Merge tag 'ipvs-for-v4.4' of https://git.kernel.org/pub/scm/linux/kernel/git/horms...
[deliverable/linux.git] / drivers / dma / at_hdmac.c
1 /*
2 * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
3 *
4 * Copyright (C) 2008 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 *
12 * This supports the Atmel AHB DMA Controller found in several Atmel SoCs.
13 * The only Atmel DMA Controller that is not covered by this driver is the one
14 * found on AT91SAM9263.
15 */
16
17 #include <dt-bindings/dma/at91.h>
18 #include <linux/clk.h>
19 #include <linux/dmaengine.h>
20 #include <linux/dma-mapping.h>
21 #include <linux/dmapool.h>
22 #include <linux/interrupt.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/slab.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
28 #include <linux/of_dma.h>
29
30 #include "at_hdmac_regs.h"
31 #include "dmaengine.h"
32
33 /*
34 * Glossary
35 * --------
36 *
37 * at_hdmac : Name of the ATmel AHB DMA Controller
38 * at_dma_ / atdma : ATmel DMA controller entity related
39 * atc_ / atchan : ATmel DMA Channel entity related
40 */
41
42 #define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
43 #define ATC_DEFAULT_CTRLB (ATC_SIF(AT_DMA_MEM_IF) \
44 |ATC_DIF(AT_DMA_MEM_IF))
45 #define ATC_DMA_BUSWIDTHS\
46 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
47 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
48 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
49 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
50
51 #define ATC_MAX_DSCR_TRIALS 10
52
53 /*
54 * Initial number of descriptors to allocate for each channel. This could
55 * be increased during dma usage.
56 */
57 static unsigned int init_nr_desc_per_channel = 64;
58 module_param(init_nr_desc_per_channel, uint, 0644);
59 MODULE_PARM_DESC(init_nr_desc_per_channel,
60 "initial descriptors per channel (default: 64)");
61
62
63 /* prototypes */
64 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
65 static void atc_issue_pending(struct dma_chan *chan);
66
67
68 /*----------------------------------------------------------------------*/
69
70 static inline unsigned int atc_get_xfer_width(dma_addr_t src, dma_addr_t dst,
71 size_t len)
72 {
73 unsigned int width;
74
75 if (!((src | dst | len) & 3))
76 width = 2;
77 else if (!((src | dst | len) & 1))
78 width = 1;
79 else
80 width = 0;
81
82 return width;
83 }
84
85 static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
86 {
87 return list_first_entry(&atchan->active_list,
88 struct at_desc, desc_node);
89 }
90
91 static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
92 {
93 return list_first_entry(&atchan->queue,
94 struct at_desc, desc_node);
95 }
96
97 /**
98 * atc_alloc_descriptor - allocate and return an initialized descriptor
99 * @chan: the channel to allocate descriptors for
100 * @gfp_flags: GFP allocation flags
101 *
102 * Note: The ack-bit is positioned in the descriptor flag at creation time
103 * to make initial allocation more convenient. This bit will be cleared
104 * and control will be given to client at usage time (during
105 * preparation functions).
106 */
107 static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
108 gfp_t gfp_flags)
109 {
110 struct at_desc *desc = NULL;
111 struct at_dma *atdma = to_at_dma(chan->device);
112 dma_addr_t phys;
113
114 desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
115 if (desc) {
116 memset(desc, 0, sizeof(struct at_desc));
117 INIT_LIST_HEAD(&desc->tx_list);
118 dma_async_tx_descriptor_init(&desc->txd, chan);
119 /* txd.flags will be overwritten in prep functions */
120 desc->txd.flags = DMA_CTRL_ACK;
121 desc->txd.tx_submit = atc_tx_submit;
122 desc->txd.phys = phys;
123 }
124
125 return desc;
126 }
127
128 /**
129 * atc_desc_get - get an unused descriptor from free_list
130 * @atchan: channel we want a new descriptor for
131 */
132 static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
133 {
134 struct at_desc *desc, *_desc;
135 struct at_desc *ret = NULL;
136 unsigned long flags;
137 unsigned int i = 0;
138 LIST_HEAD(tmp_list);
139
140 spin_lock_irqsave(&atchan->lock, flags);
141 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
142 i++;
143 if (async_tx_test_ack(&desc->txd)) {
144 list_del(&desc->desc_node);
145 ret = desc;
146 break;
147 }
148 dev_dbg(chan2dev(&atchan->chan_common),
149 "desc %p not ACKed\n", desc);
150 }
151 spin_unlock_irqrestore(&atchan->lock, flags);
152 dev_vdbg(chan2dev(&atchan->chan_common),
153 "scanned %u descriptors on freelist\n", i);
154
155 /* no more descriptor available in initial pool: create one more */
156 if (!ret) {
157 ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
158 if (ret) {
159 spin_lock_irqsave(&atchan->lock, flags);
160 atchan->descs_allocated++;
161 spin_unlock_irqrestore(&atchan->lock, flags);
162 } else {
163 dev_err(chan2dev(&atchan->chan_common),
164 "not enough descriptors available\n");
165 }
166 }
167
168 return ret;
169 }
170
171 /**
172 * atc_desc_put - move a descriptor, including any children, to the free list
173 * @atchan: channel we work on
174 * @desc: descriptor, at the head of a chain, to move to free list
175 */
176 static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
177 {
178 if (desc) {
179 struct at_desc *child;
180 unsigned long flags;
181
182 spin_lock_irqsave(&atchan->lock, flags);
183 list_for_each_entry(child, &desc->tx_list, desc_node)
184 dev_vdbg(chan2dev(&atchan->chan_common),
185 "moving child desc %p to freelist\n",
186 child);
187 list_splice_init(&desc->tx_list, &atchan->free_list);
188 dev_vdbg(chan2dev(&atchan->chan_common),
189 "moving desc %p to freelist\n", desc);
190 list_add(&desc->desc_node, &atchan->free_list);
191 spin_unlock_irqrestore(&atchan->lock, flags);
192 }
193 }
194
195 /**
196 * atc_desc_chain - build chain adding a descriptor
197 * @first: address of first descriptor of the chain
198 * @prev: address of previous descriptor of the chain
199 * @desc: descriptor to queue
200 *
201 * Called from prep_* functions
202 */
203 static void atc_desc_chain(struct at_desc **first, struct at_desc **prev,
204 struct at_desc *desc)
205 {
206 if (!(*first)) {
207 *first = desc;
208 } else {
209 /* inform the HW lli about chaining */
210 (*prev)->lli.dscr = desc->txd.phys;
211 /* insert the link descriptor to the LD ring */
212 list_add_tail(&desc->desc_node,
213 &(*first)->tx_list);
214 }
215 *prev = desc;
216 }
217
218 /**
219 * atc_dostart - starts the DMA engine for real
220 * @atchan: the channel we want to start
221 * @first: first descriptor in the list we want to begin with
222 *
223 * Called with atchan->lock held and bh disabled
224 */
225 static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
226 {
227 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
228
229 /* ASSERT: channel is idle */
230 if (atc_chan_is_enabled(atchan)) {
231 dev_err(chan2dev(&atchan->chan_common),
232 "BUG: Attempted to start non-idle channel\n");
233 dev_err(chan2dev(&atchan->chan_common),
234 " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
235 channel_readl(atchan, SADDR),
236 channel_readl(atchan, DADDR),
237 channel_readl(atchan, CTRLA),
238 channel_readl(atchan, CTRLB),
239 channel_readl(atchan, DSCR));
240
241 /* The tasklet will hopefully advance the queue... */
242 return;
243 }
244
245 vdbg_dump_regs(atchan);
246
247 channel_writel(atchan, SADDR, 0);
248 channel_writel(atchan, DADDR, 0);
249 channel_writel(atchan, CTRLA, 0);
250 channel_writel(atchan, CTRLB, 0);
251 channel_writel(atchan, DSCR, first->txd.phys);
252 channel_writel(atchan, SPIP, ATC_SPIP_HOLE(first->src_hole) |
253 ATC_SPIP_BOUNDARY(first->boundary));
254 channel_writel(atchan, DPIP, ATC_DPIP_HOLE(first->dst_hole) |
255 ATC_DPIP_BOUNDARY(first->boundary));
256 dma_writel(atdma, CHER, atchan->mask);
257
258 vdbg_dump_regs(atchan);
259 }
260
261 /*
262 * atc_get_desc_by_cookie - get the descriptor of a cookie
263 * @atchan: the DMA channel
264 * @cookie: the cookie to get the descriptor for
265 */
266 static struct at_desc *atc_get_desc_by_cookie(struct at_dma_chan *atchan,
267 dma_cookie_t cookie)
268 {
269 struct at_desc *desc, *_desc;
270
271 list_for_each_entry_safe(desc, _desc, &atchan->queue, desc_node) {
272 if (desc->txd.cookie == cookie)
273 return desc;
274 }
275
276 list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
277 if (desc->txd.cookie == cookie)
278 return desc;
279 }
280
281 return NULL;
282 }
283
284 /**
285 * atc_calc_bytes_left - calculates the number of bytes left according to the
286 * value read from CTRLA.
287 *
288 * @current_len: the number of bytes left before reading CTRLA
289 * @ctrla: the value of CTRLA
290 */
291 static inline int atc_calc_bytes_left(int current_len, u32 ctrla)
292 {
293 u32 btsize = (ctrla & ATC_BTSIZE_MAX);
294 u32 src_width = ATC_REG_TO_SRC_WIDTH(ctrla);
295
296 /*
297 * According to the datasheet, when reading the Control A Register
298 * (ctrla), the Buffer Transfer Size (btsize) bitfield refers to the
299 * number of transfers completed on the Source Interface.
300 * So btsize is always a number of source width transfers.
301 */
302 return current_len - (btsize << src_width);
303 }
304
305 /**
306 * atc_get_bytes_left - get the number of bytes residue for a cookie
307 * @chan: DMA channel
308 * @cookie: transaction identifier to check status of
309 */
310 static int atc_get_bytes_left(struct dma_chan *chan, dma_cookie_t cookie)
311 {
312 struct at_dma_chan *atchan = to_at_dma_chan(chan);
313 struct at_desc *desc_first = atc_first_active(atchan);
314 struct at_desc *desc;
315 int ret;
316 u32 ctrla, dscr, trials;
317
318 /*
319 * If the cookie doesn't match to the currently running transfer then
320 * we can return the total length of the associated DMA transfer,
321 * because it is still queued.
322 */
323 desc = atc_get_desc_by_cookie(atchan, cookie);
324 if (desc == NULL)
325 return -EINVAL;
326 else if (desc != desc_first)
327 return desc->total_len;
328
329 /* cookie matches to the currently running transfer */
330 ret = desc_first->total_len;
331
332 if (desc_first->lli.dscr) {
333 /* hardware linked list transfer */
334
335 /*
336 * Calculate the residue by removing the length of the child
337 * descriptors already transferred from the total length.
338 * To get the current child descriptor we can use the value of
339 * the channel's DSCR register and compare it against the value
340 * of the hardware linked list structure of each child
341 * descriptor.
342 *
343 * The CTRLA register provides us with the amount of data
344 * already read from the source for the current child
345 * descriptor. So we can compute a more accurate residue by also
346 * removing the number of bytes corresponding to this amount of
347 * data.
348 *
349 * However, the DSCR and CTRLA registers cannot be read both
350 * atomically. Hence a race condition may occur: the first read
351 * register may refer to one child descriptor whereas the second
352 * read may refer to a later child descriptor in the list
353 * because of the DMA transfer progression inbetween the two
354 * reads.
355 *
356 * One solution could have been to pause the DMA transfer, read
357 * the DSCR and CTRLA then resume the DMA transfer. Nonetheless,
358 * this approach presents some drawbacks:
359 * - If the DMA transfer is paused, RX overruns or TX underruns
360 * are more likey to occur depending on the system latency.
361 * Taking the USART driver as an example, it uses a cyclic DMA
362 * transfer to read data from the Receive Holding Register
363 * (RHR) to avoid RX overruns since the RHR is not protected
364 * by any FIFO on most Atmel SoCs. So pausing the DMA transfer
365 * to compute the residue would break the USART driver design.
366 * - The atc_pause() function masks interrupts but we'd rather
367 * avoid to do so for system latency purpose.
368 *
369 * Then we'd rather use another solution: the DSCR is read a
370 * first time, the CTRLA is read in turn, next the DSCR is read
371 * a second time. If the two consecutive read values of the DSCR
372 * are the same then we assume both refers to the very same
373 * child descriptor as well as the CTRLA value read inbetween
374 * does. For cyclic tranfers, the assumption is that a full loop
375 * is "not so fast".
376 * If the two DSCR values are different, we read again the CTRLA
377 * then the DSCR till two consecutive read values from DSCR are
378 * equal or till the maxium trials is reach.
379 * This algorithm is very unlikely not to find a stable value for
380 * DSCR.
381 */
382
383 dscr = channel_readl(atchan, DSCR);
384 rmb(); /* ensure DSCR is read before CTRLA */
385 ctrla = channel_readl(atchan, CTRLA);
386 for (trials = 0; trials < ATC_MAX_DSCR_TRIALS; ++trials) {
387 u32 new_dscr;
388
389 rmb(); /* ensure DSCR is read after CTRLA */
390 new_dscr = channel_readl(atchan, DSCR);
391
392 /*
393 * If the DSCR register value has not changed inside the
394 * DMA controller since the previous read, we assume
395 * that both the dscr and ctrla values refers to the
396 * very same descriptor.
397 */
398 if (likely(new_dscr == dscr))
399 break;
400
401 /*
402 * DSCR has changed inside the DMA controller, so the
403 * previouly read value of CTRLA may refer to an already
404 * processed descriptor hence could be outdated.
405 * We need to update ctrla to match the current
406 * descriptor.
407 */
408 dscr = new_dscr;
409 rmb(); /* ensure DSCR is read before CTRLA */
410 ctrla = channel_readl(atchan, CTRLA);
411 }
412 if (unlikely(trials >= ATC_MAX_DSCR_TRIALS))
413 return -ETIMEDOUT;
414
415 /* for the first descriptor we can be more accurate */
416 if (desc_first->lli.dscr == dscr)
417 return atc_calc_bytes_left(ret, ctrla);
418
419 ret -= desc_first->len;
420 list_for_each_entry(desc, &desc_first->tx_list, desc_node) {
421 if (desc->lli.dscr == dscr)
422 break;
423
424 ret -= desc->len;
425 }
426
427 /*
428 * For the current descriptor in the chain we can calculate
429 * the remaining bytes using the channel's register.
430 */
431 ret = atc_calc_bytes_left(ret, ctrla);
432 } else {
433 /* single transfer */
434 ctrla = channel_readl(atchan, CTRLA);
435 ret = atc_calc_bytes_left(ret, ctrla);
436 }
437
438 return ret;
439 }
440
441 /**
442 * atc_chain_complete - finish work for one transaction chain
443 * @atchan: channel we work on
444 * @desc: descriptor at the head of the chain we want do complete
445 *
446 * Called with atchan->lock held and bh disabled */
447 static void
448 atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
449 {
450 struct dma_async_tx_descriptor *txd = &desc->txd;
451 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
452
453 dev_vdbg(chan2dev(&atchan->chan_common),
454 "descriptor %u complete\n", txd->cookie);
455
456 /* mark the descriptor as complete for non cyclic cases only */
457 if (!atc_chan_is_cyclic(atchan))
458 dma_cookie_complete(txd);
459
460 /* If the transfer was a memset, free our temporary buffer */
461 if (desc->memset) {
462 dma_pool_free(atdma->memset_pool, desc->memset_vaddr,
463 desc->memset_paddr);
464 desc->memset = false;
465 }
466
467 /* move children to free_list */
468 list_splice_init(&desc->tx_list, &atchan->free_list);
469 /* move myself to free_list */
470 list_move(&desc->desc_node, &atchan->free_list);
471
472 dma_descriptor_unmap(txd);
473 /* for cyclic transfers,
474 * no need to replay callback function while stopping */
475 if (!atc_chan_is_cyclic(atchan)) {
476 dma_async_tx_callback callback = txd->callback;
477 void *param = txd->callback_param;
478
479 /*
480 * The API requires that no submissions are done from a
481 * callback, so we don't need to drop the lock here
482 */
483 if (callback)
484 callback(param);
485 }
486
487 dma_run_dependencies(txd);
488 }
489
490 /**
491 * atc_complete_all - finish work for all transactions
492 * @atchan: channel to complete transactions for
493 *
494 * Eventually submit queued descriptors if any
495 *
496 * Assume channel is idle while calling this function
497 * Called with atchan->lock held and bh disabled
498 */
499 static void atc_complete_all(struct at_dma_chan *atchan)
500 {
501 struct at_desc *desc, *_desc;
502 LIST_HEAD(list);
503
504 dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
505
506 /*
507 * Submit queued descriptors ASAP, i.e. before we go through
508 * the completed ones.
509 */
510 if (!list_empty(&atchan->queue))
511 atc_dostart(atchan, atc_first_queued(atchan));
512 /* empty active_list now it is completed */
513 list_splice_init(&atchan->active_list, &list);
514 /* empty queue list by moving descriptors (if any) to active_list */
515 list_splice_init(&atchan->queue, &atchan->active_list);
516
517 list_for_each_entry_safe(desc, _desc, &list, desc_node)
518 atc_chain_complete(atchan, desc);
519 }
520
521 /**
522 * atc_advance_work - at the end of a transaction, move forward
523 * @atchan: channel where the transaction ended
524 *
525 * Called with atchan->lock held and bh disabled
526 */
527 static void atc_advance_work(struct at_dma_chan *atchan)
528 {
529 dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
530
531 if (atc_chan_is_enabled(atchan))
532 return;
533
534 if (list_empty(&atchan->active_list) ||
535 list_is_singular(&atchan->active_list)) {
536 atc_complete_all(atchan);
537 } else {
538 atc_chain_complete(atchan, atc_first_active(atchan));
539 /* advance work */
540 atc_dostart(atchan, atc_first_active(atchan));
541 }
542 }
543
544
545 /**
546 * atc_handle_error - handle errors reported by DMA controller
547 * @atchan: channel where error occurs
548 *
549 * Called with atchan->lock held and bh disabled
550 */
551 static void atc_handle_error(struct at_dma_chan *atchan)
552 {
553 struct at_desc *bad_desc;
554 struct at_desc *child;
555
556 /*
557 * The descriptor currently at the head of the active list is
558 * broked. Since we don't have any way to report errors, we'll
559 * just have to scream loudly and try to carry on.
560 */
561 bad_desc = atc_first_active(atchan);
562 list_del_init(&bad_desc->desc_node);
563
564 /* As we are stopped, take advantage to push queued descriptors
565 * in active_list */
566 list_splice_init(&atchan->queue, atchan->active_list.prev);
567
568 /* Try to restart the controller */
569 if (!list_empty(&atchan->active_list))
570 atc_dostart(atchan, atc_first_active(atchan));
571
572 /*
573 * KERN_CRITICAL may seem harsh, but since this only happens
574 * when someone submits a bad physical address in a
575 * descriptor, we should consider ourselves lucky that the
576 * controller flagged an error instead of scribbling over
577 * random memory locations.
578 */
579 dev_crit(chan2dev(&atchan->chan_common),
580 "Bad descriptor submitted for DMA!\n");
581 dev_crit(chan2dev(&atchan->chan_common),
582 " cookie: %d\n", bad_desc->txd.cookie);
583 atc_dump_lli(atchan, &bad_desc->lli);
584 list_for_each_entry(child, &bad_desc->tx_list, desc_node)
585 atc_dump_lli(atchan, &child->lli);
586
587 /* Pretend the descriptor completed successfully */
588 atc_chain_complete(atchan, bad_desc);
589 }
590
591 /**
592 * atc_handle_cyclic - at the end of a period, run callback function
593 * @atchan: channel used for cyclic operations
594 *
595 * Called with atchan->lock held and bh disabled
596 */
597 static void atc_handle_cyclic(struct at_dma_chan *atchan)
598 {
599 struct at_desc *first = atc_first_active(atchan);
600 struct dma_async_tx_descriptor *txd = &first->txd;
601 dma_async_tx_callback callback = txd->callback;
602 void *param = txd->callback_param;
603
604 dev_vdbg(chan2dev(&atchan->chan_common),
605 "new cyclic period llp 0x%08x\n",
606 channel_readl(atchan, DSCR));
607
608 if (callback)
609 callback(param);
610 }
611
612 /*-- IRQ & Tasklet ---------------------------------------------------*/
613
614 static void atc_tasklet(unsigned long data)
615 {
616 struct at_dma_chan *atchan = (struct at_dma_chan *)data;
617 unsigned long flags;
618
619 spin_lock_irqsave(&atchan->lock, flags);
620 if (test_and_clear_bit(ATC_IS_ERROR, &atchan->status))
621 atc_handle_error(atchan);
622 else if (atc_chan_is_cyclic(atchan))
623 atc_handle_cyclic(atchan);
624 else
625 atc_advance_work(atchan);
626
627 spin_unlock_irqrestore(&atchan->lock, flags);
628 }
629
630 static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
631 {
632 struct at_dma *atdma = (struct at_dma *)dev_id;
633 struct at_dma_chan *atchan;
634 int i;
635 u32 status, pending, imr;
636 int ret = IRQ_NONE;
637
638 do {
639 imr = dma_readl(atdma, EBCIMR);
640 status = dma_readl(atdma, EBCISR);
641 pending = status & imr;
642
643 if (!pending)
644 break;
645
646 dev_vdbg(atdma->dma_common.dev,
647 "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
648 status, imr, pending);
649
650 for (i = 0; i < atdma->dma_common.chancnt; i++) {
651 atchan = &atdma->chan[i];
652 if (pending & (AT_DMA_BTC(i) | AT_DMA_ERR(i))) {
653 if (pending & AT_DMA_ERR(i)) {
654 /* Disable channel on AHB error */
655 dma_writel(atdma, CHDR,
656 AT_DMA_RES(i) | atchan->mask);
657 /* Give information to tasklet */
658 set_bit(ATC_IS_ERROR, &atchan->status);
659 }
660 tasklet_schedule(&atchan->tasklet);
661 ret = IRQ_HANDLED;
662 }
663 }
664
665 } while (pending);
666
667 return ret;
668 }
669
670
671 /*-- DMA Engine API --------------------------------------------------*/
672
673 /**
674 * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
675 * @desc: descriptor at the head of the transaction chain
676 *
677 * Queue chain if DMA engine is working already
678 *
679 * Cookie increment and adding to active_list or queue must be atomic
680 */
681 static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
682 {
683 struct at_desc *desc = txd_to_at_desc(tx);
684 struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
685 dma_cookie_t cookie;
686 unsigned long flags;
687
688 spin_lock_irqsave(&atchan->lock, flags);
689 cookie = dma_cookie_assign(tx);
690
691 if (list_empty(&atchan->active_list)) {
692 dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
693 desc->txd.cookie);
694 atc_dostart(atchan, desc);
695 list_add_tail(&desc->desc_node, &atchan->active_list);
696 } else {
697 dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
698 desc->txd.cookie);
699 list_add_tail(&desc->desc_node, &atchan->queue);
700 }
701
702 spin_unlock_irqrestore(&atchan->lock, flags);
703
704 return cookie;
705 }
706
707 /**
708 * atc_prep_dma_interleaved - prepare memory to memory interleaved operation
709 * @chan: the channel to prepare operation on
710 * @xt: Interleaved transfer template
711 * @flags: tx descriptor status flags
712 */
713 static struct dma_async_tx_descriptor *
714 atc_prep_dma_interleaved(struct dma_chan *chan,
715 struct dma_interleaved_template *xt,
716 unsigned long flags)
717 {
718 struct at_dma_chan *atchan = to_at_dma_chan(chan);
719 struct data_chunk *first = xt->sgl;
720 struct at_desc *desc = NULL;
721 size_t xfer_count;
722 unsigned int dwidth;
723 u32 ctrla;
724 u32 ctrlb;
725 size_t len = 0;
726 int i;
727
728 if (unlikely(!xt || xt->numf != 1 || !xt->frame_size))
729 return NULL;
730
731 dev_info(chan2dev(chan),
732 "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
733 __func__, xt->src_start, xt->dst_start, xt->numf,
734 xt->frame_size, flags);
735
736 /*
737 * The controller can only "skip" X bytes every Y bytes, so we
738 * need to make sure we are given a template that fit that
739 * description, ie a template with chunks that always have the
740 * same size, with the same ICGs.
741 */
742 for (i = 0; i < xt->frame_size; i++) {
743 struct data_chunk *chunk = xt->sgl + i;
744
745 if ((chunk->size != xt->sgl->size) ||
746 (dmaengine_get_dst_icg(xt, chunk) != dmaengine_get_dst_icg(xt, first)) ||
747 (dmaengine_get_src_icg(xt, chunk) != dmaengine_get_src_icg(xt, first))) {
748 dev_err(chan2dev(chan),
749 "%s: the controller can transfer only identical chunks\n",
750 __func__);
751 return NULL;
752 }
753
754 len += chunk->size;
755 }
756
757 dwidth = atc_get_xfer_width(xt->src_start,
758 xt->dst_start, len);
759
760 xfer_count = len >> dwidth;
761 if (xfer_count > ATC_BTSIZE_MAX) {
762 dev_err(chan2dev(chan), "%s: buffer is too big\n", __func__);
763 return NULL;
764 }
765
766 ctrla = ATC_SRC_WIDTH(dwidth) |
767 ATC_DST_WIDTH(dwidth);
768
769 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
770 | ATC_SRC_ADDR_MODE_INCR
771 | ATC_DST_ADDR_MODE_INCR
772 | ATC_SRC_PIP
773 | ATC_DST_PIP
774 | ATC_FC_MEM2MEM;
775
776 /* create the transfer */
777 desc = atc_desc_get(atchan);
778 if (!desc) {
779 dev_err(chan2dev(chan),
780 "%s: couldn't allocate our descriptor\n", __func__);
781 return NULL;
782 }
783
784 desc->lli.saddr = xt->src_start;
785 desc->lli.daddr = xt->dst_start;
786 desc->lli.ctrla = ctrla | xfer_count;
787 desc->lli.ctrlb = ctrlb;
788
789 desc->boundary = first->size >> dwidth;
790 desc->dst_hole = (dmaengine_get_dst_icg(xt, first) >> dwidth) + 1;
791 desc->src_hole = (dmaengine_get_src_icg(xt, first) >> dwidth) + 1;
792
793 desc->txd.cookie = -EBUSY;
794 desc->total_len = desc->len = len;
795
796 /* set end-of-link to the last link descriptor of list*/
797 set_desc_eol(desc);
798
799 desc->txd.flags = flags; /* client is in control of this ack */
800
801 return &desc->txd;
802 }
803
804 /**
805 * atc_prep_dma_memcpy - prepare a memcpy operation
806 * @chan: the channel to prepare operation on
807 * @dest: operation virtual destination address
808 * @src: operation virtual source address
809 * @len: operation length
810 * @flags: tx descriptor status flags
811 */
812 static struct dma_async_tx_descriptor *
813 atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
814 size_t len, unsigned long flags)
815 {
816 struct at_dma_chan *atchan = to_at_dma_chan(chan);
817 struct at_desc *desc = NULL;
818 struct at_desc *first = NULL;
819 struct at_desc *prev = NULL;
820 size_t xfer_count;
821 size_t offset;
822 unsigned int src_width;
823 unsigned int dst_width;
824 u32 ctrla;
825 u32 ctrlb;
826
827 dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
828 dest, src, len, flags);
829
830 if (unlikely(!len)) {
831 dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
832 return NULL;
833 }
834
835 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
836 | ATC_SRC_ADDR_MODE_INCR
837 | ATC_DST_ADDR_MODE_INCR
838 | ATC_FC_MEM2MEM;
839
840 /*
841 * We can be a lot more clever here, but this should take care
842 * of the most common optimization.
843 */
844 src_width = dst_width = atc_get_xfer_width(src, dest, len);
845
846 ctrla = ATC_SRC_WIDTH(src_width) |
847 ATC_DST_WIDTH(dst_width);
848
849 for (offset = 0; offset < len; offset += xfer_count << src_width) {
850 xfer_count = min_t(size_t, (len - offset) >> src_width,
851 ATC_BTSIZE_MAX);
852
853 desc = atc_desc_get(atchan);
854 if (!desc)
855 goto err_desc_get;
856
857 desc->lli.saddr = src + offset;
858 desc->lli.daddr = dest + offset;
859 desc->lli.ctrla = ctrla | xfer_count;
860 desc->lli.ctrlb = ctrlb;
861
862 desc->txd.cookie = 0;
863 desc->len = xfer_count << src_width;
864
865 atc_desc_chain(&first, &prev, desc);
866 }
867
868 /* First descriptor of the chain embedds additional information */
869 first->txd.cookie = -EBUSY;
870 first->total_len = len;
871
872 /* set end-of-link to the last link descriptor of list*/
873 set_desc_eol(desc);
874
875 first->txd.flags = flags; /* client is in control of this ack */
876
877 return &first->txd;
878
879 err_desc_get:
880 atc_desc_put(atchan, first);
881 return NULL;
882 }
883
884 /**
885 * atc_prep_dma_memset - prepare a memcpy operation
886 * @chan: the channel to prepare operation on
887 * @dest: operation virtual destination address
888 * @value: value to set memory buffer to
889 * @len: operation length
890 * @flags: tx descriptor status flags
891 */
892 static struct dma_async_tx_descriptor *
893 atc_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
894 size_t len, unsigned long flags)
895 {
896 struct at_dma_chan *atchan = to_at_dma_chan(chan);
897 struct at_dma *atdma = to_at_dma(chan->device);
898 struct at_desc *desc = NULL;
899 size_t xfer_count;
900 u32 ctrla;
901 u32 ctrlb;
902
903 dev_vdbg(chan2dev(chan), "%s: d0x%x v0x%x l0x%zx f0x%lx\n", __func__,
904 dest, value, len, flags);
905
906 if (unlikely(!len)) {
907 dev_dbg(chan2dev(chan), "%s: length is zero!\n", __func__);
908 return NULL;
909 }
910
911 if (!is_dma_fill_aligned(chan->device, dest, 0, len)) {
912 dev_dbg(chan2dev(chan), "%s: buffer is not aligned\n",
913 __func__);
914 return NULL;
915 }
916
917 xfer_count = len >> 2;
918 if (xfer_count > ATC_BTSIZE_MAX) {
919 dev_err(chan2dev(chan), "%s: buffer is too big\n",
920 __func__);
921 return NULL;
922 }
923
924 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
925 | ATC_SRC_ADDR_MODE_FIXED
926 | ATC_DST_ADDR_MODE_INCR
927 | ATC_FC_MEM2MEM;
928
929 ctrla = ATC_SRC_WIDTH(2) |
930 ATC_DST_WIDTH(2);
931
932 desc = atc_desc_get(atchan);
933 if (!desc) {
934 dev_err(chan2dev(chan), "%s: can't get a descriptor\n",
935 __func__);
936 return NULL;
937 }
938
939 desc->memset_vaddr = dma_pool_alloc(atdma->memset_pool, GFP_ATOMIC,
940 &desc->memset_paddr);
941 if (!desc->memset_vaddr) {
942 dev_err(chan2dev(chan), "%s: couldn't allocate buffer\n",
943 __func__);
944 goto err_put_desc;
945 }
946
947 *desc->memset_vaddr = value;
948 desc->memset = true;
949
950 desc->lli.saddr = desc->memset_paddr;
951 desc->lli.daddr = dest;
952 desc->lli.ctrla = ctrla | xfer_count;
953 desc->lli.ctrlb = ctrlb;
954
955 desc->txd.cookie = -EBUSY;
956 desc->len = len;
957 desc->total_len = len;
958
959 /* set end-of-link on the descriptor */
960 set_desc_eol(desc);
961
962 desc->txd.flags = flags;
963
964 return &desc->txd;
965
966 err_put_desc:
967 atc_desc_put(atchan, desc);
968 return NULL;
969 }
970
971
972 /**
973 * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
974 * @chan: DMA channel
975 * @sgl: scatterlist to transfer to/from
976 * @sg_len: number of entries in @scatterlist
977 * @direction: DMA direction
978 * @flags: tx descriptor status flags
979 * @context: transaction context (ignored)
980 */
981 static struct dma_async_tx_descriptor *
982 atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
983 unsigned int sg_len, enum dma_transfer_direction direction,
984 unsigned long flags, void *context)
985 {
986 struct at_dma_chan *atchan = to_at_dma_chan(chan);
987 struct at_dma_slave *atslave = chan->private;
988 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
989 struct at_desc *first = NULL;
990 struct at_desc *prev = NULL;
991 u32 ctrla;
992 u32 ctrlb;
993 dma_addr_t reg;
994 unsigned int reg_width;
995 unsigned int mem_width;
996 unsigned int i;
997 struct scatterlist *sg;
998 size_t total_len = 0;
999
1000 dev_vdbg(chan2dev(chan), "prep_slave_sg (%d): %s f0x%lx\n",
1001 sg_len,
1002 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1003 flags);
1004
1005 if (unlikely(!atslave || !sg_len)) {
1006 dev_dbg(chan2dev(chan), "prep_slave_sg: sg length is zero!\n");
1007 return NULL;
1008 }
1009
1010 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1011 | ATC_DCSIZE(sconfig->dst_maxburst);
1012 ctrlb = ATC_IEN;
1013
1014 switch (direction) {
1015 case DMA_MEM_TO_DEV:
1016 reg_width = convert_buswidth(sconfig->dst_addr_width);
1017 ctrla |= ATC_DST_WIDTH(reg_width);
1018 ctrlb |= ATC_DST_ADDR_MODE_FIXED
1019 | ATC_SRC_ADDR_MODE_INCR
1020 | ATC_FC_MEM2PER
1021 | ATC_SIF(atchan->mem_if) | ATC_DIF(atchan->per_if);
1022 reg = sconfig->dst_addr;
1023 for_each_sg(sgl, sg, sg_len, i) {
1024 struct at_desc *desc;
1025 u32 len;
1026 u32 mem;
1027
1028 desc = atc_desc_get(atchan);
1029 if (!desc)
1030 goto err_desc_get;
1031
1032 mem = sg_dma_address(sg);
1033 len = sg_dma_len(sg);
1034 if (unlikely(!len)) {
1035 dev_dbg(chan2dev(chan),
1036 "prep_slave_sg: sg(%d) data length is zero\n", i);
1037 goto err;
1038 }
1039 mem_width = 2;
1040 if (unlikely(mem & 3 || len & 3))
1041 mem_width = 0;
1042
1043 desc->lli.saddr = mem;
1044 desc->lli.daddr = reg;
1045 desc->lli.ctrla = ctrla
1046 | ATC_SRC_WIDTH(mem_width)
1047 | len >> mem_width;
1048 desc->lli.ctrlb = ctrlb;
1049 desc->len = len;
1050
1051 atc_desc_chain(&first, &prev, desc);
1052 total_len += len;
1053 }
1054 break;
1055 case DMA_DEV_TO_MEM:
1056 reg_width = convert_buswidth(sconfig->src_addr_width);
1057 ctrla |= ATC_SRC_WIDTH(reg_width);
1058 ctrlb |= ATC_DST_ADDR_MODE_INCR
1059 | ATC_SRC_ADDR_MODE_FIXED
1060 | ATC_FC_PER2MEM
1061 | ATC_SIF(atchan->per_if) | ATC_DIF(atchan->mem_if);
1062
1063 reg = sconfig->src_addr;
1064 for_each_sg(sgl, sg, sg_len, i) {
1065 struct at_desc *desc;
1066 u32 len;
1067 u32 mem;
1068
1069 desc = atc_desc_get(atchan);
1070 if (!desc)
1071 goto err_desc_get;
1072
1073 mem = sg_dma_address(sg);
1074 len = sg_dma_len(sg);
1075 if (unlikely(!len)) {
1076 dev_dbg(chan2dev(chan),
1077 "prep_slave_sg: sg(%d) data length is zero\n", i);
1078 goto err;
1079 }
1080 mem_width = 2;
1081 if (unlikely(mem & 3 || len & 3))
1082 mem_width = 0;
1083
1084 desc->lli.saddr = reg;
1085 desc->lli.daddr = mem;
1086 desc->lli.ctrla = ctrla
1087 | ATC_DST_WIDTH(mem_width)
1088 | len >> reg_width;
1089 desc->lli.ctrlb = ctrlb;
1090 desc->len = len;
1091
1092 atc_desc_chain(&first, &prev, desc);
1093 total_len += len;
1094 }
1095 break;
1096 default:
1097 return NULL;
1098 }
1099
1100 /* set end-of-link to the last link descriptor of list*/
1101 set_desc_eol(prev);
1102
1103 /* First descriptor of the chain embedds additional information */
1104 first->txd.cookie = -EBUSY;
1105 first->total_len = total_len;
1106
1107 /* first link descriptor of list is responsible of flags */
1108 first->txd.flags = flags; /* client is in control of this ack */
1109
1110 return &first->txd;
1111
1112 err_desc_get:
1113 dev_err(chan2dev(chan), "not enough descriptors available\n");
1114 err:
1115 atc_desc_put(atchan, first);
1116 return NULL;
1117 }
1118
1119 /**
1120 * atc_prep_dma_sg - prepare memory to memory scather-gather operation
1121 * @chan: the channel to prepare operation on
1122 * @dst_sg: destination scatterlist
1123 * @dst_nents: number of destination scatterlist entries
1124 * @src_sg: source scatterlist
1125 * @src_nents: number of source scatterlist entries
1126 * @flags: tx descriptor status flags
1127 */
1128 static struct dma_async_tx_descriptor *
1129 atc_prep_dma_sg(struct dma_chan *chan,
1130 struct scatterlist *dst_sg, unsigned int dst_nents,
1131 struct scatterlist *src_sg, unsigned int src_nents,
1132 unsigned long flags)
1133 {
1134 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1135 struct at_desc *desc = NULL;
1136 struct at_desc *first = NULL;
1137 struct at_desc *prev = NULL;
1138 unsigned int src_width;
1139 unsigned int dst_width;
1140 size_t xfer_count;
1141 u32 ctrla;
1142 u32 ctrlb;
1143 size_t dst_len = 0, src_len = 0;
1144 dma_addr_t dst = 0, src = 0;
1145 size_t len = 0, total_len = 0;
1146
1147 if (unlikely(dst_nents == 0 || src_nents == 0))
1148 return NULL;
1149
1150 if (unlikely(dst_sg == NULL || src_sg == NULL))
1151 return NULL;
1152
1153 ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN
1154 | ATC_SRC_ADDR_MODE_INCR
1155 | ATC_DST_ADDR_MODE_INCR
1156 | ATC_FC_MEM2MEM;
1157
1158 /*
1159 * loop until there is either no more source or no more destination
1160 * scatterlist entry
1161 */
1162 while (true) {
1163
1164 /* prepare the next transfer */
1165 if (dst_len == 0) {
1166
1167 /* no more destination scatterlist entries */
1168 if (!dst_sg || !dst_nents)
1169 break;
1170
1171 dst = sg_dma_address(dst_sg);
1172 dst_len = sg_dma_len(dst_sg);
1173
1174 dst_sg = sg_next(dst_sg);
1175 dst_nents--;
1176 }
1177
1178 if (src_len == 0) {
1179
1180 /* no more source scatterlist entries */
1181 if (!src_sg || !src_nents)
1182 break;
1183
1184 src = sg_dma_address(src_sg);
1185 src_len = sg_dma_len(src_sg);
1186
1187 src_sg = sg_next(src_sg);
1188 src_nents--;
1189 }
1190
1191 len = min_t(size_t, src_len, dst_len);
1192 if (len == 0)
1193 continue;
1194
1195 /* take care for the alignment */
1196 src_width = dst_width = atc_get_xfer_width(src, dst, len);
1197
1198 ctrla = ATC_SRC_WIDTH(src_width) |
1199 ATC_DST_WIDTH(dst_width);
1200
1201 /*
1202 * The number of transfers to set up refer to the source width
1203 * that depends on the alignment.
1204 */
1205 xfer_count = len >> src_width;
1206 if (xfer_count > ATC_BTSIZE_MAX) {
1207 xfer_count = ATC_BTSIZE_MAX;
1208 len = ATC_BTSIZE_MAX << src_width;
1209 }
1210
1211 /* create the transfer */
1212 desc = atc_desc_get(atchan);
1213 if (!desc)
1214 goto err_desc_get;
1215
1216 desc->lli.saddr = src;
1217 desc->lli.daddr = dst;
1218 desc->lli.ctrla = ctrla | xfer_count;
1219 desc->lli.ctrlb = ctrlb;
1220
1221 desc->txd.cookie = 0;
1222 desc->len = len;
1223
1224 atc_desc_chain(&first, &prev, desc);
1225
1226 /* update the lengths and addresses for the next loop cycle */
1227 dst_len -= len;
1228 src_len -= len;
1229 dst += len;
1230 src += len;
1231
1232 total_len += len;
1233 }
1234
1235 /* First descriptor of the chain embedds additional information */
1236 first->txd.cookie = -EBUSY;
1237 first->total_len = total_len;
1238
1239 /* set end-of-link to the last link descriptor of list*/
1240 set_desc_eol(desc);
1241
1242 first->txd.flags = flags; /* client is in control of this ack */
1243
1244 return &first->txd;
1245
1246 err_desc_get:
1247 atc_desc_put(atchan, first);
1248 return NULL;
1249 }
1250
1251 /**
1252 * atc_dma_cyclic_check_values
1253 * Check for too big/unaligned periods and unaligned DMA buffer
1254 */
1255 static int
1256 atc_dma_cyclic_check_values(unsigned int reg_width, dma_addr_t buf_addr,
1257 size_t period_len)
1258 {
1259 if (period_len > (ATC_BTSIZE_MAX << reg_width))
1260 goto err_out;
1261 if (unlikely(period_len & ((1 << reg_width) - 1)))
1262 goto err_out;
1263 if (unlikely(buf_addr & ((1 << reg_width) - 1)))
1264 goto err_out;
1265
1266 return 0;
1267
1268 err_out:
1269 return -EINVAL;
1270 }
1271
1272 /**
1273 * atc_dma_cyclic_fill_desc - Fill one period descriptor
1274 */
1275 static int
1276 atc_dma_cyclic_fill_desc(struct dma_chan *chan, struct at_desc *desc,
1277 unsigned int period_index, dma_addr_t buf_addr,
1278 unsigned int reg_width, size_t period_len,
1279 enum dma_transfer_direction direction)
1280 {
1281 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1282 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1283 u32 ctrla;
1284
1285 /* prepare common CRTLA value */
1286 ctrla = ATC_SCSIZE(sconfig->src_maxburst)
1287 | ATC_DCSIZE(sconfig->dst_maxburst)
1288 | ATC_DST_WIDTH(reg_width)
1289 | ATC_SRC_WIDTH(reg_width)
1290 | period_len >> reg_width;
1291
1292 switch (direction) {
1293 case DMA_MEM_TO_DEV:
1294 desc->lli.saddr = buf_addr + (period_len * period_index);
1295 desc->lli.daddr = sconfig->dst_addr;
1296 desc->lli.ctrla = ctrla;
1297 desc->lli.ctrlb = ATC_DST_ADDR_MODE_FIXED
1298 | ATC_SRC_ADDR_MODE_INCR
1299 | ATC_FC_MEM2PER
1300 | ATC_SIF(atchan->mem_if)
1301 | ATC_DIF(atchan->per_if);
1302 desc->len = period_len;
1303 break;
1304
1305 case DMA_DEV_TO_MEM:
1306 desc->lli.saddr = sconfig->src_addr;
1307 desc->lli.daddr = buf_addr + (period_len * period_index);
1308 desc->lli.ctrla = ctrla;
1309 desc->lli.ctrlb = ATC_DST_ADDR_MODE_INCR
1310 | ATC_SRC_ADDR_MODE_FIXED
1311 | ATC_FC_PER2MEM
1312 | ATC_SIF(atchan->per_if)
1313 | ATC_DIF(atchan->mem_if);
1314 desc->len = period_len;
1315 break;
1316
1317 default:
1318 return -EINVAL;
1319 }
1320
1321 return 0;
1322 }
1323
1324 /**
1325 * atc_prep_dma_cyclic - prepare the cyclic DMA transfer
1326 * @chan: the DMA channel to prepare
1327 * @buf_addr: physical DMA address where the buffer starts
1328 * @buf_len: total number of bytes for the entire buffer
1329 * @period_len: number of bytes for each period
1330 * @direction: transfer direction, to or from device
1331 * @flags: tx descriptor status flags
1332 */
1333 static struct dma_async_tx_descriptor *
1334 atc_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
1335 size_t period_len, enum dma_transfer_direction direction,
1336 unsigned long flags)
1337 {
1338 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1339 struct at_dma_slave *atslave = chan->private;
1340 struct dma_slave_config *sconfig = &atchan->dma_sconfig;
1341 struct at_desc *first = NULL;
1342 struct at_desc *prev = NULL;
1343 unsigned long was_cyclic;
1344 unsigned int reg_width;
1345 unsigned int periods = buf_len / period_len;
1346 unsigned int i;
1347
1348 dev_vdbg(chan2dev(chan), "prep_dma_cyclic: %s buf@0x%08x - %d (%d/%d)\n",
1349 direction == DMA_MEM_TO_DEV ? "TO DEVICE" : "FROM DEVICE",
1350 buf_addr,
1351 periods, buf_len, period_len);
1352
1353 if (unlikely(!atslave || !buf_len || !period_len)) {
1354 dev_dbg(chan2dev(chan), "prep_dma_cyclic: length is zero!\n");
1355 return NULL;
1356 }
1357
1358 was_cyclic = test_and_set_bit(ATC_IS_CYCLIC, &atchan->status);
1359 if (was_cyclic) {
1360 dev_dbg(chan2dev(chan), "prep_dma_cyclic: channel in use!\n");
1361 return NULL;
1362 }
1363
1364 if (unlikely(!is_slave_direction(direction)))
1365 goto err_out;
1366
1367 if (sconfig->direction == DMA_MEM_TO_DEV)
1368 reg_width = convert_buswidth(sconfig->dst_addr_width);
1369 else
1370 reg_width = convert_buswidth(sconfig->src_addr_width);
1371
1372 /* Check for too big/unaligned periods and unaligned DMA buffer */
1373 if (atc_dma_cyclic_check_values(reg_width, buf_addr, period_len))
1374 goto err_out;
1375
1376 /* build cyclic linked list */
1377 for (i = 0; i < periods; i++) {
1378 struct at_desc *desc;
1379
1380 desc = atc_desc_get(atchan);
1381 if (!desc)
1382 goto err_desc_get;
1383
1384 if (atc_dma_cyclic_fill_desc(chan, desc, i, buf_addr,
1385 reg_width, period_len, direction))
1386 goto err_desc_get;
1387
1388 atc_desc_chain(&first, &prev, desc);
1389 }
1390
1391 /* lets make a cyclic list */
1392 prev->lli.dscr = first->txd.phys;
1393
1394 /* First descriptor of the chain embedds additional information */
1395 first->txd.cookie = -EBUSY;
1396 first->total_len = buf_len;
1397
1398 return &first->txd;
1399
1400 err_desc_get:
1401 dev_err(chan2dev(chan), "not enough descriptors available\n");
1402 atc_desc_put(atchan, first);
1403 err_out:
1404 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1405 return NULL;
1406 }
1407
1408 static int atc_config(struct dma_chan *chan,
1409 struct dma_slave_config *sconfig)
1410 {
1411 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1412
1413 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1414
1415 /* Check if it is chan is configured for slave transfers */
1416 if (!chan->private)
1417 return -EINVAL;
1418
1419 memcpy(&atchan->dma_sconfig, sconfig, sizeof(*sconfig));
1420
1421 convert_burst(&atchan->dma_sconfig.src_maxburst);
1422 convert_burst(&atchan->dma_sconfig.dst_maxburst);
1423
1424 return 0;
1425 }
1426
1427 static int atc_pause(struct dma_chan *chan)
1428 {
1429 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1430 struct at_dma *atdma = to_at_dma(chan->device);
1431 int chan_id = atchan->chan_common.chan_id;
1432 unsigned long flags;
1433
1434 LIST_HEAD(list);
1435
1436 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1437
1438 spin_lock_irqsave(&atchan->lock, flags);
1439
1440 dma_writel(atdma, CHER, AT_DMA_SUSP(chan_id));
1441 set_bit(ATC_IS_PAUSED, &atchan->status);
1442
1443 spin_unlock_irqrestore(&atchan->lock, flags);
1444
1445 return 0;
1446 }
1447
1448 static int atc_resume(struct dma_chan *chan)
1449 {
1450 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1451 struct at_dma *atdma = to_at_dma(chan->device);
1452 int chan_id = atchan->chan_common.chan_id;
1453 unsigned long flags;
1454
1455 LIST_HEAD(list);
1456
1457 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1458
1459 if (!atc_chan_is_paused(atchan))
1460 return 0;
1461
1462 spin_lock_irqsave(&atchan->lock, flags);
1463
1464 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id));
1465 clear_bit(ATC_IS_PAUSED, &atchan->status);
1466
1467 spin_unlock_irqrestore(&atchan->lock, flags);
1468
1469 return 0;
1470 }
1471
1472 static int atc_terminate_all(struct dma_chan *chan)
1473 {
1474 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1475 struct at_dma *atdma = to_at_dma(chan->device);
1476 int chan_id = atchan->chan_common.chan_id;
1477 struct at_desc *desc, *_desc;
1478 unsigned long flags;
1479
1480 LIST_HEAD(list);
1481
1482 dev_vdbg(chan2dev(chan), "%s\n", __func__);
1483
1484 /*
1485 * This is only called when something went wrong elsewhere, so
1486 * we don't really care about the data. Just disable the
1487 * channel. We still have to poll the channel enable bit due
1488 * to AHB/HSB limitations.
1489 */
1490 spin_lock_irqsave(&atchan->lock, flags);
1491
1492 /* disabling channel: must also remove suspend state */
1493 dma_writel(atdma, CHDR, AT_DMA_RES(chan_id) | atchan->mask);
1494
1495 /* confirm that this channel is disabled */
1496 while (dma_readl(atdma, CHSR) & atchan->mask)
1497 cpu_relax();
1498
1499 /* active_list entries will end up before queued entries */
1500 list_splice_init(&atchan->queue, &list);
1501 list_splice_init(&atchan->active_list, &list);
1502
1503 /* Flush all pending and queued descriptors */
1504 list_for_each_entry_safe(desc, _desc, &list, desc_node)
1505 atc_chain_complete(atchan, desc);
1506
1507 clear_bit(ATC_IS_PAUSED, &atchan->status);
1508 /* if channel dedicated to cyclic operations, free it */
1509 clear_bit(ATC_IS_CYCLIC, &atchan->status);
1510
1511 spin_unlock_irqrestore(&atchan->lock, flags);
1512
1513 return 0;
1514 }
1515
1516 /**
1517 * atc_tx_status - poll for transaction completion
1518 * @chan: DMA channel
1519 * @cookie: transaction identifier to check status of
1520 * @txstate: if not %NULL updated with transaction state
1521 *
1522 * If @txstate is passed in, upon return it reflect the driver
1523 * internal state and can be used with dma_async_is_complete() to check
1524 * the status of multiple cookies without re-checking hardware state.
1525 */
1526 static enum dma_status
1527 atc_tx_status(struct dma_chan *chan,
1528 dma_cookie_t cookie,
1529 struct dma_tx_state *txstate)
1530 {
1531 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1532 unsigned long flags;
1533 enum dma_status ret;
1534 int bytes = 0;
1535
1536 ret = dma_cookie_status(chan, cookie, txstate);
1537 if (ret == DMA_COMPLETE)
1538 return ret;
1539 /*
1540 * There's no point calculating the residue if there's
1541 * no txstate to store the value.
1542 */
1543 if (!txstate)
1544 return DMA_ERROR;
1545
1546 spin_lock_irqsave(&atchan->lock, flags);
1547
1548 /* Get number of bytes left in the active transactions */
1549 bytes = atc_get_bytes_left(chan, cookie);
1550
1551 spin_unlock_irqrestore(&atchan->lock, flags);
1552
1553 if (unlikely(bytes < 0)) {
1554 dev_vdbg(chan2dev(chan), "get residual bytes error\n");
1555 return DMA_ERROR;
1556 } else {
1557 dma_set_residue(txstate, bytes);
1558 }
1559
1560 dev_vdbg(chan2dev(chan), "tx_status %d: cookie = %d residue = %d\n",
1561 ret, cookie, bytes);
1562
1563 return ret;
1564 }
1565
1566 /**
1567 * atc_issue_pending - try to finish work
1568 * @chan: target DMA channel
1569 */
1570 static void atc_issue_pending(struct dma_chan *chan)
1571 {
1572 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1573 unsigned long flags;
1574
1575 dev_vdbg(chan2dev(chan), "issue_pending\n");
1576
1577 /* Not needed for cyclic transfers */
1578 if (atc_chan_is_cyclic(atchan))
1579 return;
1580
1581 spin_lock_irqsave(&atchan->lock, flags);
1582 atc_advance_work(atchan);
1583 spin_unlock_irqrestore(&atchan->lock, flags);
1584 }
1585
1586 /**
1587 * atc_alloc_chan_resources - allocate resources for DMA channel
1588 * @chan: allocate descriptor resources for this channel
1589 * @client: current client requesting the channel be ready for requests
1590 *
1591 * return - the number of allocated descriptors
1592 */
1593 static int atc_alloc_chan_resources(struct dma_chan *chan)
1594 {
1595 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1596 struct at_dma *atdma = to_at_dma(chan->device);
1597 struct at_desc *desc;
1598 struct at_dma_slave *atslave;
1599 unsigned long flags;
1600 int i;
1601 u32 cfg;
1602 LIST_HEAD(tmp_list);
1603
1604 dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
1605
1606 /* ASSERT: channel is idle */
1607 if (atc_chan_is_enabled(atchan)) {
1608 dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
1609 return -EIO;
1610 }
1611
1612 cfg = ATC_DEFAULT_CFG;
1613
1614 atslave = chan->private;
1615 if (atslave) {
1616 /*
1617 * We need controller-specific data to set up slave
1618 * transfers.
1619 */
1620 BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
1621
1622 /* if cfg configuration specified take it instead of default */
1623 if (atslave->cfg)
1624 cfg = atslave->cfg;
1625 }
1626
1627 /* have we already been set up?
1628 * reconfigure channel but no need to reallocate descriptors */
1629 if (!list_empty(&atchan->free_list))
1630 return atchan->descs_allocated;
1631
1632 /* Allocate initial pool of descriptors */
1633 for (i = 0; i < init_nr_desc_per_channel; i++) {
1634 desc = atc_alloc_descriptor(chan, GFP_KERNEL);
1635 if (!desc) {
1636 dev_err(atdma->dma_common.dev,
1637 "Only %d initial descriptors\n", i);
1638 break;
1639 }
1640 list_add_tail(&desc->desc_node, &tmp_list);
1641 }
1642
1643 spin_lock_irqsave(&atchan->lock, flags);
1644 atchan->descs_allocated = i;
1645 list_splice(&tmp_list, &atchan->free_list);
1646 dma_cookie_init(chan);
1647 spin_unlock_irqrestore(&atchan->lock, flags);
1648
1649 /* channel parameters */
1650 channel_writel(atchan, CFG, cfg);
1651
1652 dev_dbg(chan2dev(chan),
1653 "alloc_chan_resources: allocated %d descriptors\n",
1654 atchan->descs_allocated);
1655
1656 return atchan->descs_allocated;
1657 }
1658
1659 /**
1660 * atc_free_chan_resources - free all channel resources
1661 * @chan: DMA channel
1662 */
1663 static void atc_free_chan_resources(struct dma_chan *chan)
1664 {
1665 struct at_dma_chan *atchan = to_at_dma_chan(chan);
1666 struct at_dma *atdma = to_at_dma(chan->device);
1667 struct at_desc *desc, *_desc;
1668 LIST_HEAD(list);
1669
1670 dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
1671 atchan->descs_allocated);
1672
1673 /* ASSERT: channel is idle */
1674 BUG_ON(!list_empty(&atchan->active_list));
1675 BUG_ON(!list_empty(&atchan->queue));
1676 BUG_ON(atc_chan_is_enabled(atchan));
1677
1678 list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
1679 dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
1680 list_del(&desc->desc_node);
1681 /* free link descriptor */
1682 dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
1683 }
1684 list_splice_init(&atchan->free_list, &list);
1685 atchan->descs_allocated = 0;
1686 atchan->status = 0;
1687
1688 dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
1689 }
1690
1691 #ifdef CONFIG_OF
1692 static bool at_dma_filter(struct dma_chan *chan, void *slave)
1693 {
1694 struct at_dma_slave *atslave = slave;
1695
1696 if (atslave->dma_dev == chan->device->dev) {
1697 chan->private = atslave;
1698 return true;
1699 } else {
1700 return false;
1701 }
1702 }
1703
1704 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1705 struct of_dma *of_dma)
1706 {
1707 struct dma_chan *chan;
1708 struct at_dma_chan *atchan;
1709 struct at_dma_slave *atslave;
1710 dma_cap_mask_t mask;
1711 unsigned int per_id;
1712 struct platform_device *dmac_pdev;
1713
1714 if (dma_spec->args_count != 2)
1715 return NULL;
1716
1717 dmac_pdev = of_find_device_by_node(dma_spec->np);
1718
1719 dma_cap_zero(mask);
1720 dma_cap_set(DMA_SLAVE, mask);
1721
1722 atslave = devm_kzalloc(&dmac_pdev->dev, sizeof(*atslave), GFP_KERNEL);
1723 if (!atslave)
1724 return NULL;
1725
1726 atslave->cfg = ATC_DST_H2SEL_HW | ATC_SRC_H2SEL_HW;
1727 /*
1728 * We can fill both SRC_PER and DST_PER, one of these fields will be
1729 * ignored depending on DMA transfer direction.
1730 */
1731 per_id = dma_spec->args[1] & AT91_DMA_CFG_PER_ID_MASK;
1732 atslave->cfg |= ATC_DST_PER_MSB(per_id) | ATC_DST_PER(per_id)
1733 | ATC_SRC_PER_MSB(per_id) | ATC_SRC_PER(per_id);
1734 /*
1735 * We have to translate the value we get from the device tree since
1736 * the half FIFO configuration value had to be 0 to keep backward
1737 * compatibility.
1738 */
1739 switch (dma_spec->args[1] & AT91_DMA_CFG_FIFOCFG_MASK) {
1740 case AT91_DMA_CFG_FIFOCFG_ALAP:
1741 atslave->cfg |= ATC_FIFOCFG_LARGESTBURST;
1742 break;
1743 case AT91_DMA_CFG_FIFOCFG_ASAP:
1744 atslave->cfg |= ATC_FIFOCFG_ENOUGHSPACE;
1745 break;
1746 case AT91_DMA_CFG_FIFOCFG_HALF:
1747 default:
1748 atslave->cfg |= ATC_FIFOCFG_HALFFIFO;
1749 }
1750 atslave->dma_dev = &dmac_pdev->dev;
1751
1752 chan = dma_request_channel(mask, at_dma_filter, atslave);
1753 if (!chan)
1754 return NULL;
1755
1756 atchan = to_at_dma_chan(chan);
1757 atchan->per_if = dma_spec->args[0] & 0xff;
1758 atchan->mem_if = (dma_spec->args[0] >> 16) & 0xff;
1759
1760 return chan;
1761 }
1762 #else
1763 static struct dma_chan *at_dma_xlate(struct of_phandle_args *dma_spec,
1764 struct of_dma *of_dma)
1765 {
1766 return NULL;
1767 }
1768 #endif
1769
1770 /*-- Module Management -----------------------------------------------*/
1771
1772 /* cap_mask is a multi-u32 bitfield, fill it with proper C code. */
1773 static struct at_dma_platform_data at91sam9rl_config = {
1774 .nr_channels = 2,
1775 };
1776 static struct at_dma_platform_data at91sam9g45_config = {
1777 .nr_channels = 8,
1778 };
1779
1780 #if defined(CONFIG_OF)
1781 static const struct of_device_id atmel_dma_dt_ids[] = {
1782 {
1783 .compatible = "atmel,at91sam9rl-dma",
1784 .data = &at91sam9rl_config,
1785 }, {
1786 .compatible = "atmel,at91sam9g45-dma",
1787 .data = &at91sam9g45_config,
1788 }, {
1789 /* sentinel */
1790 }
1791 };
1792
1793 MODULE_DEVICE_TABLE(of, atmel_dma_dt_ids);
1794 #endif
1795
1796 static const struct platform_device_id atdma_devtypes[] = {
1797 {
1798 .name = "at91sam9rl_dma",
1799 .driver_data = (unsigned long) &at91sam9rl_config,
1800 }, {
1801 .name = "at91sam9g45_dma",
1802 .driver_data = (unsigned long) &at91sam9g45_config,
1803 }, {
1804 /* sentinel */
1805 }
1806 };
1807
1808 static inline const struct at_dma_platform_data * __init at_dma_get_driver_data(
1809 struct platform_device *pdev)
1810 {
1811 if (pdev->dev.of_node) {
1812 const struct of_device_id *match;
1813 match = of_match_node(atmel_dma_dt_ids, pdev->dev.of_node);
1814 if (match == NULL)
1815 return NULL;
1816 return match->data;
1817 }
1818 return (struct at_dma_platform_data *)
1819 platform_get_device_id(pdev)->driver_data;
1820 }
1821
1822 /**
1823 * at_dma_off - disable DMA controller
1824 * @atdma: the Atmel HDAMC device
1825 */
1826 static void at_dma_off(struct at_dma *atdma)
1827 {
1828 dma_writel(atdma, EN, 0);
1829
1830 /* disable all interrupts */
1831 dma_writel(atdma, EBCIDR, -1L);
1832
1833 /* confirm that all channels are disabled */
1834 while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
1835 cpu_relax();
1836 }
1837
1838 static int __init at_dma_probe(struct platform_device *pdev)
1839 {
1840 struct resource *io;
1841 struct at_dma *atdma;
1842 size_t size;
1843 int irq;
1844 int err;
1845 int i;
1846 const struct at_dma_platform_data *plat_dat;
1847
1848 /* setup platform data for each SoC */
1849 dma_cap_set(DMA_MEMCPY, at91sam9rl_config.cap_mask);
1850 dma_cap_set(DMA_SG, at91sam9rl_config.cap_mask);
1851 dma_cap_set(DMA_INTERLEAVE, at91sam9g45_config.cap_mask);
1852 dma_cap_set(DMA_MEMCPY, at91sam9g45_config.cap_mask);
1853 dma_cap_set(DMA_MEMSET, at91sam9g45_config.cap_mask);
1854 dma_cap_set(DMA_PRIVATE, at91sam9g45_config.cap_mask);
1855 dma_cap_set(DMA_SLAVE, at91sam9g45_config.cap_mask);
1856 dma_cap_set(DMA_SG, at91sam9g45_config.cap_mask);
1857
1858 /* get DMA parameters from controller type */
1859 plat_dat = at_dma_get_driver_data(pdev);
1860 if (!plat_dat)
1861 return -ENODEV;
1862
1863 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1864 if (!io)
1865 return -EINVAL;
1866
1867 irq = platform_get_irq(pdev, 0);
1868 if (irq < 0)
1869 return irq;
1870
1871 size = sizeof(struct at_dma);
1872 size += plat_dat->nr_channels * sizeof(struct at_dma_chan);
1873 atdma = kzalloc(size, GFP_KERNEL);
1874 if (!atdma)
1875 return -ENOMEM;
1876
1877 /* discover transaction capabilities */
1878 atdma->dma_common.cap_mask = plat_dat->cap_mask;
1879 atdma->all_chan_mask = (1 << plat_dat->nr_channels) - 1;
1880
1881 size = resource_size(io);
1882 if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
1883 err = -EBUSY;
1884 goto err_kfree;
1885 }
1886
1887 atdma->regs = ioremap(io->start, size);
1888 if (!atdma->regs) {
1889 err = -ENOMEM;
1890 goto err_release_r;
1891 }
1892
1893 atdma->clk = clk_get(&pdev->dev, "dma_clk");
1894 if (IS_ERR(atdma->clk)) {
1895 err = PTR_ERR(atdma->clk);
1896 goto err_clk;
1897 }
1898 err = clk_prepare_enable(atdma->clk);
1899 if (err)
1900 goto err_clk_prepare;
1901
1902 /* force dma off, just in case */
1903 at_dma_off(atdma);
1904
1905 err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
1906 if (err)
1907 goto err_irq;
1908
1909 platform_set_drvdata(pdev, atdma);
1910
1911 /* create a pool of consistent memory blocks for hardware descriptors */
1912 atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
1913 &pdev->dev, sizeof(struct at_desc),
1914 4 /* word alignment */, 0);
1915 if (!atdma->dma_desc_pool) {
1916 dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
1917 err = -ENOMEM;
1918 goto err_desc_pool_create;
1919 }
1920
1921 /* create a pool of consistent memory blocks for memset blocks */
1922 atdma->memset_pool = dma_pool_create("at_hdmac_memset_pool",
1923 &pdev->dev, sizeof(int), 4, 0);
1924 if (!atdma->memset_pool) {
1925 dev_err(&pdev->dev, "No memory for memset dma pool\n");
1926 err = -ENOMEM;
1927 goto err_memset_pool_create;
1928 }
1929
1930 /* clear any pending interrupt */
1931 while (dma_readl(atdma, EBCISR))
1932 cpu_relax();
1933
1934 /* initialize channels related values */
1935 INIT_LIST_HEAD(&atdma->dma_common.channels);
1936 for (i = 0; i < plat_dat->nr_channels; i++) {
1937 struct at_dma_chan *atchan = &atdma->chan[i];
1938
1939 atchan->mem_if = AT_DMA_MEM_IF;
1940 atchan->per_if = AT_DMA_PER_IF;
1941 atchan->chan_common.device = &atdma->dma_common;
1942 dma_cookie_init(&atchan->chan_common);
1943 list_add_tail(&atchan->chan_common.device_node,
1944 &atdma->dma_common.channels);
1945
1946 atchan->ch_regs = atdma->regs + ch_regs(i);
1947 spin_lock_init(&atchan->lock);
1948 atchan->mask = 1 << i;
1949
1950 INIT_LIST_HEAD(&atchan->active_list);
1951 INIT_LIST_HEAD(&atchan->queue);
1952 INIT_LIST_HEAD(&atchan->free_list);
1953
1954 tasklet_init(&atchan->tasklet, atc_tasklet,
1955 (unsigned long)atchan);
1956 atc_enable_chan_irq(atdma, i);
1957 }
1958
1959 /* set base routines */
1960 atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
1961 atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
1962 atdma->dma_common.device_tx_status = atc_tx_status;
1963 atdma->dma_common.device_issue_pending = atc_issue_pending;
1964 atdma->dma_common.dev = &pdev->dev;
1965
1966 /* set prep routines based on capability */
1967 if (dma_has_cap(DMA_INTERLEAVE, atdma->dma_common.cap_mask))
1968 atdma->dma_common.device_prep_interleaved_dma = atc_prep_dma_interleaved;
1969
1970 if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
1971 atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
1972
1973 if (dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask)) {
1974 atdma->dma_common.device_prep_dma_memset = atc_prep_dma_memset;
1975 atdma->dma_common.fill_align = DMAENGINE_ALIGN_4_BYTES;
1976 }
1977
1978 if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
1979 atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
1980 /* controller can do slave DMA: can trigger cyclic transfers */
1981 dma_cap_set(DMA_CYCLIC, atdma->dma_common.cap_mask);
1982 atdma->dma_common.device_prep_dma_cyclic = atc_prep_dma_cyclic;
1983 atdma->dma_common.device_config = atc_config;
1984 atdma->dma_common.device_pause = atc_pause;
1985 atdma->dma_common.device_resume = atc_resume;
1986 atdma->dma_common.device_terminate_all = atc_terminate_all;
1987 atdma->dma_common.src_addr_widths = ATC_DMA_BUSWIDTHS;
1988 atdma->dma_common.dst_addr_widths = ATC_DMA_BUSWIDTHS;
1989 atdma->dma_common.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1990 atdma->dma_common.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1991 }
1992
1993 if (dma_has_cap(DMA_SG, atdma->dma_common.cap_mask))
1994 atdma->dma_common.device_prep_dma_sg = atc_prep_dma_sg;
1995
1996 dma_writel(atdma, EN, AT_DMA_ENABLE);
1997
1998 dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s%s%s), %d channels\n",
1999 dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
2000 dma_has_cap(DMA_MEMSET, atdma->dma_common.cap_mask) ? "set " : "",
2001 dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
2002 dma_has_cap(DMA_SG, atdma->dma_common.cap_mask) ? "sg-cpy " : "",
2003 plat_dat->nr_channels);
2004
2005 dma_async_device_register(&atdma->dma_common);
2006
2007 /*
2008 * Do not return an error if the dmac node is not present in order to
2009 * not break the existing way of requesting channel with
2010 * dma_request_channel().
2011 */
2012 if (pdev->dev.of_node) {
2013 err = of_dma_controller_register(pdev->dev.of_node,
2014 at_dma_xlate, atdma);
2015 if (err) {
2016 dev_err(&pdev->dev, "could not register of_dma_controller\n");
2017 goto err_of_dma_controller_register;
2018 }
2019 }
2020
2021 return 0;
2022
2023 err_of_dma_controller_register:
2024 dma_async_device_unregister(&atdma->dma_common);
2025 dma_pool_destroy(atdma->memset_pool);
2026 err_memset_pool_create:
2027 dma_pool_destroy(atdma->dma_desc_pool);
2028 err_desc_pool_create:
2029 free_irq(platform_get_irq(pdev, 0), atdma);
2030 err_irq:
2031 clk_disable_unprepare(atdma->clk);
2032 err_clk_prepare:
2033 clk_put(atdma->clk);
2034 err_clk:
2035 iounmap(atdma->regs);
2036 atdma->regs = NULL;
2037 err_release_r:
2038 release_mem_region(io->start, size);
2039 err_kfree:
2040 kfree(atdma);
2041 return err;
2042 }
2043
2044 static int at_dma_remove(struct platform_device *pdev)
2045 {
2046 struct at_dma *atdma = platform_get_drvdata(pdev);
2047 struct dma_chan *chan, *_chan;
2048 struct resource *io;
2049
2050 at_dma_off(atdma);
2051 dma_async_device_unregister(&atdma->dma_common);
2052
2053 dma_pool_destroy(atdma->memset_pool);
2054 dma_pool_destroy(atdma->dma_desc_pool);
2055 free_irq(platform_get_irq(pdev, 0), atdma);
2056
2057 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2058 device_node) {
2059 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2060
2061 /* Disable interrupts */
2062 atc_disable_chan_irq(atdma, chan->chan_id);
2063
2064 tasklet_kill(&atchan->tasklet);
2065 list_del(&chan->device_node);
2066 }
2067
2068 clk_disable_unprepare(atdma->clk);
2069 clk_put(atdma->clk);
2070
2071 iounmap(atdma->regs);
2072 atdma->regs = NULL;
2073
2074 io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2075 release_mem_region(io->start, resource_size(io));
2076
2077 kfree(atdma);
2078
2079 return 0;
2080 }
2081
2082 static void at_dma_shutdown(struct platform_device *pdev)
2083 {
2084 struct at_dma *atdma = platform_get_drvdata(pdev);
2085
2086 at_dma_off(platform_get_drvdata(pdev));
2087 clk_disable_unprepare(atdma->clk);
2088 }
2089
2090 static int at_dma_prepare(struct device *dev)
2091 {
2092 struct platform_device *pdev = to_platform_device(dev);
2093 struct at_dma *atdma = platform_get_drvdata(pdev);
2094 struct dma_chan *chan, *_chan;
2095
2096 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2097 device_node) {
2098 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2099 /* wait for transaction completion (except in cyclic case) */
2100 if (atc_chan_is_enabled(atchan) && !atc_chan_is_cyclic(atchan))
2101 return -EAGAIN;
2102 }
2103 return 0;
2104 }
2105
2106 static void atc_suspend_cyclic(struct at_dma_chan *atchan)
2107 {
2108 struct dma_chan *chan = &atchan->chan_common;
2109
2110 /* Channel should be paused by user
2111 * do it anyway even if it is not done already */
2112 if (!atc_chan_is_paused(atchan)) {
2113 dev_warn(chan2dev(chan),
2114 "cyclic channel not paused, should be done by channel user\n");
2115 atc_pause(chan);
2116 }
2117
2118 /* now preserve additional data for cyclic operations */
2119 /* next descriptor address in the cyclic list */
2120 atchan->save_dscr = channel_readl(atchan, DSCR);
2121
2122 vdbg_dump_regs(atchan);
2123 }
2124
2125 static int at_dma_suspend_noirq(struct device *dev)
2126 {
2127 struct platform_device *pdev = to_platform_device(dev);
2128 struct at_dma *atdma = platform_get_drvdata(pdev);
2129 struct dma_chan *chan, *_chan;
2130
2131 /* preserve data */
2132 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2133 device_node) {
2134 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2135
2136 if (atc_chan_is_cyclic(atchan))
2137 atc_suspend_cyclic(atchan);
2138 atchan->save_cfg = channel_readl(atchan, CFG);
2139 }
2140 atdma->save_imr = dma_readl(atdma, EBCIMR);
2141
2142 /* disable DMA controller */
2143 at_dma_off(atdma);
2144 clk_disable_unprepare(atdma->clk);
2145 return 0;
2146 }
2147
2148 static void atc_resume_cyclic(struct at_dma_chan *atchan)
2149 {
2150 struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
2151
2152 /* restore channel status for cyclic descriptors list:
2153 * next descriptor in the cyclic list at the time of suspend */
2154 channel_writel(atchan, SADDR, 0);
2155 channel_writel(atchan, DADDR, 0);
2156 channel_writel(atchan, CTRLA, 0);
2157 channel_writel(atchan, CTRLB, 0);
2158 channel_writel(atchan, DSCR, atchan->save_dscr);
2159 dma_writel(atdma, CHER, atchan->mask);
2160
2161 /* channel pause status should be removed by channel user
2162 * We cannot take the initiative to do it here */
2163
2164 vdbg_dump_regs(atchan);
2165 }
2166
2167 static int at_dma_resume_noirq(struct device *dev)
2168 {
2169 struct platform_device *pdev = to_platform_device(dev);
2170 struct at_dma *atdma = platform_get_drvdata(pdev);
2171 struct dma_chan *chan, *_chan;
2172
2173 /* bring back DMA controller */
2174 clk_prepare_enable(atdma->clk);
2175 dma_writel(atdma, EN, AT_DMA_ENABLE);
2176
2177 /* clear any pending interrupt */
2178 while (dma_readl(atdma, EBCISR))
2179 cpu_relax();
2180
2181 /* restore saved data */
2182 dma_writel(atdma, EBCIER, atdma->save_imr);
2183 list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
2184 device_node) {
2185 struct at_dma_chan *atchan = to_at_dma_chan(chan);
2186
2187 channel_writel(atchan, CFG, atchan->save_cfg);
2188 if (atc_chan_is_cyclic(atchan))
2189 atc_resume_cyclic(atchan);
2190 }
2191 return 0;
2192 }
2193
2194 static const struct dev_pm_ops at_dma_dev_pm_ops = {
2195 .prepare = at_dma_prepare,
2196 .suspend_noirq = at_dma_suspend_noirq,
2197 .resume_noirq = at_dma_resume_noirq,
2198 };
2199
2200 static struct platform_driver at_dma_driver = {
2201 .remove = at_dma_remove,
2202 .shutdown = at_dma_shutdown,
2203 .id_table = atdma_devtypes,
2204 .driver = {
2205 .name = "at_hdmac",
2206 .pm = &at_dma_dev_pm_ops,
2207 .of_match_table = of_match_ptr(atmel_dma_dt_ids),
2208 },
2209 };
2210
2211 static int __init at_dma_init(void)
2212 {
2213 return platform_driver_probe(&at_dma_driver, at_dma_probe);
2214 }
2215 subsys_initcall(at_dma_init);
2216
2217 static void __exit at_dma_exit(void)
2218 {
2219 platform_driver_unregister(&at_dma_driver);
2220 }
2221 module_exit(at_dma_exit);
2222
2223 MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
2224 MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
2225 MODULE_LICENSE("GPL");
2226 MODULE_ALIAS("platform:at_hdmac");
This page took 0.109532 seconds and 5 git commands to generate.