Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux...
[deliverable/linux.git] / drivers / dma / at_xdmac.c
1 /*
2 * Driver for the Atmel Extensible DMA Controller (aka XDMAC on AT91 systems)
3 *
4 * Copyright (C) 2014 Atmel Corporation
5 *
6 * Author: Ludovic Desroches <ludovic.desroches@atmel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
11 *
12 * This program is distributed in the hope that it will be useful, but WITHOUT
13 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * more details.
16 *
17 * You should have received a copy of the GNU General Public License along with
18 * this program. If not, see <http://www.gnu.org/licenses/>.
19 */
20
21 #include <asm/barrier.h>
22 #include <dt-bindings/dma/at91.h>
23 #include <linux/clk.h>
24 #include <linux/dmaengine.h>
25 #include <linux/dmapool.h>
26 #include <linux/interrupt.h>
27 #include <linux/irq.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/of_dma.h>
32 #include <linux/of_platform.h>
33 #include <linux/platform_device.h>
34 #include <linux/pm.h>
35
36 #include "dmaengine.h"
37
38 /* Global registers */
39 #define AT_XDMAC_GTYPE 0x00 /* Global Type Register */
40 #define AT_XDMAC_NB_CH(i) (((i) & 0x1F) + 1) /* Number of Channels Minus One */
41 #define AT_XDMAC_FIFO_SZ(i) (((i) >> 5) & 0x7FF) /* Number of Bytes */
42 #define AT_XDMAC_NB_REQ(i) ((((i) >> 16) & 0x3F) + 1) /* Number of Peripheral Requests Minus One */
43 #define AT_XDMAC_GCFG 0x04 /* Global Configuration Register */
44 #define AT_XDMAC_GWAC 0x08 /* Global Weighted Arbiter Configuration Register */
45 #define AT_XDMAC_GIE 0x0C /* Global Interrupt Enable Register */
46 #define AT_XDMAC_GID 0x10 /* Global Interrupt Disable Register */
47 #define AT_XDMAC_GIM 0x14 /* Global Interrupt Mask Register */
48 #define AT_XDMAC_GIS 0x18 /* Global Interrupt Status Register */
49 #define AT_XDMAC_GE 0x1C /* Global Channel Enable Register */
50 #define AT_XDMAC_GD 0x20 /* Global Channel Disable Register */
51 #define AT_XDMAC_GS 0x24 /* Global Channel Status Register */
52 #define AT_XDMAC_GRS 0x28 /* Global Channel Read Suspend Register */
53 #define AT_XDMAC_GWS 0x2C /* Global Write Suspend Register */
54 #define AT_XDMAC_GRWS 0x30 /* Global Channel Read Write Suspend Register */
55 #define AT_XDMAC_GRWR 0x34 /* Global Channel Read Write Resume Register */
56 #define AT_XDMAC_GSWR 0x38 /* Global Channel Software Request Register */
57 #define AT_XDMAC_GSWS 0x3C /* Global channel Software Request Status Register */
58 #define AT_XDMAC_GSWF 0x40 /* Global Channel Software Flush Request Register */
59 #define AT_XDMAC_VERSION 0xFFC /* XDMAC Version Register */
60
61 /* Channel relative registers offsets */
62 #define AT_XDMAC_CIE 0x00 /* Channel Interrupt Enable Register */
63 #define AT_XDMAC_CIE_BIE BIT(0) /* End of Block Interrupt Enable Bit */
64 #define AT_XDMAC_CIE_LIE BIT(1) /* End of Linked List Interrupt Enable Bit */
65 #define AT_XDMAC_CIE_DIE BIT(2) /* End of Disable Interrupt Enable Bit */
66 #define AT_XDMAC_CIE_FIE BIT(3) /* End of Flush Interrupt Enable Bit */
67 #define AT_XDMAC_CIE_RBEIE BIT(4) /* Read Bus Error Interrupt Enable Bit */
68 #define AT_XDMAC_CIE_WBEIE BIT(5) /* Write Bus Error Interrupt Enable Bit */
69 #define AT_XDMAC_CIE_ROIE BIT(6) /* Request Overflow Interrupt Enable Bit */
70 #define AT_XDMAC_CID 0x04 /* Channel Interrupt Disable Register */
71 #define AT_XDMAC_CID_BID BIT(0) /* End of Block Interrupt Disable Bit */
72 #define AT_XDMAC_CID_LID BIT(1) /* End of Linked List Interrupt Disable Bit */
73 #define AT_XDMAC_CID_DID BIT(2) /* End of Disable Interrupt Disable Bit */
74 #define AT_XDMAC_CID_FID BIT(3) /* End of Flush Interrupt Disable Bit */
75 #define AT_XDMAC_CID_RBEID BIT(4) /* Read Bus Error Interrupt Disable Bit */
76 #define AT_XDMAC_CID_WBEID BIT(5) /* Write Bus Error Interrupt Disable Bit */
77 #define AT_XDMAC_CID_ROID BIT(6) /* Request Overflow Interrupt Disable Bit */
78 #define AT_XDMAC_CIM 0x08 /* Channel Interrupt Mask Register */
79 #define AT_XDMAC_CIM_BIM BIT(0) /* End of Block Interrupt Mask Bit */
80 #define AT_XDMAC_CIM_LIM BIT(1) /* End of Linked List Interrupt Mask Bit */
81 #define AT_XDMAC_CIM_DIM BIT(2) /* End of Disable Interrupt Mask Bit */
82 #define AT_XDMAC_CIM_FIM BIT(3) /* End of Flush Interrupt Mask Bit */
83 #define AT_XDMAC_CIM_RBEIM BIT(4) /* Read Bus Error Interrupt Mask Bit */
84 #define AT_XDMAC_CIM_WBEIM BIT(5) /* Write Bus Error Interrupt Mask Bit */
85 #define AT_XDMAC_CIM_ROIM BIT(6) /* Request Overflow Interrupt Mask Bit */
86 #define AT_XDMAC_CIS 0x0C /* Channel Interrupt Status Register */
87 #define AT_XDMAC_CIS_BIS BIT(0) /* End of Block Interrupt Status Bit */
88 #define AT_XDMAC_CIS_LIS BIT(1) /* End of Linked List Interrupt Status Bit */
89 #define AT_XDMAC_CIS_DIS BIT(2) /* End of Disable Interrupt Status Bit */
90 #define AT_XDMAC_CIS_FIS BIT(3) /* End of Flush Interrupt Status Bit */
91 #define AT_XDMAC_CIS_RBEIS BIT(4) /* Read Bus Error Interrupt Status Bit */
92 #define AT_XDMAC_CIS_WBEIS BIT(5) /* Write Bus Error Interrupt Status Bit */
93 #define AT_XDMAC_CIS_ROIS BIT(6) /* Request Overflow Interrupt Status Bit */
94 #define AT_XDMAC_CSA 0x10 /* Channel Source Address Register */
95 #define AT_XDMAC_CDA 0x14 /* Channel Destination Address Register */
96 #define AT_XDMAC_CNDA 0x18 /* Channel Next Descriptor Address Register */
97 #define AT_XDMAC_CNDA_NDAIF(i) ((i) & 0x1) /* Channel x Next Descriptor Interface */
98 #define AT_XDMAC_CNDA_NDA(i) ((i) & 0xfffffffc) /* Channel x Next Descriptor Address */
99 #define AT_XDMAC_CNDC 0x1C /* Channel Next Descriptor Control Register */
100 #define AT_XDMAC_CNDC_NDE (0x1 << 0) /* Channel x Next Descriptor Enable */
101 #define AT_XDMAC_CNDC_NDSUP (0x1 << 1) /* Channel x Next Descriptor Source Update */
102 #define AT_XDMAC_CNDC_NDDUP (0x1 << 2) /* Channel x Next Descriptor Destination Update */
103 #define AT_XDMAC_CNDC_NDVIEW_NDV0 (0x0 << 3) /* Channel x Next Descriptor View 0 */
104 #define AT_XDMAC_CNDC_NDVIEW_NDV1 (0x1 << 3) /* Channel x Next Descriptor View 1 */
105 #define AT_XDMAC_CNDC_NDVIEW_NDV2 (0x2 << 3) /* Channel x Next Descriptor View 2 */
106 #define AT_XDMAC_CNDC_NDVIEW_NDV3 (0x3 << 3) /* Channel x Next Descriptor View 3 */
107 #define AT_XDMAC_CUBC 0x20 /* Channel Microblock Control Register */
108 #define AT_XDMAC_CBC 0x24 /* Channel Block Control Register */
109 #define AT_XDMAC_CC 0x28 /* Channel Configuration Register */
110 #define AT_XDMAC_CC_TYPE (0x1 << 0) /* Channel Transfer Type */
111 #define AT_XDMAC_CC_TYPE_MEM_TRAN (0x0 << 0) /* Memory to Memory Transfer */
112 #define AT_XDMAC_CC_TYPE_PER_TRAN (0x1 << 0) /* Peripheral to Memory or Memory to Peripheral Transfer */
113 #define AT_XDMAC_CC_MBSIZE_MASK (0x3 << 1)
114 #define AT_XDMAC_CC_MBSIZE_SINGLE (0x0 << 1)
115 #define AT_XDMAC_CC_MBSIZE_FOUR (0x1 << 1)
116 #define AT_XDMAC_CC_MBSIZE_EIGHT (0x2 << 1)
117 #define AT_XDMAC_CC_MBSIZE_SIXTEEN (0x3 << 1)
118 #define AT_XDMAC_CC_DSYNC (0x1 << 4) /* Channel Synchronization */
119 #define AT_XDMAC_CC_DSYNC_PER2MEM (0x0 << 4)
120 #define AT_XDMAC_CC_DSYNC_MEM2PER (0x1 << 4)
121 #define AT_XDMAC_CC_PROT (0x1 << 5) /* Channel Protection */
122 #define AT_XDMAC_CC_PROT_SEC (0x0 << 5)
123 #define AT_XDMAC_CC_PROT_UNSEC (0x1 << 5)
124 #define AT_XDMAC_CC_SWREQ (0x1 << 6) /* Channel Software Request Trigger */
125 #define AT_XDMAC_CC_SWREQ_HWR_CONNECTED (0x0 << 6)
126 #define AT_XDMAC_CC_SWREQ_SWR_CONNECTED (0x1 << 6)
127 #define AT_XDMAC_CC_MEMSET (0x1 << 7) /* Channel Fill Block of memory */
128 #define AT_XDMAC_CC_MEMSET_NORMAL_MODE (0x0 << 7)
129 #define AT_XDMAC_CC_MEMSET_HW_MODE (0x1 << 7)
130 #define AT_XDMAC_CC_CSIZE(i) ((0x7 & (i)) << 8) /* Channel Chunk Size */
131 #define AT_XDMAC_CC_DWIDTH_OFFSET 11
132 #define AT_XDMAC_CC_DWIDTH_MASK (0x3 << AT_XDMAC_CC_DWIDTH_OFFSET)
133 #define AT_XDMAC_CC_DWIDTH(i) ((0x3 & (i)) << AT_XDMAC_CC_DWIDTH_OFFSET) /* Channel Data Width */
134 #define AT_XDMAC_CC_DWIDTH_BYTE 0x0
135 #define AT_XDMAC_CC_DWIDTH_HALFWORD 0x1
136 #define AT_XDMAC_CC_DWIDTH_WORD 0x2
137 #define AT_XDMAC_CC_DWIDTH_DWORD 0x3
138 #define AT_XDMAC_CC_SIF(i) ((0x1 & (i)) << 13) /* Channel Source Interface Identifier */
139 #define AT_XDMAC_CC_DIF(i) ((0x1 & (i)) << 14) /* Channel Destination Interface Identifier */
140 #define AT_XDMAC_CC_SAM_MASK (0x3 << 16) /* Channel Source Addressing Mode */
141 #define AT_XDMAC_CC_SAM_FIXED_AM (0x0 << 16)
142 #define AT_XDMAC_CC_SAM_INCREMENTED_AM (0x1 << 16)
143 #define AT_XDMAC_CC_SAM_UBS_AM (0x2 << 16)
144 #define AT_XDMAC_CC_SAM_UBS_DS_AM (0x3 << 16)
145 #define AT_XDMAC_CC_DAM_MASK (0x3 << 18) /* Channel Source Addressing Mode */
146 #define AT_XDMAC_CC_DAM_FIXED_AM (0x0 << 18)
147 #define AT_XDMAC_CC_DAM_INCREMENTED_AM (0x1 << 18)
148 #define AT_XDMAC_CC_DAM_UBS_AM (0x2 << 18)
149 #define AT_XDMAC_CC_DAM_UBS_DS_AM (0x3 << 18)
150 #define AT_XDMAC_CC_INITD (0x1 << 21) /* Channel Initialization Terminated (read only) */
151 #define AT_XDMAC_CC_INITD_TERMINATED (0x0 << 21)
152 #define AT_XDMAC_CC_INITD_IN_PROGRESS (0x1 << 21)
153 #define AT_XDMAC_CC_RDIP (0x1 << 22) /* Read in Progress (read only) */
154 #define AT_XDMAC_CC_RDIP_DONE (0x0 << 22)
155 #define AT_XDMAC_CC_RDIP_IN_PROGRESS (0x1 << 22)
156 #define AT_XDMAC_CC_WRIP (0x1 << 23) /* Write in Progress (read only) */
157 #define AT_XDMAC_CC_WRIP_DONE (0x0 << 23)
158 #define AT_XDMAC_CC_WRIP_IN_PROGRESS (0x1 << 23)
159 #define AT_XDMAC_CC_PERID(i) (0x7f & (h) << 24) /* Channel Peripheral Identifier */
160 #define AT_XDMAC_CDS_MSP 0x2C /* Channel Data Stride Memory Set Pattern */
161 #define AT_XDMAC_CSUS 0x30 /* Channel Source Microblock Stride */
162 #define AT_XDMAC_CDUS 0x34 /* Channel Destination Microblock Stride */
163
164 #define AT_XDMAC_CHAN_REG_BASE 0x50 /* Channel registers base address */
165
166 /* Microblock control members */
167 #define AT_XDMAC_MBR_UBC_UBLEN_MAX 0xFFFFFFUL /* Maximum Microblock Length */
168 #define AT_XDMAC_MBR_UBC_NDE (0x1 << 24) /* Next Descriptor Enable */
169 #define AT_XDMAC_MBR_UBC_NSEN (0x1 << 25) /* Next Descriptor Source Update */
170 #define AT_XDMAC_MBR_UBC_NDEN (0x1 << 26) /* Next Descriptor Destination Update */
171 #define AT_XDMAC_MBR_UBC_NDV0 (0x0 << 27) /* Next Descriptor View 0 */
172 #define AT_XDMAC_MBR_UBC_NDV1 (0x1 << 27) /* Next Descriptor View 1 */
173 #define AT_XDMAC_MBR_UBC_NDV2 (0x2 << 27) /* Next Descriptor View 2 */
174 #define AT_XDMAC_MBR_UBC_NDV3 (0x3 << 27) /* Next Descriptor View 3 */
175
176 #define AT_XDMAC_MAX_CHAN 0x20
177 #define AT_XDMAC_MAX_CSIZE 16 /* 16 data */
178 #define AT_XDMAC_MAX_DWIDTH 8 /* 64 bits */
179
180 #define AT_XDMAC_DMA_BUSWIDTHS\
181 (BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) |\
182 BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) |\
183 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) |\
184 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) |\
185 BIT(DMA_SLAVE_BUSWIDTH_8_BYTES))
186
187 enum atc_status {
188 AT_XDMAC_CHAN_IS_CYCLIC = 0,
189 AT_XDMAC_CHAN_IS_PAUSED,
190 };
191
192 /* ----- Channels ----- */
193 struct at_xdmac_chan {
194 struct dma_chan chan;
195 void __iomem *ch_regs;
196 u32 mask; /* Channel Mask */
197 u32 cfg; /* Channel Configuration Register */
198 u8 perid; /* Peripheral ID */
199 u8 perif; /* Peripheral Interface */
200 u8 memif; /* Memory Interface */
201 u32 save_cc;
202 u32 save_cim;
203 u32 save_cnda;
204 u32 save_cndc;
205 unsigned long status;
206 struct tasklet_struct tasklet;
207 struct dma_slave_config sconfig;
208
209 spinlock_t lock;
210
211 struct list_head xfers_list;
212 struct list_head free_descs_list;
213 };
214
215
216 /* ----- Controller ----- */
217 struct at_xdmac {
218 struct dma_device dma;
219 void __iomem *regs;
220 int irq;
221 struct clk *clk;
222 u32 save_gim;
223 u32 save_gs;
224 struct dma_pool *at_xdmac_desc_pool;
225 struct at_xdmac_chan chan[0];
226 };
227
228
229 /* ----- Descriptors ----- */
230
231 /* Linked List Descriptor */
232 struct at_xdmac_lld {
233 dma_addr_t mbr_nda; /* Next Descriptor Member */
234 u32 mbr_ubc; /* Microblock Control Member */
235 dma_addr_t mbr_sa; /* Source Address Member */
236 dma_addr_t mbr_da; /* Destination Address Member */
237 u32 mbr_cfg; /* Configuration Register */
238 u32 mbr_bc; /* Block Control Register */
239 u32 mbr_ds; /* Data Stride Register */
240 u32 mbr_sus; /* Source Microblock Stride Register */
241 u32 mbr_dus; /* Destination Microblock Stride Register */
242 };
243
244
245 struct at_xdmac_desc {
246 struct at_xdmac_lld lld;
247 enum dma_transfer_direction direction;
248 struct dma_async_tx_descriptor tx_dma_desc;
249 struct list_head desc_node;
250 /* Following members are only used by the first descriptor */
251 bool active_xfer;
252 unsigned int xfer_size;
253 struct list_head descs_list;
254 struct list_head xfer_node;
255 };
256
257 static inline void __iomem *at_xdmac_chan_reg_base(struct at_xdmac *atxdmac, unsigned int chan_nb)
258 {
259 return atxdmac->regs + (AT_XDMAC_CHAN_REG_BASE + chan_nb * 0x40);
260 }
261
262 #define at_xdmac_read(atxdmac, reg) readl_relaxed((atxdmac)->regs + (reg))
263 #define at_xdmac_write(atxdmac, reg, value) \
264 writel_relaxed((value), (atxdmac)->regs + (reg))
265
266 #define at_xdmac_chan_read(atchan, reg) readl_relaxed((atchan)->ch_regs + (reg))
267 #define at_xdmac_chan_write(atchan, reg, value) writel_relaxed((value), (atchan)->ch_regs + (reg))
268
269 static inline struct at_xdmac_chan *to_at_xdmac_chan(struct dma_chan *dchan)
270 {
271 return container_of(dchan, struct at_xdmac_chan, chan);
272 }
273
274 static struct device *chan2dev(struct dma_chan *chan)
275 {
276 return &chan->dev->device;
277 }
278
279 static inline struct at_xdmac *to_at_xdmac(struct dma_device *ddev)
280 {
281 return container_of(ddev, struct at_xdmac, dma);
282 }
283
284 static inline struct at_xdmac_desc *txd_to_at_desc(struct dma_async_tx_descriptor *txd)
285 {
286 return container_of(txd, struct at_xdmac_desc, tx_dma_desc);
287 }
288
289 static inline int at_xdmac_chan_is_cyclic(struct at_xdmac_chan *atchan)
290 {
291 return test_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
292 }
293
294 static inline int at_xdmac_chan_is_paused(struct at_xdmac_chan *atchan)
295 {
296 return test_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
297 }
298
299 static inline int at_xdmac_csize(u32 maxburst)
300 {
301 int csize;
302
303 csize = ffs(maxburst) - 1;
304 if (csize > 4)
305 csize = -EINVAL;
306
307 return csize;
308 };
309
310 static inline u8 at_xdmac_get_dwidth(u32 cfg)
311 {
312 return (cfg & AT_XDMAC_CC_DWIDTH_MASK) >> AT_XDMAC_CC_DWIDTH_OFFSET;
313 };
314
315 static unsigned int init_nr_desc_per_channel = 64;
316 module_param(init_nr_desc_per_channel, uint, 0644);
317 MODULE_PARM_DESC(init_nr_desc_per_channel,
318 "initial descriptors per channel (default: 64)");
319
320
321 static bool at_xdmac_chan_is_enabled(struct at_xdmac_chan *atchan)
322 {
323 return at_xdmac_chan_read(atchan, AT_XDMAC_GS) & atchan->mask;
324 }
325
326 static void at_xdmac_off(struct at_xdmac *atxdmac)
327 {
328 at_xdmac_write(atxdmac, AT_XDMAC_GD, -1L);
329
330 /* Wait that all chans are disabled. */
331 while (at_xdmac_read(atxdmac, AT_XDMAC_GS))
332 cpu_relax();
333
334 at_xdmac_write(atxdmac, AT_XDMAC_GID, -1L);
335 }
336
337 /* Call with lock hold. */
338 static void at_xdmac_start_xfer(struct at_xdmac_chan *atchan,
339 struct at_xdmac_desc *first)
340 {
341 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
342 u32 reg;
343
344 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, first);
345
346 if (at_xdmac_chan_is_enabled(atchan))
347 return;
348
349 /* Set transfer as active to not try to start it again. */
350 first->active_xfer = true;
351
352 /* Tell xdmac where to get the first descriptor. */
353 reg = AT_XDMAC_CNDA_NDA(first->tx_dma_desc.phys)
354 | AT_XDMAC_CNDA_NDAIF(atchan->memif);
355 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, reg);
356
357 /*
358 * When doing non cyclic transfer we need to use the next
359 * descriptor view 2 since some fields of the configuration register
360 * depend on transfer size and src/dest addresses.
361 */
362 if (at_xdmac_chan_is_cyclic(atchan))
363 reg = AT_XDMAC_CNDC_NDVIEW_NDV1;
364 else if (first->lld.mbr_ubc & AT_XDMAC_MBR_UBC_NDV3)
365 reg = AT_XDMAC_CNDC_NDVIEW_NDV3;
366 else
367 reg = AT_XDMAC_CNDC_NDVIEW_NDV2;
368 /*
369 * Even if the register will be updated from the configuration in the
370 * descriptor when using view 2 or higher, the PROT bit won't be set
371 * properly. This bit can be modified only by using the channel
372 * configuration register.
373 */
374 at_xdmac_chan_write(atchan, AT_XDMAC_CC, first->lld.mbr_cfg);
375
376 reg |= AT_XDMAC_CNDC_NDDUP
377 | AT_XDMAC_CNDC_NDSUP
378 | AT_XDMAC_CNDC_NDE;
379 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, reg);
380
381 dev_vdbg(chan2dev(&atchan->chan),
382 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
383 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
384 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
385 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
386 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
387 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
388 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
389
390 at_xdmac_chan_write(atchan, AT_XDMAC_CID, 0xffffffff);
391 reg = AT_XDMAC_CIE_RBEIE | AT_XDMAC_CIE_WBEIE | AT_XDMAC_CIE_ROIE;
392 /*
393 * There is no end of list when doing cyclic dma, we need to get
394 * an interrupt after each periods.
395 */
396 if (at_xdmac_chan_is_cyclic(atchan))
397 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
398 reg | AT_XDMAC_CIE_BIE);
399 else
400 at_xdmac_chan_write(atchan, AT_XDMAC_CIE,
401 reg | AT_XDMAC_CIE_LIE);
402 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atchan->mask);
403 dev_vdbg(chan2dev(&atchan->chan),
404 "%s: enable channel (0x%08x)\n", __func__, atchan->mask);
405 wmb();
406 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
407
408 dev_vdbg(chan2dev(&atchan->chan),
409 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
410 __func__, at_xdmac_chan_read(atchan, AT_XDMAC_CC),
411 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
412 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
413 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
414 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
415 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
416
417 }
418
419 static dma_cookie_t at_xdmac_tx_submit(struct dma_async_tx_descriptor *tx)
420 {
421 struct at_xdmac_desc *desc = txd_to_at_desc(tx);
422 struct at_xdmac_chan *atchan = to_at_xdmac_chan(tx->chan);
423 dma_cookie_t cookie;
424 unsigned long irqflags;
425
426 spin_lock_irqsave(&atchan->lock, irqflags);
427 cookie = dma_cookie_assign(tx);
428
429 dev_vdbg(chan2dev(tx->chan), "%s: atchan 0x%p, add desc 0x%p to xfers_list\n",
430 __func__, atchan, desc);
431 list_add_tail(&desc->xfer_node, &atchan->xfers_list);
432 if (list_is_singular(&atchan->xfers_list))
433 at_xdmac_start_xfer(atchan, desc);
434
435 spin_unlock_irqrestore(&atchan->lock, irqflags);
436 return cookie;
437 }
438
439 static struct at_xdmac_desc *at_xdmac_alloc_desc(struct dma_chan *chan,
440 gfp_t gfp_flags)
441 {
442 struct at_xdmac_desc *desc;
443 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
444 dma_addr_t phys;
445
446 desc = dma_pool_alloc(atxdmac->at_xdmac_desc_pool, gfp_flags, &phys);
447 if (desc) {
448 memset(desc, 0, sizeof(*desc));
449 INIT_LIST_HEAD(&desc->descs_list);
450 dma_async_tx_descriptor_init(&desc->tx_dma_desc, chan);
451 desc->tx_dma_desc.tx_submit = at_xdmac_tx_submit;
452 desc->tx_dma_desc.phys = phys;
453 }
454
455 return desc;
456 }
457
458 /* Call must be protected by lock. */
459 static struct at_xdmac_desc *at_xdmac_get_desc(struct at_xdmac_chan *atchan)
460 {
461 struct at_xdmac_desc *desc;
462
463 if (list_empty(&atchan->free_descs_list)) {
464 desc = at_xdmac_alloc_desc(&atchan->chan, GFP_NOWAIT);
465 } else {
466 desc = list_first_entry(&atchan->free_descs_list,
467 struct at_xdmac_desc, desc_node);
468 list_del(&desc->desc_node);
469 desc->active_xfer = false;
470 }
471
472 return desc;
473 }
474
475 static void at_xdmac_queue_desc(struct dma_chan *chan,
476 struct at_xdmac_desc *prev,
477 struct at_xdmac_desc *desc)
478 {
479 if (!prev || !desc)
480 return;
481
482 prev->lld.mbr_nda = desc->tx_dma_desc.phys;
483 prev->lld.mbr_ubc |= AT_XDMAC_MBR_UBC_NDE;
484
485 dev_dbg(chan2dev(chan), "%s: chain lld: prev=0x%p, mbr_nda=%pad\n",
486 __func__, prev, &prev->lld.mbr_nda);
487 }
488
489 static inline void at_xdmac_increment_block_count(struct dma_chan *chan,
490 struct at_xdmac_desc *desc)
491 {
492 if (!desc)
493 return;
494
495 desc->lld.mbr_bc++;
496
497 dev_dbg(chan2dev(chan),
498 "%s: incrementing the block count of the desc 0x%p\n",
499 __func__, desc);
500 }
501
502 static struct dma_chan *at_xdmac_xlate(struct of_phandle_args *dma_spec,
503 struct of_dma *of_dma)
504 {
505 struct at_xdmac *atxdmac = of_dma->of_dma_data;
506 struct at_xdmac_chan *atchan;
507 struct dma_chan *chan;
508 struct device *dev = atxdmac->dma.dev;
509
510 if (dma_spec->args_count != 1) {
511 dev_err(dev, "dma phandler args: bad number of args\n");
512 return NULL;
513 }
514
515 chan = dma_get_any_slave_channel(&atxdmac->dma);
516 if (!chan) {
517 dev_err(dev, "can't get a dma channel\n");
518 return NULL;
519 }
520
521 atchan = to_at_xdmac_chan(chan);
522 atchan->memif = AT91_XDMAC_DT_GET_MEM_IF(dma_spec->args[0]);
523 atchan->perif = AT91_XDMAC_DT_GET_PER_IF(dma_spec->args[0]);
524 atchan->perid = AT91_XDMAC_DT_GET_PERID(dma_spec->args[0]);
525 dev_dbg(dev, "chan dt cfg: memif=%u perif=%u perid=%u\n",
526 atchan->memif, atchan->perif, atchan->perid);
527
528 return chan;
529 }
530
531 static int at_xdmac_compute_chan_conf(struct dma_chan *chan,
532 enum dma_transfer_direction direction)
533 {
534 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
535 int csize, dwidth;
536
537 if (direction == DMA_DEV_TO_MEM) {
538 atchan->cfg =
539 AT91_XDMAC_DT_PERID(atchan->perid)
540 | AT_XDMAC_CC_DAM_INCREMENTED_AM
541 | AT_XDMAC_CC_SAM_FIXED_AM
542 | AT_XDMAC_CC_DIF(atchan->memif)
543 | AT_XDMAC_CC_SIF(atchan->perif)
544 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
545 | AT_XDMAC_CC_DSYNC_PER2MEM
546 | AT_XDMAC_CC_MBSIZE_SIXTEEN
547 | AT_XDMAC_CC_TYPE_PER_TRAN;
548 csize = ffs(atchan->sconfig.src_maxburst) - 1;
549 if (csize < 0) {
550 dev_err(chan2dev(chan), "invalid src maxburst value\n");
551 return -EINVAL;
552 }
553 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
554 dwidth = ffs(atchan->sconfig.src_addr_width) - 1;
555 if (dwidth < 0) {
556 dev_err(chan2dev(chan), "invalid src addr width value\n");
557 return -EINVAL;
558 }
559 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
560 } else if (direction == DMA_MEM_TO_DEV) {
561 atchan->cfg =
562 AT91_XDMAC_DT_PERID(atchan->perid)
563 | AT_XDMAC_CC_DAM_FIXED_AM
564 | AT_XDMAC_CC_SAM_INCREMENTED_AM
565 | AT_XDMAC_CC_DIF(atchan->perif)
566 | AT_XDMAC_CC_SIF(atchan->memif)
567 | AT_XDMAC_CC_SWREQ_HWR_CONNECTED
568 | AT_XDMAC_CC_DSYNC_MEM2PER
569 | AT_XDMAC_CC_MBSIZE_SIXTEEN
570 | AT_XDMAC_CC_TYPE_PER_TRAN;
571 csize = ffs(atchan->sconfig.dst_maxburst) - 1;
572 if (csize < 0) {
573 dev_err(chan2dev(chan), "invalid src maxburst value\n");
574 return -EINVAL;
575 }
576 atchan->cfg |= AT_XDMAC_CC_CSIZE(csize);
577 dwidth = ffs(atchan->sconfig.dst_addr_width) - 1;
578 if (dwidth < 0) {
579 dev_err(chan2dev(chan), "invalid dst addr width value\n");
580 return -EINVAL;
581 }
582 atchan->cfg |= AT_XDMAC_CC_DWIDTH(dwidth);
583 }
584
585 dev_dbg(chan2dev(chan), "%s: cfg=0x%08x\n", __func__, atchan->cfg);
586
587 return 0;
588 }
589
590 /*
591 * Only check that maxburst and addr width values are supported by the
592 * the controller but not that the configuration is good to perform the
593 * transfer since we don't know the direction at this stage.
594 */
595 static int at_xdmac_check_slave_config(struct dma_slave_config *sconfig)
596 {
597 if ((sconfig->src_maxburst > AT_XDMAC_MAX_CSIZE)
598 || (sconfig->dst_maxburst > AT_XDMAC_MAX_CSIZE))
599 return -EINVAL;
600
601 if ((sconfig->src_addr_width > AT_XDMAC_MAX_DWIDTH)
602 || (sconfig->dst_addr_width > AT_XDMAC_MAX_DWIDTH))
603 return -EINVAL;
604
605 return 0;
606 }
607
608 static int at_xdmac_set_slave_config(struct dma_chan *chan,
609 struct dma_slave_config *sconfig)
610 {
611 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
612
613 if (at_xdmac_check_slave_config(sconfig)) {
614 dev_err(chan2dev(chan), "invalid slave configuration\n");
615 return -EINVAL;
616 }
617
618 memcpy(&atchan->sconfig, sconfig, sizeof(atchan->sconfig));
619
620 return 0;
621 }
622
623 static struct dma_async_tx_descriptor *
624 at_xdmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
625 unsigned int sg_len, enum dma_transfer_direction direction,
626 unsigned long flags, void *context)
627 {
628 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
629 struct at_xdmac_desc *first = NULL, *prev = NULL;
630 struct scatterlist *sg;
631 int i;
632 unsigned int xfer_size = 0;
633 unsigned long irqflags;
634 struct dma_async_tx_descriptor *ret = NULL;
635
636 if (!sgl)
637 return NULL;
638
639 if (!is_slave_direction(direction)) {
640 dev_err(chan2dev(chan), "invalid DMA direction\n");
641 return NULL;
642 }
643
644 dev_dbg(chan2dev(chan), "%s: sg_len=%d, dir=%s, flags=0x%lx\n",
645 __func__, sg_len,
646 direction == DMA_MEM_TO_DEV ? "to device" : "from device",
647 flags);
648
649 /* Protect dma_sconfig field that can be modified by set_slave_conf. */
650 spin_lock_irqsave(&atchan->lock, irqflags);
651
652 if (at_xdmac_compute_chan_conf(chan, direction))
653 goto spin_unlock;
654
655 /* Prepare descriptors. */
656 for_each_sg(sgl, sg, sg_len, i) {
657 struct at_xdmac_desc *desc = NULL;
658 u32 len, mem, dwidth, fixed_dwidth;
659
660 len = sg_dma_len(sg);
661 mem = sg_dma_address(sg);
662 if (unlikely(!len)) {
663 dev_err(chan2dev(chan), "sg data length is zero\n");
664 goto spin_unlock;
665 }
666 dev_dbg(chan2dev(chan), "%s: * sg%d len=%u, mem=0x%08x\n",
667 __func__, i, len, mem);
668
669 desc = at_xdmac_get_desc(atchan);
670 if (!desc) {
671 dev_err(chan2dev(chan), "can't get descriptor\n");
672 if (first)
673 list_splice_init(&first->descs_list, &atchan->free_descs_list);
674 goto spin_unlock;
675 }
676
677 /* Linked list descriptor setup. */
678 if (direction == DMA_DEV_TO_MEM) {
679 desc->lld.mbr_sa = atchan->sconfig.src_addr;
680 desc->lld.mbr_da = mem;
681 } else {
682 desc->lld.mbr_sa = mem;
683 desc->lld.mbr_da = atchan->sconfig.dst_addr;
684 }
685 dwidth = at_xdmac_get_dwidth(atchan->cfg);
686 fixed_dwidth = IS_ALIGNED(len, 1 << dwidth)
687 ? dwidth
688 : AT_XDMAC_CC_DWIDTH_BYTE;
689 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2 /* next descriptor view */
690 | AT_XDMAC_MBR_UBC_NDEN /* next descriptor dst parameter update */
691 | AT_XDMAC_MBR_UBC_NSEN /* next descriptor src parameter update */
692 | (len >> fixed_dwidth); /* microblock length */
693 desc->lld.mbr_cfg = (atchan->cfg & ~AT_XDMAC_CC_DWIDTH_MASK) |
694 AT_XDMAC_CC_DWIDTH(fixed_dwidth);
695 dev_dbg(chan2dev(chan),
696 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
697 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
698
699 /* Chain lld. */
700 if (prev)
701 at_xdmac_queue_desc(chan, prev, desc);
702
703 prev = desc;
704 if (!first)
705 first = desc;
706
707 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
708 __func__, desc, first);
709 list_add_tail(&desc->desc_node, &first->descs_list);
710 xfer_size += len;
711 }
712
713
714 first->tx_dma_desc.flags = flags;
715 first->xfer_size = xfer_size;
716 first->direction = direction;
717 ret = &first->tx_dma_desc;
718
719 spin_unlock:
720 spin_unlock_irqrestore(&atchan->lock, irqflags);
721 return ret;
722 }
723
724 static struct dma_async_tx_descriptor *
725 at_xdmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
726 size_t buf_len, size_t period_len,
727 enum dma_transfer_direction direction,
728 unsigned long flags)
729 {
730 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
731 struct at_xdmac_desc *first = NULL, *prev = NULL;
732 unsigned int periods = buf_len / period_len;
733 int i;
734 unsigned long irqflags;
735
736 dev_dbg(chan2dev(chan), "%s: buf_addr=%pad, buf_len=%zd, period_len=%zd, dir=%s, flags=0x%lx\n",
737 __func__, &buf_addr, buf_len, period_len,
738 direction == DMA_MEM_TO_DEV ? "mem2per" : "per2mem", flags);
739
740 if (!is_slave_direction(direction)) {
741 dev_err(chan2dev(chan), "invalid DMA direction\n");
742 return NULL;
743 }
744
745 if (test_and_set_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status)) {
746 dev_err(chan2dev(chan), "channel currently used\n");
747 return NULL;
748 }
749
750 if (at_xdmac_compute_chan_conf(chan, direction))
751 return NULL;
752
753 for (i = 0; i < periods; i++) {
754 struct at_xdmac_desc *desc = NULL;
755
756 spin_lock_irqsave(&atchan->lock, irqflags);
757 desc = at_xdmac_get_desc(atchan);
758 if (!desc) {
759 dev_err(chan2dev(chan), "can't get descriptor\n");
760 if (first)
761 list_splice_init(&first->descs_list, &atchan->free_descs_list);
762 spin_unlock_irqrestore(&atchan->lock, irqflags);
763 return NULL;
764 }
765 spin_unlock_irqrestore(&atchan->lock, irqflags);
766 dev_dbg(chan2dev(chan),
767 "%s: desc=0x%p, tx_dma_desc.phys=%pad\n",
768 __func__, desc, &desc->tx_dma_desc.phys);
769
770 if (direction == DMA_DEV_TO_MEM) {
771 desc->lld.mbr_sa = atchan->sconfig.src_addr;
772 desc->lld.mbr_da = buf_addr + i * period_len;
773 } else {
774 desc->lld.mbr_sa = buf_addr + i * period_len;
775 desc->lld.mbr_da = atchan->sconfig.dst_addr;
776 }
777 desc->lld.mbr_cfg = atchan->cfg;
778 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV1
779 | AT_XDMAC_MBR_UBC_NDEN
780 | AT_XDMAC_MBR_UBC_NSEN
781 | period_len >> at_xdmac_get_dwidth(desc->lld.mbr_cfg);
782
783 dev_dbg(chan2dev(chan),
784 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x\n",
785 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc);
786
787 /* Chain lld. */
788 if (prev)
789 at_xdmac_queue_desc(chan, prev, desc);
790
791 prev = desc;
792 if (!first)
793 first = desc;
794
795 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
796 __func__, desc, first);
797 list_add_tail(&desc->desc_node, &first->descs_list);
798 }
799
800 at_xdmac_queue_desc(chan, prev, first);
801 first->tx_dma_desc.flags = flags;
802 first->xfer_size = buf_len;
803 first->direction = direction;
804
805 return &first->tx_dma_desc;
806 }
807
808 static inline u32 at_xdmac_align_width(struct dma_chan *chan, dma_addr_t addr)
809 {
810 u32 width;
811
812 /*
813 * Check address alignment to select the greater data width we
814 * can use.
815 *
816 * Some XDMAC implementations don't provide dword transfer, in
817 * this case selecting dword has the same behavior as
818 * selecting word transfers.
819 */
820 if (!(addr & 7)) {
821 width = AT_XDMAC_CC_DWIDTH_DWORD;
822 dev_dbg(chan2dev(chan), "%s: dwidth: double word\n", __func__);
823 } else if (!(addr & 3)) {
824 width = AT_XDMAC_CC_DWIDTH_WORD;
825 dev_dbg(chan2dev(chan), "%s: dwidth: word\n", __func__);
826 } else if (!(addr & 1)) {
827 width = AT_XDMAC_CC_DWIDTH_HALFWORD;
828 dev_dbg(chan2dev(chan), "%s: dwidth: half word\n", __func__);
829 } else {
830 width = AT_XDMAC_CC_DWIDTH_BYTE;
831 dev_dbg(chan2dev(chan), "%s: dwidth: byte\n", __func__);
832 }
833
834 return width;
835 }
836
837 static struct at_xdmac_desc *
838 at_xdmac_interleaved_queue_desc(struct dma_chan *chan,
839 struct at_xdmac_chan *atchan,
840 struct at_xdmac_desc *prev,
841 dma_addr_t src, dma_addr_t dst,
842 struct dma_interleaved_template *xt,
843 struct data_chunk *chunk)
844 {
845 struct at_xdmac_desc *desc;
846 u32 dwidth;
847 unsigned long flags;
848 size_t ublen;
849 /*
850 * WARNING: The channel configuration is set here since there is no
851 * dmaengine_slave_config call in this case. Moreover we don't know the
852 * direction, it involves we can't dynamically set the source and dest
853 * interface so we have to use the same one. Only interface 0 allows EBI
854 * access. Hopefully we can access DDR through both ports (at least on
855 * SAMA5D4x), so we can use the same interface for source and dest,
856 * that solves the fact we don't know the direction.
857 */
858 u32 chan_cc = AT_XDMAC_CC_DIF(0)
859 | AT_XDMAC_CC_SIF(0)
860 | AT_XDMAC_CC_MBSIZE_SIXTEEN
861 | AT_XDMAC_CC_TYPE_MEM_TRAN;
862
863 dwidth = at_xdmac_align_width(chan, src | dst | chunk->size);
864 if (chunk->size >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
865 dev_dbg(chan2dev(chan),
866 "%s: chunk too big (%d, max size %lu)...\n",
867 __func__, chunk->size,
868 AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth);
869 return NULL;
870 }
871
872 if (prev)
873 dev_dbg(chan2dev(chan),
874 "Adding items at the end of desc 0x%p\n", prev);
875
876 if (xt->src_inc) {
877 if (xt->src_sgl)
878 chan_cc |= AT_XDMAC_CC_SAM_UBS_DS_AM;
879 else
880 chan_cc |= AT_XDMAC_CC_SAM_INCREMENTED_AM;
881 }
882
883 if (xt->dst_inc) {
884 if (xt->dst_sgl)
885 chan_cc |= AT_XDMAC_CC_DAM_UBS_DS_AM;
886 else
887 chan_cc |= AT_XDMAC_CC_DAM_INCREMENTED_AM;
888 }
889
890 spin_lock_irqsave(&atchan->lock, flags);
891 desc = at_xdmac_get_desc(atchan);
892 spin_unlock_irqrestore(&atchan->lock, flags);
893 if (!desc) {
894 dev_err(chan2dev(chan), "can't get descriptor\n");
895 return NULL;
896 }
897
898 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
899
900 ublen = chunk->size >> dwidth;
901
902 desc->lld.mbr_sa = src;
903 desc->lld.mbr_da = dst;
904 desc->lld.mbr_sus = dmaengine_get_src_icg(xt, chunk);
905 desc->lld.mbr_dus = dmaengine_get_dst_icg(xt, chunk);
906
907 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
908 | AT_XDMAC_MBR_UBC_NDEN
909 | AT_XDMAC_MBR_UBC_NSEN
910 | ublen;
911 desc->lld.mbr_cfg = chan_cc;
912
913 dev_dbg(chan2dev(chan),
914 "%s: lld: mbr_sa=0x%08x, mbr_da=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
915 __func__, desc->lld.mbr_sa, desc->lld.mbr_da,
916 desc->lld.mbr_ubc, desc->lld.mbr_cfg);
917
918 /* Chain lld. */
919 if (prev)
920 at_xdmac_queue_desc(chan, prev, desc);
921
922 return desc;
923 }
924
925 static struct dma_async_tx_descriptor *
926 at_xdmac_prep_interleaved(struct dma_chan *chan,
927 struct dma_interleaved_template *xt,
928 unsigned long flags)
929 {
930 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
931 struct at_xdmac_desc *prev = NULL, *first = NULL;
932 struct data_chunk *chunk, *prev_chunk = NULL;
933 dma_addr_t dst_addr, src_addr;
934 size_t dst_skip, src_skip, len = 0;
935 size_t prev_dst_icg = 0, prev_src_icg = 0;
936 int i;
937
938 if (!xt || (xt->numf != 1) || (xt->dir != DMA_MEM_TO_MEM))
939 return NULL;
940
941 dev_dbg(chan2dev(chan), "%s: src=0x%08x, dest=0x%08x, numf=%d, frame_size=%d, flags=0x%lx\n",
942 __func__, xt->src_start, xt->dst_start, xt->numf,
943 xt->frame_size, flags);
944
945 src_addr = xt->src_start;
946 dst_addr = xt->dst_start;
947
948 for (i = 0; i < xt->frame_size; i++) {
949 struct at_xdmac_desc *desc;
950 size_t src_icg, dst_icg;
951
952 chunk = xt->sgl + i;
953
954 dst_icg = dmaengine_get_dst_icg(xt, chunk);
955 src_icg = dmaengine_get_src_icg(xt, chunk);
956
957 src_skip = chunk->size + src_icg;
958 dst_skip = chunk->size + dst_icg;
959
960 dev_dbg(chan2dev(chan),
961 "%s: chunk size=%d, src icg=%d, dst icg=%d\n",
962 __func__, chunk->size, src_icg, dst_icg);
963
964 /*
965 * Handle the case where we just have the same
966 * transfer to setup, we can just increase the
967 * block number and reuse the same descriptor.
968 */
969 if (prev_chunk && prev &&
970 (prev_chunk->size == chunk->size) &&
971 (prev_src_icg == src_icg) &&
972 (prev_dst_icg == dst_icg)) {
973 dev_dbg(chan2dev(chan),
974 "%s: same configuration that the previous chunk, merging the descriptors...\n",
975 __func__);
976 at_xdmac_increment_block_count(chan, prev);
977 continue;
978 }
979
980 desc = at_xdmac_interleaved_queue_desc(chan, atchan,
981 prev,
982 src_addr, dst_addr,
983 xt, chunk);
984 if (!desc) {
985 list_splice_init(&first->descs_list,
986 &atchan->free_descs_list);
987 return NULL;
988 }
989
990 if (!first)
991 first = desc;
992
993 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
994 __func__, desc, first);
995 list_add_tail(&desc->desc_node, &first->descs_list);
996
997 if (xt->src_sgl)
998 src_addr += src_skip;
999
1000 if (xt->dst_sgl)
1001 dst_addr += dst_skip;
1002
1003 len += chunk->size;
1004 prev_chunk = chunk;
1005 prev_dst_icg = dst_icg;
1006 prev_src_icg = src_icg;
1007 prev = desc;
1008 }
1009
1010 first->tx_dma_desc.cookie = -EBUSY;
1011 first->tx_dma_desc.flags = flags;
1012 first->xfer_size = len;
1013
1014 return &first->tx_dma_desc;
1015 }
1016
1017 static struct dma_async_tx_descriptor *
1018 at_xdmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1019 size_t len, unsigned long flags)
1020 {
1021 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1022 struct at_xdmac_desc *first = NULL, *prev = NULL;
1023 size_t remaining_size = len, xfer_size = 0, ublen;
1024 dma_addr_t src_addr = src, dst_addr = dest;
1025 u32 dwidth;
1026 /*
1027 * WARNING: We don't know the direction, it involves we can't
1028 * dynamically set the source and dest interface so we have to use the
1029 * same one. Only interface 0 allows EBI access. Hopefully we can
1030 * access DDR through both ports (at least on SAMA5D4x), so we can use
1031 * the same interface for source and dest, that solves the fact we
1032 * don't know the direction.
1033 */
1034 u32 chan_cc = AT_XDMAC_CC_DAM_INCREMENTED_AM
1035 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1036 | AT_XDMAC_CC_DIF(0)
1037 | AT_XDMAC_CC_SIF(0)
1038 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1039 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1040 unsigned long irqflags;
1041
1042 dev_dbg(chan2dev(chan), "%s: src=%pad, dest=%pad, len=%zd, flags=0x%lx\n",
1043 __func__, &src, &dest, len, flags);
1044
1045 if (unlikely(!len))
1046 return NULL;
1047
1048 dwidth = at_xdmac_align_width(chan, src_addr | dst_addr);
1049
1050 /* Prepare descriptors. */
1051 while (remaining_size) {
1052 struct at_xdmac_desc *desc = NULL;
1053
1054 dev_dbg(chan2dev(chan), "%s: remaining_size=%zu\n", __func__, remaining_size);
1055
1056 spin_lock_irqsave(&atchan->lock, irqflags);
1057 desc = at_xdmac_get_desc(atchan);
1058 spin_unlock_irqrestore(&atchan->lock, irqflags);
1059 if (!desc) {
1060 dev_err(chan2dev(chan), "can't get descriptor\n");
1061 if (first)
1062 list_splice_init(&first->descs_list, &atchan->free_descs_list);
1063 return NULL;
1064 }
1065
1066 /* Update src and dest addresses. */
1067 src_addr += xfer_size;
1068 dst_addr += xfer_size;
1069
1070 if (remaining_size >= AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)
1071 xfer_size = AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth;
1072 else
1073 xfer_size = remaining_size;
1074
1075 dev_dbg(chan2dev(chan), "%s: xfer_size=%zu\n", __func__, xfer_size);
1076
1077 /* Check remaining length and change data width if needed. */
1078 dwidth = at_xdmac_align_width(chan,
1079 src_addr | dst_addr | xfer_size);
1080 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1081
1082 ublen = xfer_size >> dwidth;
1083 remaining_size -= xfer_size;
1084
1085 desc->lld.mbr_sa = src_addr;
1086 desc->lld.mbr_da = dst_addr;
1087 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV2
1088 | AT_XDMAC_MBR_UBC_NDEN
1089 | AT_XDMAC_MBR_UBC_NSEN
1090 | ublen;
1091 desc->lld.mbr_cfg = chan_cc;
1092
1093 dev_dbg(chan2dev(chan),
1094 "%s: lld: mbr_sa=%pad, mbr_da=%pad, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1095 __func__, &desc->lld.mbr_sa, &desc->lld.mbr_da, desc->lld.mbr_ubc, desc->lld.mbr_cfg);
1096
1097 /* Chain lld. */
1098 if (prev)
1099 at_xdmac_queue_desc(chan, prev, desc);
1100
1101 prev = desc;
1102 if (!first)
1103 first = desc;
1104
1105 dev_dbg(chan2dev(chan), "%s: add desc 0x%p to descs_list 0x%p\n",
1106 __func__, desc, first);
1107 list_add_tail(&desc->desc_node, &first->descs_list);
1108 }
1109
1110 first->tx_dma_desc.flags = flags;
1111 first->xfer_size = len;
1112
1113 return &first->tx_dma_desc;
1114 }
1115
1116 static struct at_xdmac_desc *at_xdmac_memset_create_desc(struct dma_chan *chan,
1117 struct at_xdmac_chan *atchan,
1118 dma_addr_t dst_addr,
1119 size_t len,
1120 int value)
1121 {
1122 struct at_xdmac_desc *desc;
1123 unsigned long flags;
1124 size_t ublen;
1125 u32 dwidth;
1126 /*
1127 * WARNING: The channel configuration is set here since there is no
1128 * dmaengine_slave_config call in this case. Moreover we don't know the
1129 * direction, it involves we can't dynamically set the source and dest
1130 * interface so we have to use the same one. Only interface 0 allows EBI
1131 * access. Hopefully we can access DDR through both ports (at least on
1132 * SAMA5D4x), so we can use the same interface for source and dest,
1133 * that solves the fact we don't know the direction.
1134 */
1135 u32 chan_cc = AT_XDMAC_CC_DAM_UBS_AM
1136 | AT_XDMAC_CC_SAM_INCREMENTED_AM
1137 | AT_XDMAC_CC_DIF(0)
1138 | AT_XDMAC_CC_SIF(0)
1139 | AT_XDMAC_CC_MBSIZE_SIXTEEN
1140 | AT_XDMAC_CC_MEMSET_HW_MODE
1141 | AT_XDMAC_CC_TYPE_MEM_TRAN;
1142
1143 dwidth = at_xdmac_align_width(chan, dst_addr);
1144
1145 if (len >= (AT_XDMAC_MBR_UBC_UBLEN_MAX << dwidth)) {
1146 dev_err(chan2dev(chan),
1147 "%s: Transfer too large, aborting...\n",
1148 __func__);
1149 return NULL;
1150 }
1151
1152 spin_lock_irqsave(&atchan->lock, flags);
1153 desc = at_xdmac_get_desc(atchan);
1154 spin_unlock_irqrestore(&atchan->lock, flags);
1155 if (!desc) {
1156 dev_err(chan2dev(chan), "can't get descriptor\n");
1157 return NULL;
1158 }
1159
1160 chan_cc |= AT_XDMAC_CC_DWIDTH(dwidth);
1161
1162 ublen = len >> dwidth;
1163
1164 desc->lld.mbr_da = dst_addr;
1165 desc->lld.mbr_ds = value;
1166 desc->lld.mbr_ubc = AT_XDMAC_MBR_UBC_NDV3
1167 | AT_XDMAC_MBR_UBC_NDEN
1168 | AT_XDMAC_MBR_UBC_NSEN
1169 | ublen;
1170 desc->lld.mbr_cfg = chan_cc;
1171
1172 dev_dbg(chan2dev(chan),
1173 "%s: lld: mbr_da=0x%08x, mbr_ds=0x%08x, mbr_ubc=0x%08x, mbr_cfg=0x%08x\n",
1174 __func__, desc->lld.mbr_da, desc->lld.mbr_ds, desc->lld.mbr_ubc,
1175 desc->lld.mbr_cfg);
1176
1177 return desc;
1178 }
1179
1180 struct dma_async_tx_descriptor *
1181 at_xdmac_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
1182 size_t len, unsigned long flags)
1183 {
1184 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1185 struct at_xdmac_desc *desc;
1186
1187 dev_dbg(chan2dev(chan), "%s: dest=0x%08x, len=%d, pattern=0x%x, flags=0x%lx\n",
1188 __func__, dest, len, value, flags);
1189
1190 if (unlikely(!len))
1191 return NULL;
1192
1193 desc = at_xdmac_memset_create_desc(chan, atchan, dest, len, value);
1194 list_add_tail(&desc->desc_node, &desc->descs_list);
1195
1196 desc->tx_dma_desc.cookie = -EBUSY;
1197 desc->tx_dma_desc.flags = flags;
1198 desc->xfer_size = len;
1199
1200 return &desc->tx_dma_desc;
1201 }
1202
1203 static struct dma_async_tx_descriptor *
1204 at_xdmac_prep_dma_memset_sg(struct dma_chan *chan, struct scatterlist *sgl,
1205 unsigned int sg_len, int value,
1206 unsigned long flags)
1207 {
1208 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1209 struct at_xdmac_desc *desc, *pdesc = NULL,
1210 *ppdesc = NULL, *first = NULL;
1211 struct scatterlist *sg, *psg = NULL, *ppsg = NULL;
1212 size_t stride = 0, pstride = 0, len = 0;
1213 int i;
1214
1215 if (!sgl)
1216 return NULL;
1217
1218 dev_dbg(chan2dev(chan), "%s: sg_len=%d, value=0x%x, flags=0x%lx\n",
1219 __func__, sg_len, value, flags);
1220
1221 /* Prepare descriptors. */
1222 for_each_sg(sgl, sg, sg_len, i) {
1223 dev_dbg(chan2dev(chan), "%s: dest=0x%08x, len=%d, pattern=0x%x, flags=0x%lx\n",
1224 __func__, sg_dma_address(sg), sg_dma_len(sg),
1225 value, flags);
1226 desc = at_xdmac_memset_create_desc(chan, atchan,
1227 sg_dma_address(sg),
1228 sg_dma_len(sg),
1229 value);
1230 if (!desc && first)
1231 list_splice_init(&first->descs_list,
1232 &atchan->free_descs_list);
1233
1234 if (!first)
1235 first = desc;
1236
1237 /* Update our strides */
1238 pstride = stride;
1239 if (psg)
1240 stride = sg_dma_address(sg) -
1241 (sg_dma_address(psg) + sg_dma_len(psg));
1242
1243 /*
1244 * The scatterlist API gives us only the address and
1245 * length of each elements.
1246 *
1247 * Unfortunately, we don't have the stride, which we
1248 * will need to compute.
1249 *
1250 * That make us end up in a situation like this one:
1251 * len stride len stride len
1252 * +-------+ +-------+ +-------+
1253 * | N-2 | | N-1 | | N |
1254 * +-------+ +-------+ +-------+
1255 *
1256 * We need all these three elements (N-2, N-1 and N)
1257 * to actually take the decision on whether we need to
1258 * queue N-1 or reuse N-2.
1259 *
1260 * We will only consider N if it is the last element.
1261 */
1262 if (ppdesc && pdesc) {
1263 if ((stride == pstride) &&
1264 (sg_dma_len(ppsg) == sg_dma_len(psg))) {
1265 dev_dbg(chan2dev(chan),
1266 "%s: desc 0x%p can be merged with desc 0x%p\n",
1267 __func__, pdesc, ppdesc);
1268
1269 /*
1270 * Increment the block count of the
1271 * N-2 descriptor
1272 */
1273 at_xdmac_increment_block_count(chan, ppdesc);
1274 ppdesc->lld.mbr_dus = stride;
1275
1276 /*
1277 * Put back the N-1 descriptor in the
1278 * free descriptor list
1279 */
1280 list_add_tail(&pdesc->desc_node,
1281 &atchan->free_descs_list);
1282
1283 /*
1284 * Make our N-1 descriptor pointer
1285 * point to the N-2 since they were
1286 * actually merged.
1287 */
1288 pdesc = ppdesc;
1289
1290 /*
1291 * Rule out the case where we don't have
1292 * pstride computed yet (our second sg
1293 * element)
1294 *
1295 * We also want to catch the case where there
1296 * would be a negative stride,
1297 */
1298 } else if (pstride ||
1299 sg_dma_address(sg) < sg_dma_address(psg)) {
1300 /*
1301 * Queue the N-1 descriptor after the
1302 * N-2
1303 */
1304 at_xdmac_queue_desc(chan, ppdesc, pdesc);
1305
1306 /*
1307 * Add the N-1 descriptor to the list
1308 * of the descriptors used for this
1309 * transfer
1310 */
1311 list_add_tail(&desc->desc_node,
1312 &first->descs_list);
1313 dev_dbg(chan2dev(chan),
1314 "%s: add desc 0x%p to descs_list 0x%p\n",
1315 __func__, desc, first);
1316 }
1317 }
1318
1319 /*
1320 * If we are the last element, just see if we have the
1321 * same size than the previous element.
1322 *
1323 * If so, we can merge it with the previous descriptor
1324 * since we don't care about the stride anymore.
1325 */
1326 if ((i == (sg_len - 1)) &&
1327 sg_dma_len(ppsg) == sg_dma_len(psg)) {
1328 dev_dbg(chan2dev(chan),
1329 "%s: desc 0x%p can be merged with desc 0x%p\n",
1330 __func__, desc, pdesc);
1331
1332 /*
1333 * Increment the block count of the N-1
1334 * descriptor
1335 */
1336 at_xdmac_increment_block_count(chan, pdesc);
1337 pdesc->lld.mbr_dus = stride;
1338
1339 /*
1340 * Put back the N descriptor in the free
1341 * descriptor list
1342 */
1343 list_add_tail(&desc->desc_node,
1344 &atchan->free_descs_list);
1345 }
1346
1347 /* Update our descriptors */
1348 ppdesc = pdesc;
1349 pdesc = desc;
1350
1351 /* Update our scatter pointers */
1352 ppsg = psg;
1353 psg = sg;
1354
1355 len += sg_dma_len(sg);
1356 }
1357
1358 first->tx_dma_desc.cookie = -EBUSY;
1359 first->tx_dma_desc.flags = flags;
1360 first->xfer_size = len;
1361
1362 return &first->tx_dma_desc;
1363 }
1364
1365 static enum dma_status
1366 at_xdmac_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
1367 struct dma_tx_state *txstate)
1368 {
1369 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1370 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1371 struct at_xdmac_desc *desc, *_desc;
1372 struct list_head *descs_list;
1373 enum dma_status ret;
1374 int residue;
1375 u32 cur_nda, mask, value;
1376 u8 dwidth = 0;
1377 unsigned long flags;
1378
1379 ret = dma_cookie_status(chan, cookie, txstate);
1380 if (ret == DMA_COMPLETE)
1381 return ret;
1382
1383 if (!txstate)
1384 return ret;
1385
1386 spin_lock_irqsave(&atchan->lock, flags);
1387
1388 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1389
1390 /*
1391 * If the transfer has not been started yet, don't need to compute the
1392 * residue, it's the transfer length.
1393 */
1394 if (!desc->active_xfer) {
1395 dma_set_residue(txstate, desc->xfer_size);
1396 goto spin_unlock;
1397 }
1398
1399 residue = desc->xfer_size;
1400 /*
1401 * Flush FIFO: only relevant when the transfer is source peripheral
1402 * synchronized.
1403 */
1404 mask = AT_XDMAC_CC_TYPE | AT_XDMAC_CC_DSYNC;
1405 value = AT_XDMAC_CC_TYPE_PER_TRAN | AT_XDMAC_CC_DSYNC_PER2MEM;
1406 if ((desc->lld.mbr_cfg & mask) == value) {
1407 at_xdmac_write(atxdmac, AT_XDMAC_GSWF, atchan->mask);
1408 while (!(at_xdmac_chan_read(atchan, AT_XDMAC_CIS) & AT_XDMAC_CIS_FIS))
1409 cpu_relax();
1410 }
1411
1412 cur_nda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA) & 0xfffffffc;
1413 /*
1414 * Remove size of all microblocks already transferred and the current
1415 * one. Then add the remaining size to transfer of the current
1416 * microblock.
1417 */
1418 descs_list = &desc->descs_list;
1419 list_for_each_entry_safe(desc, _desc, descs_list, desc_node) {
1420 dwidth = at_xdmac_get_dwidth(desc->lld.mbr_cfg);
1421 residue -= (desc->lld.mbr_ubc & 0xffffff) << dwidth;
1422 if ((desc->lld.mbr_nda & 0xfffffffc) == cur_nda)
1423 break;
1424 }
1425 residue += at_xdmac_chan_read(atchan, AT_XDMAC_CUBC) << dwidth;
1426
1427 dma_set_residue(txstate, residue);
1428
1429 dev_dbg(chan2dev(chan),
1430 "%s: desc=0x%p, tx_dma_desc.phys=%pad, tx_status=%d, cookie=%d, residue=%d\n",
1431 __func__, desc, &desc->tx_dma_desc.phys, ret, cookie, residue);
1432
1433 spin_unlock:
1434 spin_unlock_irqrestore(&atchan->lock, flags);
1435 return ret;
1436 }
1437
1438 /* Call must be protected by lock. */
1439 static void at_xdmac_remove_xfer(struct at_xdmac_chan *atchan,
1440 struct at_xdmac_desc *desc)
1441 {
1442 dev_dbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1443
1444 /*
1445 * Remove the transfer from the transfer list then move the transfer
1446 * descriptors into the free descriptors list.
1447 */
1448 list_del(&desc->xfer_node);
1449 list_splice_init(&desc->descs_list, &atchan->free_descs_list);
1450 }
1451
1452 static void at_xdmac_advance_work(struct at_xdmac_chan *atchan)
1453 {
1454 struct at_xdmac_desc *desc;
1455 unsigned long flags;
1456
1457 spin_lock_irqsave(&atchan->lock, flags);
1458
1459 /*
1460 * If channel is enabled, do nothing, advance_work will be triggered
1461 * after the interruption.
1462 */
1463 if (!at_xdmac_chan_is_enabled(atchan) && !list_empty(&atchan->xfers_list)) {
1464 desc = list_first_entry(&atchan->xfers_list,
1465 struct at_xdmac_desc,
1466 xfer_node);
1467 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1468 if (!desc->active_xfer)
1469 at_xdmac_start_xfer(atchan, desc);
1470 }
1471
1472 spin_unlock_irqrestore(&atchan->lock, flags);
1473 }
1474
1475 static void at_xdmac_handle_cyclic(struct at_xdmac_chan *atchan)
1476 {
1477 struct at_xdmac_desc *desc;
1478 struct dma_async_tx_descriptor *txd;
1479
1480 desc = list_first_entry(&atchan->xfers_list, struct at_xdmac_desc, xfer_node);
1481 txd = &desc->tx_dma_desc;
1482
1483 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
1484 txd->callback(txd->callback_param);
1485 }
1486
1487 static void at_xdmac_tasklet(unsigned long data)
1488 {
1489 struct at_xdmac_chan *atchan = (struct at_xdmac_chan *)data;
1490 struct at_xdmac_desc *desc;
1491 u32 error_mask;
1492
1493 dev_dbg(chan2dev(&atchan->chan), "%s: status=0x%08lx\n",
1494 __func__, atchan->status);
1495
1496 error_mask = AT_XDMAC_CIS_RBEIS
1497 | AT_XDMAC_CIS_WBEIS
1498 | AT_XDMAC_CIS_ROIS;
1499
1500 if (at_xdmac_chan_is_cyclic(atchan)) {
1501 at_xdmac_handle_cyclic(atchan);
1502 } else if ((atchan->status & AT_XDMAC_CIS_LIS)
1503 || (atchan->status & error_mask)) {
1504 struct dma_async_tx_descriptor *txd;
1505
1506 if (atchan->status & AT_XDMAC_CIS_RBEIS)
1507 dev_err(chan2dev(&atchan->chan), "read bus error!!!");
1508 if (atchan->status & AT_XDMAC_CIS_WBEIS)
1509 dev_err(chan2dev(&atchan->chan), "write bus error!!!");
1510 if (atchan->status & AT_XDMAC_CIS_ROIS)
1511 dev_err(chan2dev(&atchan->chan), "request overflow error!!!");
1512
1513 spin_lock_bh(&atchan->lock);
1514 desc = list_first_entry(&atchan->xfers_list,
1515 struct at_xdmac_desc,
1516 xfer_node);
1517 dev_vdbg(chan2dev(&atchan->chan), "%s: desc 0x%p\n", __func__, desc);
1518 BUG_ON(!desc->active_xfer);
1519
1520 txd = &desc->tx_dma_desc;
1521
1522 at_xdmac_remove_xfer(atchan, desc);
1523 spin_unlock_bh(&atchan->lock);
1524
1525 if (!at_xdmac_chan_is_cyclic(atchan)) {
1526 dma_cookie_complete(txd);
1527 if (txd->callback && (txd->flags & DMA_PREP_INTERRUPT))
1528 txd->callback(txd->callback_param);
1529 }
1530
1531 dma_run_dependencies(txd);
1532
1533 at_xdmac_advance_work(atchan);
1534 }
1535 }
1536
1537 static irqreturn_t at_xdmac_interrupt(int irq, void *dev_id)
1538 {
1539 struct at_xdmac *atxdmac = (struct at_xdmac *)dev_id;
1540 struct at_xdmac_chan *atchan;
1541 u32 imr, status, pending;
1542 u32 chan_imr, chan_status;
1543 int i, ret = IRQ_NONE;
1544
1545 do {
1546 imr = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1547 status = at_xdmac_read(atxdmac, AT_XDMAC_GIS);
1548 pending = status & imr;
1549
1550 dev_vdbg(atxdmac->dma.dev,
1551 "%s: status=0x%08x, imr=0x%08x, pending=0x%08x\n",
1552 __func__, status, imr, pending);
1553
1554 if (!pending)
1555 break;
1556
1557 /* We have to find which channel has generated the interrupt. */
1558 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1559 if (!((1 << i) & pending))
1560 continue;
1561
1562 atchan = &atxdmac->chan[i];
1563 chan_imr = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1564 chan_status = at_xdmac_chan_read(atchan, AT_XDMAC_CIS);
1565 atchan->status = chan_status & chan_imr;
1566 dev_vdbg(atxdmac->dma.dev,
1567 "%s: chan%d: imr=0x%x, status=0x%x\n",
1568 __func__, i, chan_imr, chan_status);
1569 dev_vdbg(chan2dev(&atchan->chan),
1570 "%s: CC=0x%08x CNDA=0x%08x, CNDC=0x%08x, CSA=0x%08x, CDA=0x%08x, CUBC=0x%08x\n",
1571 __func__,
1572 at_xdmac_chan_read(atchan, AT_XDMAC_CC),
1573 at_xdmac_chan_read(atchan, AT_XDMAC_CNDA),
1574 at_xdmac_chan_read(atchan, AT_XDMAC_CNDC),
1575 at_xdmac_chan_read(atchan, AT_XDMAC_CSA),
1576 at_xdmac_chan_read(atchan, AT_XDMAC_CDA),
1577 at_xdmac_chan_read(atchan, AT_XDMAC_CUBC));
1578
1579 if (atchan->status & (AT_XDMAC_CIS_RBEIS | AT_XDMAC_CIS_WBEIS))
1580 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1581
1582 tasklet_schedule(&atchan->tasklet);
1583 ret = IRQ_HANDLED;
1584 }
1585
1586 } while (pending);
1587
1588 return ret;
1589 }
1590
1591 static void at_xdmac_issue_pending(struct dma_chan *chan)
1592 {
1593 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1594
1595 dev_dbg(chan2dev(&atchan->chan), "%s\n", __func__);
1596
1597 if (!at_xdmac_chan_is_cyclic(atchan))
1598 at_xdmac_advance_work(atchan);
1599
1600 return;
1601 }
1602
1603 static int at_xdmac_device_config(struct dma_chan *chan,
1604 struct dma_slave_config *config)
1605 {
1606 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1607 int ret;
1608 unsigned long flags;
1609
1610 dev_dbg(chan2dev(chan), "%s\n", __func__);
1611
1612 spin_lock_irqsave(&atchan->lock, flags);
1613 ret = at_xdmac_set_slave_config(chan, config);
1614 spin_unlock_irqrestore(&atchan->lock, flags);
1615
1616 return ret;
1617 }
1618
1619 static int at_xdmac_device_pause(struct dma_chan *chan)
1620 {
1621 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1622 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1623 unsigned long flags;
1624
1625 dev_dbg(chan2dev(chan), "%s\n", __func__);
1626
1627 if (test_and_set_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status))
1628 return 0;
1629
1630 spin_lock_irqsave(&atchan->lock, flags);
1631 at_xdmac_write(atxdmac, AT_XDMAC_GRWS, atchan->mask);
1632 while (at_xdmac_chan_read(atchan, AT_XDMAC_CC)
1633 & (AT_XDMAC_CC_WRIP | AT_XDMAC_CC_RDIP))
1634 cpu_relax();
1635 spin_unlock_irqrestore(&atchan->lock, flags);
1636
1637 return 0;
1638 }
1639
1640 static int at_xdmac_device_resume(struct dma_chan *chan)
1641 {
1642 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1643 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1644 unsigned long flags;
1645
1646 dev_dbg(chan2dev(chan), "%s\n", __func__);
1647
1648 spin_lock_irqsave(&atchan->lock, flags);
1649 if (!at_xdmac_chan_is_paused(atchan)) {
1650 spin_unlock_irqrestore(&atchan->lock, flags);
1651 return 0;
1652 }
1653
1654 at_xdmac_write(atxdmac, AT_XDMAC_GRWR, atchan->mask);
1655 clear_bit(AT_XDMAC_CHAN_IS_PAUSED, &atchan->status);
1656 spin_unlock_irqrestore(&atchan->lock, flags);
1657
1658 return 0;
1659 }
1660
1661 static int at_xdmac_device_terminate_all(struct dma_chan *chan)
1662 {
1663 struct at_xdmac_desc *desc, *_desc;
1664 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1665 struct at_xdmac *atxdmac = to_at_xdmac(atchan->chan.device);
1666 unsigned long flags;
1667
1668 dev_dbg(chan2dev(chan), "%s\n", __func__);
1669
1670 spin_lock_irqsave(&atchan->lock, flags);
1671 at_xdmac_write(atxdmac, AT_XDMAC_GD, atchan->mask);
1672 while (at_xdmac_read(atxdmac, AT_XDMAC_GS) & atchan->mask)
1673 cpu_relax();
1674
1675 /* Cancel all pending transfers. */
1676 list_for_each_entry_safe(desc, _desc, &atchan->xfers_list, xfer_node)
1677 at_xdmac_remove_xfer(atchan, desc);
1678
1679 clear_bit(AT_XDMAC_CHAN_IS_CYCLIC, &atchan->status);
1680 spin_unlock_irqrestore(&atchan->lock, flags);
1681
1682 return 0;
1683 }
1684
1685 static int at_xdmac_alloc_chan_resources(struct dma_chan *chan)
1686 {
1687 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1688 struct at_xdmac_desc *desc;
1689 int i;
1690 unsigned long flags;
1691
1692 spin_lock_irqsave(&atchan->lock, flags);
1693
1694 if (at_xdmac_chan_is_enabled(atchan)) {
1695 dev_err(chan2dev(chan),
1696 "can't allocate channel resources (channel enabled)\n");
1697 i = -EIO;
1698 goto spin_unlock;
1699 }
1700
1701 if (!list_empty(&atchan->free_descs_list)) {
1702 dev_err(chan2dev(chan),
1703 "can't allocate channel resources (channel not free from a previous use)\n");
1704 i = -EIO;
1705 goto spin_unlock;
1706 }
1707
1708 for (i = 0; i < init_nr_desc_per_channel; i++) {
1709 desc = at_xdmac_alloc_desc(chan, GFP_ATOMIC);
1710 if (!desc) {
1711 dev_warn(chan2dev(chan),
1712 "only %d descriptors have been allocated\n", i);
1713 break;
1714 }
1715 list_add_tail(&desc->desc_node, &atchan->free_descs_list);
1716 }
1717
1718 dma_cookie_init(chan);
1719
1720 dev_dbg(chan2dev(chan), "%s: allocated %d descriptors\n", __func__, i);
1721
1722 spin_unlock:
1723 spin_unlock_irqrestore(&atchan->lock, flags);
1724 return i;
1725 }
1726
1727 static void at_xdmac_free_chan_resources(struct dma_chan *chan)
1728 {
1729 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1730 struct at_xdmac *atxdmac = to_at_xdmac(chan->device);
1731 struct at_xdmac_desc *desc, *_desc;
1732
1733 list_for_each_entry_safe(desc, _desc, &atchan->free_descs_list, desc_node) {
1734 dev_dbg(chan2dev(chan), "%s: freeing descriptor %p\n", __func__, desc);
1735 list_del(&desc->desc_node);
1736 dma_pool_free(atxdmac->at_xdmac_desc_pool, desc, desc->tx_dma_desc.phys);
1737 }
1738
1739 return;
1740 }
1741
1742 #ifdef CONFIG_PM
1743 static int atmel_xdmac_prepare(struct device *dev)
1744 {
1745 struct platform_device *pdev = to_platform_device(dev);
1746 struct at_xdmac *atxdmac = platform_get_drvdata(pdev);
1747 struct dma_chan *chan, *_chan;
1748
1749 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1750 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1751
1752 /* Wait for transfer completion, except in cyclic case. */
1753 if (at_xdmac_chan_is_enabled(atchan) && !at_xdmac_chan_is_cyclic(atchan))
1754 return -EAGAIN;
1755 }
1756 return 0;
1757 }
1758 #else
1759 # define atmel_xdmac_prepare NULL
1760 #endif
1761
1762 #ifdef CONFIG_PM_SLEEP
1763 static int atmel_xdmac_suspend(struct device *dev)
1764 {
1765 struct platform_device *pdev = to_platform_device(dev);
1766 struct at_xdmac *atxdmac = platform_get_drvdata(pdev);
1767 struct dma_chan *chan, *_chan;
1768
1769 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1770 struct at_xdmac_chan *atchan = to_at_xdmac_chan(chan);
1771
1772 atchan->save_cc = at_xdmac_chan_read(atchan, AT_XDMAC_CC);
1773 if (at_xdmac_chan_is_cyclic(atchan)) {
1774 if (!at_xdmac_chan_is_paused(atchan))
1775 at_xdmac_device_pause(chan);
1776 atchan->save_cim = at_xdmac_chan_read(atchan, AT_XDMAC_CIM);
1777 atchan->save_cnda = at_xdmac_chan_read(atchan, AT_XDMAC_CNDA);
1778 atchan->save_cndc = at_xdmac_chan_read(atchan, AT_XDMAC_CNDC);
1779 }
1780 }
1781 atxdmac->save_gim = at_xdmac_read(atxdmac, AT_XDMAC_GIM);
1782
1783 at_xdmac_off(atxdmac);
1784 clk_disable_unprepare(atxdmac->clk);
1785 return 0;
1786 }
1787
1788 static int atmel_xdmac_resume(struct device *dev)
1789 {
1790 struct platform_device *pdev = to_platform_device(dev);
1791 struct at_xdmac *atxdmac = platform_get_drvdata(pdev);
1792 struct at_xdmac_chan *atchan;
1793 struct dma_chan *chan, *_chan;
1794 int i;
1795
1796 clk_prepare_enable(atxdmac->clk);
1797
1798 /* Clear pending interrupts. */
1799 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1800 atchan = &atxdmac->chan[i];
1801 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1802 cpu_relax();
1803 }
1804
1805 at_xdmac_write(atxdmac, AT_XDMAC_GIE, atxdmac->save_gim);
1806 at_xdmac_write(atxdmac, AT_XDMAC_GE, atxdmac->save_gs);
1807 list_for_each_entry_safe(chan, _chan, &atxdmac->dma.channels, device_node) {
1808 atchan = to_at_xdmac_chan(chan);
1809 at_xdmac_chan_write(atchan, AT_XDMAC_CC, atchan->save_cc);
1810 if (at_xdmac_chan_is_cyclic(atchan)) {
1811 at_xdmac_chan_write(atchan, AT_XDMAC_CNDA, atchan->save_cnda);
1812 at_xdmac_chan_write(atchan, AT_XDMAC_CNDC, atchan->save_cndc);
1813 at_xdmac_chan_write(atchan, AT_XDMAC_CIE, atchan->save_cim);
1814 wmb();
1815 at_xdmac_write(atxdmac, AT_XDMAC_GE, atchan->mask);
1816 }
1817 }
1818 return 0;
1819 }
1820 #endif /* CONFIG_PM_SLEEP */
1821
1822 static int at_xdmac_probe(struct platform_device *pdev)
1823 {
1824 struct resource *res;
1825 struct at_xdmac *atxdmac;
1826 int irq, size, nr_channels, i, ret;
1827 void __iomem *base;
1828 u32 reg;
1829
1830 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1831 if (!res)
1832 return -EINVAL;
1833
1834 irq = platform_get_irq(pdev, 0);
1835 if (irq < 0)
1836 return irq;
1837
1838 base = devm_ioremap_resource(&pdev->dev, res);
1839 if (IS_ERR(base))
1840 return PTR_ERR(base);
1841
1842 /*
1843 * Read number of xdmac channels, read helper function can't be used
1844 * since atxdmac is not yet allocated and we need to know the number
1845 * of channels to do the allocation.
1846 */
1847 reg = readl_relaxed(base + AT_XDMAC_GTYPE);
1848 nr_channels = AT_XDMAC_NB_CH(reg);
1849 if (nr_channels > AT_XDMAC_MAX_CHAN) {
1850 dev_err(&pdev->dev, "invalid number of channels (%u)\n",
1851 nr_channels);
1852 return -EINVAL;
1853 }
1854
1855 size = sizeof(*atxdmac);
1856 size += nr_channels * sizeof(struct at_xdmac_chan);
1857 atxdmac = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1858 if (!atxdmac) {
1859 dev_err(&pdev->dev, "can't allocate at_xdmac structure\n");
1860 return -ENOMEM;
1861 }
1862
1863 atxdmac->regs = base;
1864 atxdmac->irq = irq;
1865
1866 atxdmac->clk = devm_clk_get(&pdev->dev, "dma_clk");
1867 if (IS_ERR(atxdmac->clk)) {
1868 dev_err(&pdev->dev, "can't get dma_clk\n");
1869 return PTR_ERR(atxdmac->clk);
1870 }
1871
1872 /* Do not use dev res to prevent races with tasklet */
1873 ret = request_irq(atxdmac->irq, at_xdmac_interrupt, 0, "at_xdmac", atxdmac);
1874 if (ret) {
1875 dev_err(&pdev->dev, "can't request irq\n");
1876 return ret;
1877 }
1878
1879 ret = clk_prepare_enable(atxdmac->clk);
1880 if (ret) {
1881 dev_err(&pdev->dev, "can't prepare or enable clock\n");
1882 goto err_free_irq;
1883 }
1884
1885 atxdmac->at_xdmac_desc_pool =
1886 dmam_pool_create(dev_name(&pdev->dev), &pdev->dev,
1887 sizeof(struct at_xdmac_desc), 4, 0);
1888 if (!atxdmac->at_xdmac_desc_pool) {
1889 dev_err(&pdev->dev, "no memory for descriptors dma pool\n");
1890 ret = -ENOMEM;
1891 goto err_clk_disable;
1892 }
1893
1894 dma_cap_set(DMA_CYCLIC, atxdmac->dma.cap_mask);
1895 dma_cap_set(DMA_INTERLEAVE, atxdmac->dma.cap_mask);
1896 dma_cap_set(DMA_MEMCPY, atxdmac->dma.cap_mask);
1897 dma_cap_set(DMA_MEMSET, atxdmac->dma.cap_mask);
1898 dma_cap_set(DMA_MEMSET_SG, atxdmac->dma.cap_mask);
1899 dma_cap_set(DMA_SLAVE, atxdmac->dma.cap_mask);
1900 /*
1901 * Without DMA_PRIVATE the driver is not able to allocate more than
1902 * one channel, second allocation fails in private_candidate.
1903 */
1904 dma_cap_set(DMA_PRIVATE, atxdmac->dma.cap_mask);
1905 atxdmac->dma.dev = &pdev->dev;
1906 atxdmac->dma.device_alloc_chan_resources = at_xdmac_alloc_chan_resources;
1907 atxdmac->dma.device_free_chan_resources = at_xdmac_free_chan_resources;
1908 atxdmac->dma.device_tx_status = at_xdmac_tx_status;
1909 atxdmac->dma.device_issue_pending = at_xdmac_issue_pending;
1910 atxdmac->dma.device_prep_dma_cyclic = at_xdmac_prep_dma_cyclic;
1911 atxdmac->dma.device_prep_interleaved_dma = at_xdmac_prep_interleaved;
1912 atxdmac->dma.device_prep_dma_memcpy = at_xdmac_prep_dma_memcpy;
1913 atxdmac->dma.device_prep_dma_memset = at_xdmac_prep_dma_memset;
1914 atxdmac->dma.device_prep_dma_memset_sg = at_xdmac_prep_dma_memset_sg;
1915 atxdmac->dma.device_prep_slave_sg = at_xdmac_prep_slave_sg;
1916 atxdmac->dma.device_config = at_xdmac_device_config;
1917 atxdmac->dma.device_pause = at_xdmac_device_pause;
1918 atxdmac->dma.device_resume = at_xdmac_device_resume;
1919 atxdmac->dma.device_terminate_all = at_xdmac_device_terminate_all;
1920 atxdmac->dma.src_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
1921 atxdmac->dma.dst_addr_widths = AT_XDMAC_DMA_BUSWIDTHS;
1922 atxdmac->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1923 atxdmac->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1924
1925 /* Disable all chans and interrupts. */
1926 at_xdmac_off(atxdmac);
1927
1928 /* Init channels. */
1929 INIT_LIST_HEAD(&atxdmac->dma.channels);
1930 for (i = 0; i < nr_channels; i++) {
1931 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
1932
1933 atchan->chan.device = &atxdmac->dma;
1934 list_add_tail(&atchan->chan.device_node,
1935 &atxdmac->dma.channels);
1936
1937 atchan->ch_regs = at_xdmac_chan_reg_base(atxdmac, i);
1938 atchan->mask = 1 << i;
1939
1940 spin_lock_init(&atchan->lock);
1941 INIT_LIST_HEAD(&atchan->xfers_list);
1942 INIT_LIST_HEAD(&atchan->free_descs_list);
1943 tasklet_init(&atchan->tasklet, at_xdmac_tasklet,
1944 (unsigned long)atchan);
1945
1946 /* Clear pending interrupts. */
1947 while (at_xdmac_chan_read(atchan, AT_XDMAC_CIS))
1948 cpu_relax();
1949 }
1950 platform_set_drvdata(pdev, atxdmac);
1951
1952 ret = dma_async_device_register(&atxdmac->dma);
1953 if (ret) {
1954 dev_err(&pdev->dev, "fail to register DMA engine device\n");
1955 goto err_clk_disable;
1956 }
1957
1958 ret = of_dma_controller_register(pdev->dev.of_node,
1959 at_xdmac_xlate, atxdmac);
1960 if (ret) {
1961 dev_err(&pdev->dev, "could not register of dma controller\n");
1962 goto err_dma_unregister;
1963 }
1964
1965 dev_info(&pdev->dev, "%d channels, mapped at 0x%p\n",
1966 nr_channels, atxdmac->regs);
1967
1968 return 0;
1969
1970 err_dma_unregister:
1971 dma_async_device_unregister(&atxdmac->dma);
1972 err_clk_disable:
1973 clk_disable_unprepare(atxdmac->clk);
1974 err_free_irq:
1975 free_irq(atxdmac->irq, atxdmac->dma.dev);
1976 return ret;
1977 }
1978
1979 static int at_xdmac_remove(struct platform_device *pdev)
1980 {
1981 struct at_xdmac *atxdmac = (struct at_xdmac *)platform_get_drvdata(pdev);
1982 int i;
1983
1984 at_xdmac_off(atxdmac);
1985 of_dma_controller_free(pdev->dev.of_node);
1986 dma_async_device_unregister(&atxdmac->dma);
1987 clk_disable_unprepare(atxdmac->clk);
1988
1989 synchronize_irq(atxdmac->irq);
1990
1991 free_irq(atxdmac->irq, atxdmac->dma.dev);
1992
1993 for (i = 0; i < atxdmac->dma.chancnt; i++) {
1994 struct at_xdmac_chan *atchan = &atxdmac->chan[i];
1995
1996 tasklet_kill(&atchan->tasklet);
1997 at_xdmac_free_chan_resources(&atchan->chan);
1998 }
1999
2000 return 0;
2001 }
2002
2003 static const struct dev_pm_ops atmel_xdmac_dev_pm_ops = {
2004 .prepare = atmel_xdmac_prepare,
2005 SET_LATE_SYSTEM_SLEEP_PM_OPS(atmel_xdmac_suspend, atmel_xdmac_resume)
2006 };
2007
2008 static const struct of_device_id atmel_xdmac_dt_ids[] = {
2009 {
2010 .compatible = "atmel,sama5d4-dma",
2011 }, {
2012 /* sentinel */
2013 }
2014 };
2015 MODULE_DEVICE_TABLE(of, atmel_xdmac_dt_ids);
2016
2017 static struct platform_driver at_xdmac_driver = {
2018 .probe = at_xdmac_probe,
2019 .remove = at_xdmac_remove,
2020 .driver = {
2021 .name = "at_xdmac",
2022 .of_match_table = of_match_ptr(atmel_xdmac_dt_ids),
2023 .pm = &atmel_xdmac_dev_pm_ops,
2024 }
2025 };
2026
2027 static int __init at_xdmac_init(void)
2028 {
2029 return platform_driver_probe(&at_xdmac_driver, at_xdmac_probe);
2030 }
2031 subsys_initcall(at_xdmac_init);
2032
2033 MODULE_DESCRIPTION("Atmel Extended DMA Controller driver");
2034 MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@atmel.com>");
2035 MODULE_LICENSE("GPL");
This page took 0.095343 seconds and 5 git commands to generate.