_printf(s, "--------\t-----\n");
1896 for (i = 0; i < pl08x->vd->channels; i++) {
1897 struct pl08x_dma_chan *virt_chan;
1898
1899 ch = &pl08x->phy_chans[i];
1900
1901 spin_lock_irqsave(&ch->lock, flags);
1902 virt_chan = ch->serving;
1903
1904 seq_printf(s, "%d\t\t%s%s\n",
1905 ch->id,
1906 virt_chan ? virt_chan->name : "(none)",
1907 ch->locked ? " LOCKED" : "");
1908
1909 spin_unlock_irqrestore(&ch->lock, flags);
1910 }
1911
1912 seq_printf(s, "\nPL08x virtual memcpy channels:\n");
1913 seq_printf(s, "CHANNEL:\tSTATE:\n");
1914 seq_printf(s, "--------\t------\n");
1915 list_for_each_entry(chan, &pl08x->memcpy.channels, chan.device_node) {
1916 seq_printf(s, "%s\t\t%s\n", chan->name,
1917 pl08x_state_str(chan->state));
1918 }
1919
1920 seq_printf(s, "\nPL08x virtual slave channels:\n");
1921 seq_printf(s, "CHANNEL:\tSTATE:\n");
1922 seq_printf(s, "--------\t------\n");
1923 list_for_each_entry(chan, &pl08x->slave.channels, chan.device_node) {
1924 seq_printf(s, "%s\t\t%s\n", chan->name,
1925 pl08x_state_str(chan->state));
1926 }
1927
1928 return 0;
1929 }
1930
1931 static int pl08x_debugfs_open(struct inode *inode, struct file *file)
1932 {
1933 return single_open(file, pl08x_debugfs_show, inode->i_private);
1934 }
1935
1936 static const struct file_operations pl08x_debugfs_operations = {
1937 .open = pl08x_debugfs_open,
1938 .read = seq_read,
1939 .llseek = seq_lseek,
1940 .release = single_release,
1941 };
1942
1943 static void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1944 {
1945 /* Expose a simple debugfs interface to view all clocks */
1946 (void) debugfs_create_file(dev_name(&pl08x->adev->dev),
1947 S_IFREG | S_IRUGO, NULL, pl08x,
1948 &pl08x_debugfs_operations);
1949 }
1950
1951 #else
1952 static inline void init_pl08x_debugfs(struct pl08x_driver_data *pl08x)
1953 {
1954 }
1955 #endif
1956
1957 static int pl08x_probe(struct amba_device *adev, const struct amba_id *id)
1958 {
1959 struct pl08x_driver_data *pl08x;
1960 const struct vendor_data *vd = id->data;
1961 int ret = 0;
1962 int i;
1963
1964 ret = amba_request_regions(adev, NULL);
1965 if (ret)
1966 return ret;
1967
1968 /* Create the driver state holder */
1969 pl08x = kzalloc(sizeof(*pl08x), GFP_KERNEL);
1970 if (!pl08x) {
1971 ret = -ENOMEM;
1972 goto out_no_pl08x;
1973 }
1974
1975 /* Initialize memcpy engine */
1976 dma_cap_set(DMA_MEMCPY, pl08x->memcpy.cap_mask);
1977 pl08x->memcpy.dev = &adev->dev;
1978 pl08x->memcpy.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1979 pl08x->memcpy.device_free_chan_resources = pl08x_free_chan_resources;
1980 pl08x->memcpy.device_prep_dma_memcpy = pl08x_prep_dma_memcpy;
1981 pl08x->memcpy.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1982 pl08x->memcpy.device_tx_status = pl08x_dma_tx_status;
1983 pl08x->memcpy.device_issue_pending = pl08x_issue_pending;
1984 pl08x->memcpy.device_control = pl08x_control;
1985
1986 /* Initialize slave engine */
1987 dma_cap_set(DMA_SLAVE, pl08x->slave.cap_mask);
1988 pl08x->slave.dev = &adev->dev;
1989 pl08x->slave.device_alloc_chan_resources = pl08x_alloc_chan_resources;
1990 pl08x->slave.device_free_chan_resources = pl08x_free_chan_resources;
1991 pl08x->slave.device_prep_dma_interrupt = pl08x_prep_dma_interrupt;
1992 pl08x->slave.device_tx_status = pl08x_dma_tx_status;
1993 pl08x->slave.device_issue_pending = pl08x_issue_pending;
1994 pl08x->slave.device_prep_slave_sg = pl08x_prep_slave_sg;
1995 pl08x->slave.device_control = pl08x_control;
1996
1997 /* Get the platform data */
1998 pl08x->pd = dev_get_platdata(&adev->dev);
1999 if (!pl08x->pd) {
2000 dev_err(&adev->dev, "no platform data supplied\n");
2001 goto out_no_platdata;
2002 }
2003
2004 /* Assign useful pointers to the driver state */
2005 pl08x->adev = adev;
2006 pl08x->vd = vd;
2007
2008 /* By default, AHB1 only. If dualmaster, from platform */
2009 pl08x->lli_buses = PL08X_AHB1;
2010 pl08x->mem_buses = PL08X_AHB1;
2011 if (pl08x->vd->dualmaster) {
2012 pl08x->lli_buses = pl08x->pd->lli_buses;
2013 pl08x->mem_buses = pl08x->pd->mem_buses;
2014 }
2015
2016 /* A DMA memory pool for LLIs, align on 1-byte boundary */
2017 pl08x->pool = dma_pool_create(DRIVER_NAME, &pl08x->adev->dev,
2018 PL08X_LLI_TSFR_SIZE, PL08X_ALIGN, 0);
2019 if (!pl08x->pool) {
2020 ret = -ENOMEM;
2021 goto out_no_lli_pool;
2022 }
2023
2024 pl08x->base = ioremap(adev->res.start, resource_size(&adev->res));
2025 if (!pl08x->base) {
2026 ret = -ENOMEM;
2027 goto out_no_ioremap;
2028 }
2029
2030 /* Turn on the PL08x */
2031 pl08x_ensure_on(pl08x);
2032
2033 /* Attach the interrupt handler */
2034 writel(0x000000FF, pl08x->base + PL080_ERR_CLEAR);
2035 writel(0x000000FF, pl08x->base + PL080_TC_CLEAR);
2036
2037 ret = request_irq(adev->irq[0], pl08x_irq, IRQF_DISABLED,
2038 DRIVER_NAME, pl08x);
2039 if (ret) {
2040 dev_err(&adev->dev, "%s failed to request interrupt %d\n",
2041 __func__, adev->irq[0]);
2042 goto out_no_irq;
2043 }
2044
2045 /* Initialize physical channels */
2046 pl08x->phy_chans = kzalloc((vd->channels * sizeof(*pl08x->phy_chans)),
2047 GFP_KERNEL);
2048 if (!pl08x->phy_chans) {
2049 dev_err(&adev->dev, "%s failed to allocate "
2050 "physical channel holders\n",
2051 __func__);
2052 goto out_no_phychans;
2053 }
2054
2055 for (i = 0; i < vd->channels; i++) {
2056 struct pl08x_phy_chan *ch = &pl08x->phy_chans[i];
2057
2058 ch->id = i;
2059 ch->base = pl08x->base + PL080_Cx_BASE(i);
2060 spin_lock_init(&ch->lock);
2061
2062 /*
2063 * Nomadik variants can have channels that are locked
2064 * down for the secure world only. Lock up these channels
2065 * by perpetually serving a dummy virtual channel.
2066 */
2067 if (vd->nomadik) {
2068 u32 val;
2069
2070 val = readl(ch->base + PL080_CH_CONFIG);
2071 if (val & (PL080N_CONFIG_ITPROT | PL080N_CONFIG_SECPROT)) {
2072 dev_info(&adev->dev, "physical channel %d reserved for secure access only\n", i);
2073 ch->locked = true;
2074 }
2075 }
2076
2077 dev_dbg(&adev->dev, "physical channel %d is %s\n",
2078 i, pl08x_phy_channel_busy(ch) ? "BUSY" : "FREE");
2079 }
2080
2081 /* Register as many memcpy channels as there are physical channels */
2082 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->memcpy,
2083 pl08x->vd->channels, false);
2084 if (ret <= 0) {
2085 dev_warn(&pl08x->adev->dev,
2086 "%s failed to enumerate memcpy channels - %d\n",
2087 __func__, ret);
2088 goto out_no_memcpy;
2089 }
2090 pl08x->memcpy.chancnt = ret;
2091
2092 /* Register slave channels */
2093 ret = pl08x_dma_init_virtual_channels(pl08x, &pl08x->slave,
2094 pl08x->pd->num_slave_channels, true);
2095 if (ret <= 0) {
2096 dev_warn(&pl08x->adev->dev,
2097 "%s failed to enumerate slave channels - %d\n",
2098 __func__, ret);
2099 goto out_no_slave;
2100 }
2101 pl08x->slave.chancnt = ret;
2102
2103 ret = dma_async_device_register(&pl08x->memcpy);
2104 if (ret) {
2105 dev_warn(&pl08x->adev->dev,
2106 "%s failed to register memcpy as an async device - %d\n",
2107 __func__, ret);
2108 goto out_no_memcpy_reg;
2109 }
2110
2111 ret = dma_async_device_register(&pl08x->slave);
2112 if (ret) {
2113 dev_warn(&pl08x->adev->dev,
2114 "%s failed to register slave as an async device - %d\n",
2115 __func__, ret);
2116 goto out_no_slave_reg;
2117 }
2118
2119 amba_set_drvdata(adev, pl08x);
2120 init_pl08x_debugfs(pl08x);
2121 dev_info(&pl08x->adev->dev, "DMA: PL%03x rev%u at 0x%08llx irq %d\n",
2122 amba_part(adev), amba_rev(adev),
2123 (unsigned long long)adev->res.start, adev->irq[0]);
2124
2125 return 0;
2126
2127 out_no_slave_reg:
2128 dma_async_device_unregister(&pl08x->memcpy);
2129 out_no_memcpy_reg:
2130 pl08x_free_virtual_channels(&pl08x->slave);
2131 out_no_slave:
2132 pl08x_free_virtual_channels(&pl08x->memcpy);
2133 out_no_memcpy:
2134 kfree(pl08x->phy_chans);
2135 out_no_phychans:
2136 free_irq(adev->irq[0], pl08x);
2137 out_no_irq:
2138 iounmap(pl08x->base);
2139 out_no_ioremap:
2140 dma_pool_destroy(pl08x->pool);
2141 out_no_lli_pool:
2142 out_no_platdata:
2143 kfree(pl08x);
2144 out_no_pl08x:
2145 amba_release_regions(adev);
2146 return ret;
2147 }
2148
2149 /* PL080 has 8 channels and the PL080 have just 2 */
2150 static struct vendor_data vendor_pl080 = {
2151 .channels = 8,
2152 .dualmaster = true,
2153 };
2154
2155 static struct vendor_data vendor_nomadik = {
2156 .channels = 8,
2157 .dualmaster = true,
2158 .nomadik = true,
2159 };
2160
2161 static struct vendor_data vendor_pl081 = {
2162 .channels = 2,
2163 .dualmaster = false,
2164 };
2165
2166 static struct amba_id pl08x_ids[] = {
2167 /* PL080 */
2168 {
2169 .id = 0x00041080,
2170 .mask = 0x000fffff,
2171 .data = &vendor_pl080,
2172 },
2173 /* PL081 */
2174 {
2175 .id = 0x00041081,
2176 .mask = 0x000fffff,
2177 .data = &vendor_pl081,
2178 },
2179 /* Nomadik 8815 PL080 variant */
2180 {
2181 .id = 0x00280080,
2182 .mask = 0x00ffffff,
2183 .data = &vendor_nomadik,
2184 },
2185 { 0, 0 },
2186 };
2187
2188 MODULE_DEVICE_TABLE(amba, pl08x_ids);
2189
2190 static struct amba_driver pl08x_amba_driver = {
2191 .drv.name = DRIVER_NAME,
2192 .id_table = pl08x_ids,
2193 .probe = pl08x_probe,
2194 };
2195
2196 static int __init pl08x_init(void)
2197 {
2198 int retval;
2199 retval = amba_driver_register(&pl08x_amba_driver);
2200 if (retval)
2201 printk(KERN_WARNING DRIVER_NAME
2202 "failed to register as an AMBA device (%d)\n",
2203 retval);
2204 return retval;
2205 }
2206 subsys_initcall(pl08x_init);
This page took 0.109815 seconds and 6 git commands to generate.