Merge tag 'iwlwifi-for-kalle-2015-05-21' of https://git.kernel.org/pub/scm/linux...
[deliverable/linux.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
17
18 /*
19 * This code implements the DMA subsystem. It provides a HW-neutral interface
20 * for other kernel code to use asynchronous memory copy capabilities,
21 * if present, and allows different HW DMA drivers to register as providing
22 * this capability.
23 *
24 * Due to the fact we are accelerating what is already a relatively fast
25 * operation, the code goes to great lengths to avoid additional overhead,
26 * such as locking.
27 *
28 * LOCKING:
29 *
30 * The subsystem keeps a global list of dma_device structs it is protected by a
31 * mutex, dma_list_mutex.
32 *
33 * A subsystem can get access to a channel by calling dmaengine_get() followed
34 * by dma_find_channel(), or if it has need for an exclusive channel it can call
35 * dma_request_channel(). Once a channel is allocated a reference is taken
36 * against its corresponding driver to disable removal.
37 *
38 * Each device has a channels list, which runs unlocked but is never modified
39 * once the device is registered, it's just setup by the driver.
40 *
41 * See Documentation/dmaengine.txt for more details
42 */
43
44 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
45
46 #include <linux/dma-mapping.h>
47 #include <linux/init.h>
48 #include <linux/module.h>
49 #include <linux/mm.h>
50 #include <linux/device.h>
51 #include <linux/dmaengine.h>
52 #include <linux/hardirq.h>
53 #include <linux/spinlock.h>
54 #include <linux/percpu.h>
55 #include <linux/rcupdate.h>
56 #include <linux/mutex.h>
57 #include <linux/jiffies.h>
58 #include <linux/rculist.h>
59 #include <linux/idr.h>
60 #include <linux/slab.h>
61 #include <linux/acpi.h>
62 #include <linux/acpi_dma.h>
63 #include <linux/of_dma.h>
64 #include <linux/mempool.h>
65
66 static DEFINE_MUTEX(dma_list_mutex);
67 static DEFINE_IDR(dma_idr);
68 static LIST_HEAD(dma_device_list);
69 static long dmaengine_ref_count;
70
71 /* --- sysfs implementation --- */
72
73 /**
74 * dev_to_dma_chan - convert a device pointer to the its sysfs container object
75 * @dev - device node
76 *
77 * Must be called under dma_list_mutex
78 */
79 static struct dma_chan *dev_to_dma_chan(struct device *dev)
80 {
81 struct dma_chan_dev *chan_dev;
82
83 chan_dev = container_of(dev, typeof(*chan_dev), device);
84 return chan_dev->chan;
85 }
86
87 static ssize_t memcpy_count_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89 {
90 struct dma_chan *chan;
91 unsigned long count = 0;
92 int i;
93 int err;
94
95 mutex_lock(&dma_list_mutex);
96 chan = dev_to_dma_chan(dev);
97 if (chan) {
98 for_each_possible_cpu(i)
99 count += per_cpu_ptr(chan->local, i)->memcpy_count;
100 err = sprintf(buf, "%lu\n", count);
101 } else
102 err = -ENODEV;
103 mutex_unlock(&dma_list_mutex);
104
105 return err;
106 }
107 static DEVICE_ATTR_RO(memcpy_count);
108
109 static ssize_t bytes_transferred_show(struct device *dev,
110 struct device_attribute *attr, char *buf)
111 {
112 struct dma_chan *chan;
113 unsigned long count = 0;
114 int i;
115 int err;
116
117 mutex_lock(&dma_list_mutex);
118 chan = dev_to_dma_chan(dev);
119 if (chan) {
120 for_each_possible_cpu(i)
121 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
122 err = sprintf(buf, "%lu\n", count);
123 } else
124 err = -ENODEV;
125 mutex_unlock(&dma_list_mutex);
126
127 return err;
128 }
129 static DEVICE_ATTR_RO(bytes_transferred);
130
131 static ssize_t in_use_show(struct device *dev, struct device_attribute *attr,
132 char *buf)
133 {
134 struct dma_chan *chan;
135 int err;
136
137 mutex_lock(&dma_list_mutex);
138 chan = dev_to_dma_chan(dev);
139 if (chan)
140 err = sprintf(buf, "%d\n", chan->client_count);
141 else
142 err = -ENODEV;
143 mutex_unlock(&dma_list_mutex);
144
145 return err;
146 }
147 static DEVICE_ATTR_RO(in_use);
148
149 static struct attribute *dma_dev_attrs[] = {
150 &dev_attr_memcpy_count.attr,
151 &dev_attr_bytes_transferred.attr,
152 &dev_attr_in_use.attr,
153 NULL,
154 };
155 ATTRIBUTE_GROUPS(dma_dev);
156
157 static void chan_dev_release(struct device *dev)
158 {
159 struct dma_chan_dev *chan_dev;
160
161 chan_dev = container_of(dev, typeof(*chan_dev), device);
162 if (atomic_dec_and_test(chan_dev->idr_ref)) {
163 mutex_lock(&dma_list_mutex);
164 idr_remove(&dma_idr, chan_dev->dev_id);
165 mutex_unlock(&dma_list_mutex);
166 kfree(chan_dev->idr_ref);
167 }
168 kfree(chan_dev);
169 }
170
171 static struct class dma_devclass = {
172 .name = "dma",
173 .dev_groups = dma_dev_groups,
174 .dev_release = chan_dev_release,
175 };
176
177 /* --- client and device registration --- */
178
179 #define dma_device_satisfies_mask(device, mask) \
180 __dma_device_satisfies_mask((device), &(mask))
181 static int
182 __dma_device_satisfies_mask(struct dma_device *device,
183 const dma_cap_mask_t *want)
184 {
185 dma_cap_mask_t has;
186
187 bitmap_and(has.bits, want->bits, device->cap_mask.bits,
188 DMA_TX_TYPE_END);
189 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
190 }
191
192 static struct module *dma_chan_to_owner(struct dma_chan *chan)
193 {
194 return chan->device->dev->driver->owner;
195 }
196
197 /**
198 * balance_ref_count - catch up the channel reference count
199 * @chan - channel to balance ->client_count versus dmaengine_ref_count
200 *
201 * balance_ref_count must be called under dma_list_mutex
202 */
203 static void balance_ref_count(struct dma_chan *chan)
204 {
205 struct module *owner = dma_chan_to_owner(chan);
206
207 while (chan->client_count < dmaengine_ref_count) {
208 __module_get(owner);
209 chan->client_count++;
210 }
211 }
212
213 /**
214 * dma_chan_get - try to grab a dma channel's parent driver module
215 * @chan - channel to grab
216 *
217 * Must be called under dma_list_mutex
218 */
219 static int dma_chan_get(struct dma_chan *chan)
220 {
221 struct module *owner = dma_chan_to_owner(chan);
222 int ret;
223
224 /* The channel is already in use, update client count */
225 if (chan->client_count) {
226 __module_get(owner);
227 goto out;
228 }
229
230 if (!try_module_get(owner))
231 return -ENODEV;
232
233 /* allocate upon first client reference */
234 if (chan->device->device_alloc_chan_resources) {
235 ret = chan->device->device_alloc_chan_resources(chan);
236 if (ret < 0)
237 goto err_out;
238 }
239
240 if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
241 balance_ref_count(chan);
242
243 out:
244 chan->client_count++;
245 return 0;
246
247 err_out:
248 module_put(owner);
249 return ret;
250 }
251
252 /**
253 * dma_chan_put - drop a reference to a dma channel's parent driver module
254 * @chan - channel to release
255 *
256 * Must be called under dma_list_mutex
257 */
258 static void dma_chan_put(struct dma_chan *chan)
259 {
260 /* This channel is not in use, bail out */
261 if (!chan->client_count)
262 return;
263
264 chan->client_count--;
265 module_put(dma_chan_to_owner(chan));
266
267 /* This channel is not in use anymore, free it */
268 if (!chan->client_count && chan->device->device_free_chan_resources)
269 chan->device->device_free_chan_resources(chan);
270 }
271
272 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
273 {
274 enum dma_status status;
275 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
276
277 dma_async_issue_pending(chan);
278 do {
279 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
280 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
281 pr_err("%s: timeout!\n", __func__);
282 return DMA_ERROR;
283 }
284 if (status != DMA_IN_PROGRESS)
285 break;
286 cpu_relax();
287 } while (1);
288
289 return status;
290 }
291 EXPORT_SYMBOL(dma_sync_wait);
292
293 /**
294 * dma_cap_mask_all - enable iteration over all operation types
295 */
296 static dma_cap_mask_t dma_cap_mask_all;
297
298 /**
299 * dma_chan_tbl_ent - tracks channel allocations per core/operation
300 * @chan - associated channel for this entry
301 */
302 struct dma_chan_tbl_ent {
303 struct dma_chan *chan;
304 };
305
306 /**
307 * channel_table - percpu lookup table for memory-to-memory offload providers
308 */
309 static struct dma_chan_tbl_ent __percpu *channel_table[DMA_TX_TYPE_END];
310
311 static int __init dma_channel_table_init(void)
312 {
313 enum dma_transaction_type cap;
314 int err = 0;
315
316 bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
317
318 /* 'interrupt', 'private', and 'slave' are channel capabilities,
319 * but are not associated with an operation so they do not need
320 * an entry in the channel_table
321 */
322 clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
323 clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
324 clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
325
326 for_each_dma_cap_mask(cap, dma_cap_mask_all) {
327 channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
328 if (!channel_table[cap]) {
329 err = -ENOMEM;
330 break;
331 }
332 }
333
334 if (err) {
335 pr_err("initialization failure\n");
336 for_each_dma_cap_mask(cap, dma_cap_mask_all)
337 free_percpu(channel_table[cap]);
338 }
339
340 return err;
341 }
342 arch_initcall(dma_channel_table_init);
343
344 /**
345 * dma_find_channel - find a channel to carry out the operation
346 * @tx_type: transaction type
347 */
348 struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
349 {
350 return this_cpu_read(channel_table[tx_type]->chan);
351 }
352 EXPORT_SYMBOL(dma_find_channel);
353
354 /**
355 * dma_issue_pending_all - flush all pending operations across all channels
356 */
357 void dma_issue_pending_all(void)
358 {
359 struct dma_device *device;
360 struct dma_chan *chan;
361
362 rcu_read_lock();
363 list_for_each_entry_rcu(device, &dma_device_list, global_node) {
364 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
365 continue;
366 list_for_each_entry(chan, &device->channels, device_node)
367 if (chan->client_count)
368 device->device_issue_pending(chan);
369 }
370 rcu_read_unlock();
371 }
372 EXPORT_SYMBOL(dma_issue_pending_all);
373
374 /**
375 * dma_chan_is_local - returns true if the channel is in the same numa-node as the cpu
376 */
377 static bool dma_chan_is_local(struct dma_chan *chan, int cpu)
378 {
379 int node = dev_to_node(chan->device->dev);
380 return node == -1 || cpumask_test_cpu(cpu, cpumask_of_node(node));
381 }
382
383 /**
384 * min_chan - returns the channel with min count and in the same numa-node as the cpu
385 * @cap: capability to match
386 * @cpu: cpu index which the channel should be close to
387 *
388 * If some channels are close to the given cpu, the one with the lowest
389 * reference count is returned. Otherwise, cpu is ignored and only the
390 * reference count is taken into account.
391 * Must be called under dma_list_mutex.
392 */
393 static struct dma_chan *min_chan(enum dma_transaction_type cap, int cpu)
394 {
395 struct dma_device *device;
396 struct dma_chan *chan;
397 struct dma_chan *min = NULL;
398 struct dma_chan *localmin = NULL;
399
400 list_for_each_entry(device, &dma_device_list, global_node) {
401 if (!dma_has_cap(cap, device->cap_mask) ||
402 dma_has_cap(DMA_PRIVATE, device->cap_mask))
403 continue;
404 list_for_each_entry(chan, &device->channels, device_node) {
405 if (!chan->client_count)
406 continue;
407 if (!min || chan->table_count < min->table_count)
408 min = chan;
409
410 if (dma_chan_is_local(chan, cpu))
411 if (!localmin ||
412 chan->table_count < localmin->table_count)
413 localmin = chan;
414 }
415 }
416
417 chan = localmin ? localmin : min;
418
419 if (chan)
420 chan->table_count++;
421
422 return chan;
423 }
424
425 /**
426 * dma_channel_rebalance - redistribute the available channels
427 *
428 * Optimize for cpu isolation (each cpu gets a dedicated channel for an
429 * operation type) in the SMP case, and operation isolation (avoid
430 * multi-tasking channels) in the non-SMP case. Must be called under
431 * dma_list_mutex.
432 */
433 static void dma_channel_rebalance(void)
434 {
435 struct dma_chan *chan;
436 struct dma_device *device;
437 int cpu;
438 int cap;
439
440 /* undo the last distribution */
441 for_each_dma_cap_mask(cap, dma_cap_mask_all)
442 for_each_possible_cpu(cpu)
443 per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
444
445 list_for_each_entry(device, &dma_device_list, global_node) {
446 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
447 continue;
448 list_for_each_entry(chan, &device->channels, device_node)
449 chan->table_count = 0;
450 }
451
452 /* don't populate the channel_table if no clients are available */
453 if (!dmaengine_ref_count)
454 return;
455
456 /* redistribute available channels */
457 for_each_dma_cap_mask(cap, dma_cap_mask_all)
458 for_each_online_cpu(cpu) {
459 chan = min_chan(cap, cpu);
460 per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
461 }
462 }
463
464 int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps)
465 {
466 struct dma_device *device;
467
468 if (!chan || !caps)
469 return -EINVAL;
470
471 device = chan->device;
472
473 /* check if the channel supports slave transactions */
474 if (!test_bit(DMA_SLAVE, device->cap_mask.bits))
475 return -ENXIO;
476
477 /*
478 * Check whether it reports it uses the generic slave
479 * capabilities, if not, that means it doesn't support any
480 * kind of slave capabilities reporting.
481 */
482 if (!device->directions)
483 return -ENXIO;
484
485 caps->src_addr_widths = device->src_addr_widths;
486 caps->dst_addr_widths = device->dst_addr_widths;
487 caps->directions = device->directions;
488 caps->residue_granularity = device->residue_granularity;
489
490 caps->cmd_pause = !!device->device_pause;
491 caps->cmd_terminate = !!device->device_terminate_all;
492
493 return 0;
494 }
495 EXPORT_SYMBOL_GPL(dma_get_slave_caps);
496
497 static struct dma_chan *private_candidate(const dma_cap_mask_t *mask,
498 struct dma_device *dev,
499 dma_filter_fn fn, void *fn_param)
500 {
501 struct dma_chan *chan;
502
503 if (!__dma_device_satisfies_mask(dev, mask)) {
504 pr_debug("%s: wrong capabilities\n", __func__);
505 return NULL;
506 }
507 /* devices with multiple channels need special handling as we need to
508 * ensure that all channels are either private or public.
509 */
510 if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
511 list_for_each_entry(chan, &dev->channels, device_node) {
512 /* some channels are already publicly allocated */
513 if (chan->client_count)
514 return NULL;
515 }
516
517 list_for_each_entry(chan, &dev->channels, device_node) {
518 if (chan->client_count) {
519 pr_debug("%s: %s busy\n",
520 __func__, dma_chan_name(chan));
521 continue;
522 }
523 if (fn && !fn(chan, fn_param)) {
524 pr_debug("%s: %s filter said false\n",
525 __func__, dma_chan_name(chan));
526 continue;
527 }
528 return chan;
529 }
530
531 return NULL;
532 }
533
534 /**
535 * dma_request_slave_channel - try to get specific channel exclusively
536 * @chan: target channel
537 */
538 struct dma_chan *dma_get_slave_channel(struct dma_chan *chan)
539 {
540 int err = -EBUSY;
541
542 /* lock against __dma_request_channel */
543 mutex_lock(&dma_list_mutex);
544
545 if (chan->client_count == 0) {
546 err = dma_chan_get(chan);
547 if (err)
548 pr_debug("%s: failed to get %s: (%d)\n",
549 __func__, dma_chan_name(chan), err);
550 } else
551 chan = NULL;
552
553 mutex_unlock(&dma_list_mutex);
554
555
556 return chan;
557 }
558 EXPORT_SYMBOL_GPL(dma_get_slave_channel);
559
560 struct dma_chan *dma_get_any_slave_channel(struct dma_device *device)
561 {
562 dma_cap_mask_t mask;
563 struct dma_chan *chan;
564 int err;
565
566 dma_cap_zero(mask);
567 dma_cap_set(DMA_SLAVE, mask);
568
569 /* lock against __dma_request_channel */
570 mutex_lock(&dma_list_mutex);
571
572 chan = private_candidate(&mask, device, NULL, NULL);
573 if (chan) {
574 err = dma_chan_get(chan);
575 if (err) {
576 pr_debug("%s: failed to get %s: (%d)\n",
577 __func__, dma_chan_name(chan), err);
578 chan = NULL;
579 }
580 }
581
582 mutex_unlock(&dma_list_mutex);
583
584 return chan;
585 }
586 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel);
587
588 /**
589 * __dma_request_channel - try to allocate an exclusive channel
590 * @mask: capabilities that the channel must satisfy
591 * @fn: optional callback to disposition available channels
592 * @fn_param: opaque parameter to pass to dma_filter_fn
593 *
594 * Returns pointer to appropriate DMA channel on success or NULL.
595 */
596 struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
597 dma_filter_fn fn, void *fn_param)
598 {
599 struct dma_device *device, *_d;
600 struct dma_chan *chan = NULL;
601 int err;
602
603 /* Find a channel */
604 mutex_lock(&dma_list_mutex);
605 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
606 chan = private_candidate(mask, device, fn, fn_param);
607 if (chan) {
608 /* Found a suitable channel, try to grab, prep, and
609 * return it. We first set DMA_PRIVATE to disable
610 * balance_ref_count as this channel will not be
611 * published in the general-purpose allocator
612 */
613 dma_cap_set(DMA_PRIVATE, device->cap_mask);
614 device->privatecnt++;
615 err = dma_chan_get(chan);
616
617 if (err == -ENODEV) {
618 pr_debug("%s: %s module removed\n",
619 __func__, dma_chan_name(chan));
620 list_del_rcu(&device->global_node);
621 } else if (err)
622 pr_debug("%s: failed to get %s: (%d)\n",
623 __func__, dma_chan_name(chan), err);
624 else
625 break;
626 if (--device->privatecnt == 0)
627 dma_cap_clear(DMA_PRIVATE, device->cap_mask);
628 chan = NULL;
629 }
630 }
631 mutex_unlock(&dma_list_mutex);
632
633 pr_debug("%s: %s (%s)\n",
634 __func__,
635 chan ? "success" : "fail",
636 chan ? dma_chan_name(chan) : NULL);
637
638 return chan;
639 }
640 EXPORT_SYMBOL_GPL(__dma_request_channel);
641
642 /**
643 * dma_request_slave_channel - try to allocate an exclusive slave channel
644 * @dev: pointer to client device structure
645 * @name: slave channel name
646 *
647 * Returns pointer to appropriate DMA channel on success or an error pointer.
648 */
649 struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
650 const char *name)
651 {
652 /* If device-tree is present get slave info from here */
653 if (dev->of_node)
654 return of_dma_request_slave_channel(dev->of_node, name);
655
656 /* If device was enumerated by ACPI get slave info from here */
657 if (ACPI_HANDLE(dev))
658 return acpi_dma_request_slave_chan_by_name(dev, name);
659
660 return ERR_PTR(-ENODEV);
661 }
662 EXPORT_SYMBOL_GPL(dma_request_slave_channel_reason);
663
664 /**
665 * dma_request_slave_channel - try to allocate an exclusive slave channel
666 * @dev: pointer to client device structure
667 * @name: slave channel name
668 *
669 * Returns pointer to appropriate DMA channel on success or NULL.
670 */
671 struct dma_chan *dma_request_slave_channel(struct device *dev,
672 const char *name)
673 {
674 struct dma_chan *ch = dma_request_slave_channel_reason(dev, name);
675 if (IS_ERR(ch))
676 return NULL;
677 return ch;
678 }
679 EXPORT_SYMBOL_GPL(dma_request_slave_channel);
680
681 void dma_release_channel(struct dma_chan *chan)
682 {
683 mutex_lock(&dma_list_mutex);
684 WARN_ONCE(chan->client_count != 1,
685 "chan reference count %d != 1\n", chan->client_count);
686 dma_chan_put(chan);
687 /* drop PRIVATE cap enabled by __dma_request_channel() */
688 if (--chan->device->privatecnt == 0)
689 dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
690 mutex_unlock(&dma_list_mutex);
691 }
692 EXPORT_SYMBOL_GPL(dma_release_channel);
693
694 /**
695 * dmaengine_get - register interest in dma_channels
696 */
697 void dmaengine_get(void)
698 {
699 struct dma_device *device, *_d;
700 struct dma_chan *chan;
701 int err;
702
703 mutex_lock(&dma_list_mutex);
704 dmaengine_ref_count++;
705
706 /* try to grab channels */
707 list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
708 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
709 continue;
710 list_for_each_entry(chan, &device->channels, device_node) {
711 err = dma_chan_get(chan);
712 if (err == -ENODEV) {
713 /* module removed before we could use it */
714 list_del_rcu(&device->global_node);
715 break;
716 } else if (err)
717 pr_debug("%s: failed to get %s: (%d)\n",
718 __func__, dma_chan_name(chan), err);
719 }
720 }
721
722 /* if this is the first reference and there were channels
723 * waiting we need to rebalance to get those channels
724 * incorporated into the channel table
725 */
726 if (dmaengine_ref_count == 1)
727 dma_channel_rebalance();
728 mutex_unlock(&dma_list_mutex);
729 }
730 EXPORT_SYMBOL(dmaengine_get);
731
732 /**
733 * dmaengine_put - let dma drivers be removed when ref_count == 0
734 */
735 void dmaengine_put(void)
736 {
737 struct dma_device *device;
738 struct dma_chan *chan;
739
740 mutex_lock(&dma_list_mutex);
741 dmaengine_ref_count--;
742 BUG_ON(dmaengine_ref_count < 0);
743 /* drop channel references */
744 list_for_each_entry(device, &dma_device_list, global_node) {
745 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
746 continue;
747 list_for_each_entry(chan, &device->channels, device_node)
748 dma_chan_put(chan);
749 }
750 mutex_unlock(&dma_list_mutex);
751 }
752 EXPORT_SYMBOL(dmaengine_put);
753
754 static bool device_has_all_tx_types(struct dma_device *device)
755 {
756 /* A device that satisfies this test has channels that will never cause
757 * an async_tx channel switch event as all possible operation types can
758 * be handled.
759 */
760 #ifdef CONFIG_ASYNC_TX_DMA
761 if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
762 return false;
763 #endif
764
765 #if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
766 if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
767 return false;
768 #endif
769
770 #if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
771 if (!dma_has_cap(DMA_XOR, device->cap_mask))
772 return false;
773
774 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
775 if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
776 return false;
777 #endif
778 #endif
779
780 #if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
781 if (!dma_has_cap(DMA_PQ, device->cap_mask))
782 return false;
783
784 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
785 if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
786 return false;
787 #endif
788 #endif
789
790 return true;
791 }
792
793 static int get_dma_id(struct dma_device *device)
794 {
795 int rc;
796
797 mutex_lock(&dma_list_mutex);
798
799 rc = idr_alloc(&dma_idr, NULL, 0, 0, GFP_KERNEL);
800 if (rc >= 0)
801 device->dev_id = rc;
802
803 mutex_unlock(&dma_list_mutex);
804 return rc < 0 ? rc : 0;
805 }
806
807 /**
808 * dma_async_device_register - registers DMA devices found
809 * @device: &dma_device
810 */
811 int dma_async_device_register(struct dma_device *device)
812 {
813 int chancnt = 0, rc;
814 struct dma_chan* chan;
815 atomic_t *idr_ref;
816
817 if (!device)
818 return -ENODEV;
819
820 /* validate device routines */
821 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
822 !device->device_prep_dma_memcpy);
823 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
824 !device->device_prep_dma_xor);
825 BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
826 !device->device_prep_dma_xor_val);
827 BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
828 !device->device_prep_dma_pq);
829 BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
830 !device->device_prep_dma_pq_val);
831 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
832 !device->device_prep_dma_interrupt);
833 BUG_ON(dma_has_cap(DMA_SG, device->cap_mask) &&
834 !device->device_prep_dma_sg);
835 BUG_ON(dma_has_cap(DMA_CYCLIC, device->cap_mask) &&
836 !device->device_prep_dma_cyclic);
837 BUG_ON(dma_has_cap(DMA_INTERLEAVE, device->cap_mask) &&
838 !device->device_prep_interleaved_dma);
839
840 BUG_ON(!device->device_tx_status);
841 BUG_ON(!device->device_issue_pending);
842 BUG_ON(!device->dev);
843
844 /* note: this only matters in the
845 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
846 */
847 if (device_has_all_tx_types(device))
848 dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
849
850 idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
851 if (!idr_ref)
852 return -ENOMEM;
853 rc = get_dma_id(device);
854 if (rc != 0) {
855 kfree(idr_ref);
856 return rc;
857 }
858
859 atomic_set(idr_ref, 0);
860
861 /* represent channels in sysfs. Probably want devs too */
862 list_for_each_entry(chan, &device->channels, device_node) {
863 rc = -ENOMEM;
864 chan->local = alloc_percpu(typeof(*chan->local));
865 if (chan->local == NULL)
866 goto err_out;
867 chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
868 if (chan->dev == NULL) {
869 free_percpu(chan->local);
870 chan->local = NULL;
871 goto err_out;
872 }
873
874 chan->chan_id = chancnt++;
875 chan->dev->device.class = &dma_devclass;
876 chan->dev->device.parent = device->dev;
877 chan->dev->chan = chan;
878 chan->dev->idr_ref = idr_ref;
879 chan->dev->dev_id = device->dev_id;
880 atomic_inc(idr_ref);
881 dev_set_name(&chan->dev->device, "dma%dchan%d",
882 device->dev_id, chan->chan_id);
883
884 rc = device_register(&chan->dev->device);
885 if (rc) {
886 free_percpu(chan->local);
887 chan->local = NULL;
888 kfree(chan->dev);
889 atomic_dec(idr_ref);
890 goto err_out;
891 }
892 chan->client_count = 0;
893 }
894 device->chancnt = chancnt;
895
896 mutex_lock(&dma_list_mutex);
897 /* take references on public channels */
898 if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
899 list_for_each_entry(chan, &device->channels, device_node) {
900 /* if clients are already waiting for channels we need
901 * to take references on their behalf
902 */
903 if (dma_chan_get(chan) == -ENODEV) {
904 /* note we can only get here for the first
905 * channel as the remaining channels are
906 * guaranteed to get a reference
907 */
908 rc = -ENODEV;
909 mutex_unlock(&dma_list_mutex);
910 goto err_out;
911 }
912 }
913 list_add_tail_rcu(&device->global_node, &dma_device_list);
914 if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
915 device->privatecnt++; /* Always private */
916 dma_channel_rebalance();
917 mutex_unlock(&dma_list_mutex);
918
919 return 0;
920
921 err_out:
922 /* if we never registered a channel just release the idr */
923 if (atomic_read(idr_ref) == 0) {
924 mutex_lock(&dma_list_mutex);
925 idr_remove(&dma_idr, device->dev_id);
926 mutex_unlock(&dma_list_mutex);
927 kfree(idr_ref);
928 return rc;
929 }
930
931 list_for_each_entry(chan, &device->channels, device_node) {
932 if (chan->local == NULL)
933 continue;
934 mutex_lock(&dma_list_mutex);
935 chan->dev->chan = NULL;
936 mutex_unlock(&dma_list_mutex);
937 device_unregister(&chan->dev->device);
938 free_percpu(chan->local);
939 }
940 return rc;
941 }
942 EXPORT_SYMBOL(dma_async_device_register);
943
944 /**
945 * dma_async_device_unregister - unregister a DMA device
946 * @device: &dma_device
947 *
948 * This routine is called by dma driver exit routines, dmaengine holds module
949 * references to prevent it being called while channels are in use.
950 */
951 void dma_async_device_unregister(struct dma_device *device)
952 {
953 struct dma_chan *chan;
954
955 mutex_lock(&dma_list_mutex);
956 list_del_rcu(&device->global_node);
957 dma_channel_rebalance();
958 mutex_unlock(&dma_list_mutex);
959
960 list_for_each_entry(chan, &device->channels, device_node) {
961 WARN_ONCE(chan->client_count,
962 "%s called while %d clients hold a reference\n",
963 __func__, chan->client_count);
964 mutex_lock(&dma_list_mutex);
965 chan->dev->chan = NULL;
966 mutex_unlock(&dma_list_mutex);
967 device_unregister(&chan->dev->device);
968 free_percpu(chan->local);
969 }
970 }
971 EXPORT_SYMBOL(dma_async_device_unregister);
972
973 struct dmaengine_unmap_pool {
974 struct kmem_cache *cache;
975 const char *name;
976 mempool_t *pool;
977 size_t size;
978 };
979
980 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
981 static struct dmaengine_unmap_pool unmap_pool[] = {
982 __UNMAP_POOL(2),
983 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
984 __UNMAP_POOL(16),
985 __UNMAP_POOL(128),
986 __UNMAP_POOL(256),
987 #endif
988 };
989
990 static struct dmaengine_unmap_pool *__get_unmap_pool(int nr)
991 {
992 int order = get_count_order(nr);
993
994 switch (order) {
995 case 0 ... 1:
996 return &unmap_pool[0];
997 case 2 ... 4:
998 return &unmap_pool[1];
999 case 5 ... 7:
1000 return &unmap_pool[2];
1001 case 8:
1002 return &unmap_pool[3];
1003 default:
1004 BUG();
1005 return NULL;
1006 }
1007 }
1008
1009 static void dmaengine_unmap(struct kref *kref)
1010 {
1011 struct dmaengine_unmap_data *unmap = container_of(kref, typeof(*unmap), kref);
1012 struct device *dev = unmap->dev;
1013 int cnt, i;
1014
1015 cnt = unmap->to_cnt;
1016 for (i = 0; i < cnt; i++)
1017 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1018 DMA_TO_DEVICE);
1019 cnt += unmap->from_cnt;
1020 for (; i < cnt; i++)
1021 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1022 DMA_FROM_DEVICE);
1023 cnt += unmap->bidi_cnt;
1024 for (; i < cnt; i++) {
1025 if (unmap->addr[i] == 0)
1026 continue;
1027 dma_unmap_page(dev, unmap->addr[i], unmap->len,
1028 DMA_BIDIRECTIONAL);
1029 }
1030 cnt = unmap->map_cnt;
1031 mempool_free(unmap, __get_unmap_pool(cnt)->pool);
1032 }
1033
1034 void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
1035 {
1036 if (unmap)
1037 kref_put(&unmap->kref, dmaengine_unmap);
1038 }
1039 EXPORT_SYMBOL_GPL(dmaengine_unmap_put);
1040
1041 static void dmaengine_destroy_unmap_pool(void)
1042 {
1043 int i;
1044
1045 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1046 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1047
1048 if (p->pool)
1049 mempool_destroy(p->pool);
1050 p->pool = NULL;
1051 if (p->cache)
1052 kmem_cache_destroy(p->cache);
1053 p->cache = NULL;
1054 }
1055 }
1056
1057 static int __init dmaengine_init_unmap_pool(void)
1058 {
1059 int i;
1060
1061 for (i = 0; i < ARRAY_SIZE(unmap_pool); i++) {
1062 struct dmaengine_unmap_pool *p = &unmap_pool[i];
1063 size_t size;
1064
1065 size = sizeof(struct dmaengine_unmap_data) +
1066 sizeof(dma_addr_t) * p->size;
1067
1068 p->cache = kmem_cache_create(p->name, size, 0,
1069 SLAB_HWCACHE_ALIGN, NULL);
1070 if (!p->cache)
1071 break;
1072 p->pool = mempool_create_slab_pool(1, p->cache);
1073 if (!p->pool)
1074 break;
1075 }
1076
1077 if (i == ARRAY_SIZE(unmap_pool))
1078 return 0;
1079
1080 dmaengine_destroy_unmap_pool();
1081 return -ENOMEM;
1082 }
1083
1084 struct dmaengine_unmap_data *
1085 dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
1086 {
1087 struct dmaengine_unmap_data *unmap;
1088
1089 unmap = mempool_alloc(__get_unmap_pool(nr)->pool, flags);
1090 if (!unmap)
1091 return NULL;
1092
1093 memset(unmap, 0, sizeof(*unmap));
1094 kref_init(&unmap->kref);
1095 unmap->dev = dev;
1096 unmap->map_cnt = nr;
1097
1098 return unmap;
1099 }
1100 EXPORT_SYMBOL(dmaengine_get_unmap_data);
1101
1102 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
1103 struct dma_chan *chan)
1104 {
1105 tx->chan = chan;
1106 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1107 spin_lock_init(&tx->lock);
1108 #endif
1109 }
1110 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
1111
1112 /* dma_wait_for_async_tx - spin wait for a transaction to complete
1113 * @tx: in-flight transaction to wait on
1114 */
1115 enum dma_status
1116 dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1117 {
1118 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
1119
1120 if (!tx)
1121 return DMA_COMPLETE;
1122
1123 while (tx->cookie == -EBUSY) {
1124 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
1125 pr_err("%s timeout waiting for descriptor submission\n",
1126 __func__);
1127 return DMA_ERROR;
1128 }
1129 cpu_relax();
1130 }
1131 return dma_sync_wait(tx->chan, tx->cookie);
1132 }
1133 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
1134
1135 /* dma_run_dependencies - helper routine for dma drivers to process
1136 * (start) dependent operations on their target channel
1137 * @tx: transaction with dependencies
1138 */
1139 void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
1140 {
1141 struct dma_async_tx_descriptor *dep = txd_next(tx);
1142 struct dma_async_tx_descriptor *dep_next;
1143 struct dma_chan *chan;
1144
1145 if (!dep)
1146 return;
1147
1148 /* we'll submit tx->next now, so clear the link */
1149 txd_clear_next(tx);
1150 chan = dep->chan;
1151
1152 /* keep submitting up until a channel switch is detected
1153 * in that case we will be called again as a result of
1154 * processing the interrupt from async_tx_channel_switch
1155 */
1156 for (; dep; dep = dep_next) {
1157 txd_lock(dep);
1158 txd_clear_parent(dep);
1159 dep_next = txd_next(dep);
1160 if (dep_next && dep_next->chan == chan)
1161 txd_clear_next(dep); /* ->next will be submitted */
1162 else
1163 dep_next = NULL; /* submit current dep and terminate */
1164 txd_unlock(dep);
1165
1166 dep->tx_submit(dep);
1167 }
1168
1169 chan->device->device_issue_pending(chan);
1170 }
1171 EXPORT_SYMBOL_GPL(dma_run_dependencies);
1172
1173 static int __init dma_bus_init(void)
1174 {
1175 int err = dmaengine_init_unmap_pool();
1176
1177 if (err)
1178 return err;
1179 return class_register(&dma_devclass);
1180 }
1181 arch_initcall(dma_bus_init);
1182
1183
This page took 0.057768 seconds and 5 git commands to generate.